Magneto-transport in Dilute Fluorinated Graphene

Jun Zhu

Department of Physics
The Pennsylvania State University

\[
\rho(B)/\rho(B=0T) \quad B(T)
\]

\[
L_\Phi(nm) \quad T(K)
\]

Sample A

3.8x10^{17/cm^2}
2.5x10^{17/cm^2}
1.4x10^{17/cm^2}
1.1x10^{17/cm^2}
0.6x10^{17/cm^2}
Motivation

Engineering the properties of graphene with adatoms

• Electronic and optical properties (band gap opening, doping, luminescence)
• Functionalization (sensing, composite material)
• Magnetism

➢ Fully fluorinated graphene CF (graphene monofluoride)
 • ultrathin large bandgap insulator
 • photoluminescence due to defect states

Robinson et al, Nano Lett. 10, 3001 (2010)
Nair et al, Small 6, 2877 (2010)
Jeon et al, ACS Nano, 5, 1042 (2011)
…
Dilute fluorinated graphene (DFG): Is it magnetic?

Magneto-transport experiments in DFG reveal:

- Saturation of phase breaking length at low temperature
- Very large negative magneto-resistance

Hong et al, PRB 83, 085410 (2011)
Hong et al, submitted to PRL
The Team

Dr. Xia Hong (now U. Nebraska-Lincoln)

Carina Herding
Ke Zou
Shih-Ho Cheng
Atomic defects in graphene

- adatoms, vacancies, substitutes
 - F, H, OH, B, N, etc

- strong and short-ranged interaction with Dirac fermions
 - hybridize with the π orbitals of graphene
 - sharp resonance in the DoS near the Dirac point
 - may carry a local magnetic moment-Kondo impurity
 - strong spin-orbit coupling

Hubbard model with onsite energy U and hopping term t

Jun Zhu, jzhu@phys.psu.edu
Adatom-induced magnetism

net spin $\sim \mu_B$

decay over a few lattice constants

“local moment”

- tunable adatom coverage
- tunable electron density and density of states

$tunable$ electron-moment, moment-moment interactions

graphene twist:

A-A: ferromagnetic, A-B: anti-ferromagnetic

Yazyev & Helm, *PRB* 75, 125408 (2007) and many others
Adatoms: resonant scattering center

\[J_l(kr) \]
\[Y_l(kr) \]

phase shift \(\delta_l(k) \)

\[\sigma = \frac{2e^2}{\pi \hbar n_{\text{defect}}} \ln^2(k_F R_0) \]

Stauber et al, PRB 76, 205423 (2007)
Hentschel and Guinea, PRB 76, 115407 (2007)

Chen et al, PRL 102, 236805 (2009)
Ni et al, Nano Lett. 10, 3868(2010)

Jun Zhu, jzhu@phys.psu.edu
Outline

- Introduction

- Dilute fluorinated graphene
 - Fabrication and characterization
 - Carrier density driven weak to strong localization
 - Weak localization regime: anomalous phase breaking
 - Strong localization regime: large negative magnetoresistance
 - Possible origins
Dilute fluorinated graphene

- Fluorination extremely dilute $n_F \sim 10^{12}$-10^{13} /cm2 (< 0.1%)

- Defluorination recovers high-quality graphene
 - Raman $I_D/I_G < 0.1$
 - mobility of several thousand cm2/Vs
 - nice SdH oscillations

Clean and reversible fluorination

Jun Zhu, jzhu@phys.psu.edu
Raman spectra of DFG and defluorinated DFG

\[\frac{I_D}{I_G} \text{ ratio determines the fluorine density} \]

Lucchese et al, Carbon 48, 1592 (2010)
STM signature of F-adatoms on graphene

- mostly isolated fluorine
 - Three-fold
 - 30° rotated
 - $\sqrt{3}\times\sqrt{3}$ superlattice
 - Up to 10 lattice constants

- total about 900 defects
- average spacing 7 nm
- distribution uneven, clusters are rare

fluorine density $n_F \sim 2 \times 10^{12}/\text{cm}^2$, or 0.05% coverage
Adatoms are strong scatterers

midgap state fit
$R_0 = 3.7 \ \text{Å}$

sample A
200 K

DFG sample A
fluorine density:
$n_F = 7 \times 10^{11}/\text{cm}^2$

mobility:
$\mu \sim 1000 \ \text{cm}^2/\text{Vs}$

"midgap" state scattering

$$\sigma = \frac{2e^2}{\pi \hbar} \frac{n}{n_{\text{defect}}} \ln^2 (k_F R_0)$$

Stauber et al, PRB 76, 205423 (2007)
Hentschel and Guinea, PRB 76, 115407 (2007)
Conductivity shows strong temperature dependence

![Graph showing conductivity vs. gate voltage difference](image)

- Sample B
- $n_F = 2 \times 10^{12}/\text{cm}^2$

Jun Zhu, jzhu@phys.psu.edu

KITP grapene UCSB, Jan 9, 2012
Density-driven strong to weak localization

Variable-range hopping

\[\rho(T) \propto \exp \left[\left(\frac{T_0}{T} \right)^{1/3} \right] \]

“Anderson localization”

increasing \(n \)

\[\frac{\hbar}{2e^2} \sim n_F = 2 \times 10^{12}/\text{cm}^2 \]

“weak localization”

\[\sigma(T) \propto \ln T \]

Elias et al., *Science* 323, 610 (2009)
Moser et al., *PRB* 81, 205445 (2010)
Outline

- Introduction
- Fabrication and characterization
- Carrier density driven weak to strong localization

Magneto-transport in DFG

- Weak localization regime: phase breaking length saturation
- Strong localization regime: large negative magnetoresistance

- Possible explanations
Magnetoresistance of pristine graphene

\[\mu_{FE} = 16,000 \text{ cm}^2/\text{Vs} \]

\[\nu = 94 \]

Shubnikov-de Haas oscillations
Magneto-resistance of DFG

$T = 5K$

$\rho / \rho(B=0)$

- Sample B
- $n_F = 2 \times 10^{12}/cm^2$
- $4.2 \times 10^{12}/cm^2$

- weak localization at high carrier density
Magneto-resistance of DFG

- Weak localization at high carrier density

![Graph showing the magneto-resistance of DFG with different carrier densities.]

Sample B: $n_F = 2 \times 10^{12}/\text{cm}^2$

- $1.4 \times 10^{12}/\text{cm}^2$
- $4.2 \times 10^{12}/\text{cm}^2$

Temperature: $T = 5K$
Magneto-resistance of DFG

- Weak localization at high carrier density
- Large negative magneto-resistance at low carrier density

Sample B

- $n_F = 2 \times 10^{12}/\text{cm}^2$
- $1.0 \times 10^{12}/\text{cm}^2$
- $4.2 \times 10^{12}/\text{cm}^2$
- $1.4 \times 10^{12}/\text{cm}^2$

$T=5\text{K}$

Jun Zhu, jzhu@phys.psu.edu
Weak localization in DFG

\[\frac{\pi h}{e^2} \Delta \sigma(B) = F\left(\frac{4l_B^{-2}}{L_{\Phi}^{-2}}\right) - F\left(\frac{4l_B^{-2}}{L_{\Phi}^{-2} + 2L_i^{-2}}\right) - 2F\left(\frac{4l_B^{-2}}{L_{\Phi}^{-2} + L_i^{-2} + L_*^{-2}}\right) \]

- \(L_{\Phi} \): phase breaking length
- e-e scattering
- e-phonon scattering
- sample boundary
- microwave radiation
- spin-flip scattering

- \(L_i \): intervalley scattering length
 - point defects

- \(L_* \): intravalley backscattering length
 - point defects
 - ripples and dislocations

\(n = 4.2 \times 10^{12}/cm^2 \)

Jun Zhu, jzhu@phys.psu.edu
Unusual saturation of L_Φ at low-T

Dilute fluorinated graphene:
- High-T regime follows e-e collision ($T^{-1/2}$)
- L_Φ saturates at ~ 10 K
- $L_{sat} \sim 140$ nm

Pristine graphene:
$L_\Phi \sim$ several μm at lower T

Tikhonenko et al, PRL, 100, 056802 (2008)
Ki et al, PRB, 78, 125409 (2008)

Unusual saturation of the phase breaking length in DFG
Temperature dependence of L_Φ

Phase breaking scattering rate:

$$\tau_\Phi^{-1} = aT + bT^2 + \tau_{sat}^{-1}$$

spin-flip scattering due to fluorine?
Possible sources of phase breaking saturation

1. Sample size
2. Experimental issues
3. Magnetic contaminations
4. Unintentionally produced vacancies

Control sample: Defluorinated DFG
Control: Defluorinated DFG

Fluorine adatoms are responsible for the observed phase breaking length saturation.

\[\tau_{\Phi}^{-1} = aT + bT^2 + \tau_{sat}^{-1} \]

\(\tau_{sat} \) in control sample at least 25 times longer than \(\tau_{sat} \) in fluorinated sample.

Jun Zhu, jzhu@phys.psu.edu

KITP graphene UCSB, Jan 9, 2012
Tunability of phase breaking rate

Phase breaking rate tunable via carrier and fluorine density

fluorine density:

A and C: $n_F \sim 7 \times 10^{11}$/cm2

B and D: $n_F \sim 2 \times 10^{12}$/cm2

Higher τ_{sat}^{-1} at higher fluorine density

Higher τ_{sat}^{-1} at lower carrier density

Jun Zhu, jzhu@phys.psu.edu
Spin-flip scattering due to fluorine

Nagaoka-Suhl formula:

$$\frac{1}{\tau_{sf}} = \frac{n_{mag}}{\pi \hbar N(E_F)} \frac{\pi^2 S(S+1)}{\pi^2 S(S+1) + \ln^2(T/T_k)}$$

n_{mag}: magnetic impurity density

$$T_k: \text{Kondo temperature}$$

$$\tau_{sf}^{-1} = \tau_{sat}^{-1} ; \quad n_{mag} = n_F ; \quad S = 1/2$$

The Kondo temperature T_k up to 0.2 mK

$$T_k \propto \exp\left(-\frac{1}{N(E_F)J}\right)$$

exchange energy J up to 5 meV

Pierre et al., PRB 68, 085413 (2003)
Sengupta et al, PRB 77, 045417(2008)

Jun Zhu, jzhu@phys.psu.edu
Magneto-resistance of DFG

- weak localization at high carrier density
- large negative magneto-resistance in the variable-range hopping regime
 - Up to 40-fold reduction
 - Not yet saturated at 9 T

Comparable to CMR manganites, ferromagnetic semiconductors

Jun Zhu, jzhu@phys.psu.edu

KITP graphene UCSB, Jan 9, 2012
Temperature dependence of the MR

Large negative MR at low temperature
Temperature dependence of the MR at a fixed field

\[n = 8 \times 10^{11} / \text{cm}^2 \]
Localization length ξ in field

$$\rho(T) \propto \exp\left[\left(\frac{T_0}{T}\right)^{1/3}\right]$$

$$T_0 = \frac{13.8}{k_B N(E_F) \xi^2}$$

ξ enhanced by a factor of 4 at 9 T
Temperature dependence of the MR

Staircase MR at low temperature

$n=8 \times 10^{11}/\text{cm}^2$
Staircase-like field dependence at low temperature
Staircase-like field dependence at low temperature

\[\frac{\rho(B)}{\rho(0T)} \]

- \(0.8 \times 10^{12}/\text{cm}^2\)
- \(1.3 \times 10^{12}/\text{cm}^2\)
Staircase-like field dependence at low temperature
Staircase-like field dependence at low temperature

\[
\frac{\rho(B)}{\rho(0T)}
\]

- Black line: $0.8 \times 10^{12}/\text{cm}^2$
- Red line: $1.3 \times 10^{12}/\text{cm}^2$
- Green line: $1.4 \times 10^{12}/\text{cm}^2$
- Blue line: $2.0 \times 10^{12}/\text{cm}^2$

B (T)
Staircase-like field dependence at low temperature

- Reproducible
- Seen in multiple samples
- NOT periodic in B (AB effect)
- NOT periodic in 1/B (SdH)
- NOT universal conductance fluctuation

$$\Delta \sigma \sim 0.001-0.1 \text{ e}^2/\text{h}$$

Discrete energy levels or length scales probed by the magnetic field?
Large negative MR NOT due to the following mechanisms

- Classical MR (positive)
- Wave function shrinking in B-field (positive)
- Zeeman effect (isotropic)

Hypothesis: quantum interference induced Anderson localization?

Magnetic field breaks time reversal symmetry and suppresses phase coherent backscattering.

Theory and exp. in quasi-1D: universal doubling of ξ in strong field.

2D and 3D: no good theory
ten-fold MR observed in $\text{In}_2\text{O}_{3-x}$ film

Difficulty with current data:

- $\xi(0) = 55 \text{ nm} \quad \Rightarrow \quad B_{\text{sat}} = 0.2 \text{ T}$
- no mechanism for staircase

Magneto-transport of DFG

- Anomalous phase breaking length saturation in weak localization regime
- Colossal magneto-resistance in variable-range hopping regime

Evidence of local moment

Explanations?
Hypothesis #2: magnetic polarons?

Exchange coupling between moments and localized electrons

A magnetic field aligns the polarons and enhances hopping.

Kaminski & Das Sarma, PRL 88, 247202 (2002)
Negative MR in CMR manganites and ferromagnetic semiconductors

Moca et al., *PRL* 102, 137203 (2009).

Jun Zhu, jzhu@phys.psu.edu

Summary

- Clean, controlled, dilute fluorinated graphene
- Carrier density-driven weak to strong localization transition
- Anomalous phase breaking in weak localization regime
- Large negative magnetoresistance in hopping regime
- Theory needed

Hong et al, PRB 83, 085410(2011), Hong et al, submitted to PRL