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Spin coherence & spin qubits

Because a quantum dot is such a general kind of sys-
tem, there exist quantum dots of many different sizes
and materials: for instance, single molecules trapped be-
tween electrodes !Park et al., 2002", normal metal !Petta
and Ralph, 2001", superconducting !Ralph et al., 1995;
von Delft and Ralph, 2001", or ferromagnetic nanopar-
ticles !Guéron et al., 1999", self-assembled quantum dots
!Klein et al., 1996", semiconductor lateral !Kouwen-
hoven et al., 1997" or vertical dots !Kouwenhoven et al.,
2001", and also semiconducting nanowires or carbon
nanotubes !Dekker, 1999; McEuen, 2000; Björk et al.,
2004".

The electronic properties of quantum dots are domi-
nated by two effects. First, the Coulomb repulsion be-
tween electrons on the dot leads to an energy cost for
adding an extra electron to the dot. Due to this charging
energy tunneling of electrons to or from the reservoirs
can be suppressed at low temperatures; this phenom-
enon is called Coulomb blockade !van Houten et al.,
1992". Second, the confinement in all three directions
leads to quantum effects that influence the electron dy-
namics. Due to the resulting discrete energy spectrum,
quantum dots behave in many ways as artificial atoms
!Kouwenhoven et al., 2001".

The physics of dots containing more than two elec-
trons has been previously reviewed !Kouwenhoven et
al., 1997; Reimann and Manninen, 2002". Therefore we
focus on single and coupled quantum dots containing
only one or two electrons. These systems are particularly
important as they constitute the building blocks of pro-
posed electron spin-based quantum information proces-
sors !Loss and DiVincenzo, 1998; DiVincenzo et al.,
2000; Byrd and Lidar, 2002; Levy, 2002; Wu and Lidar,
2002a, 2002b; Meier et al., 2003; Kyriakidis and Penney,
2005; Taylor et al., 2005; Hanson and Burkard, 2007".

B. Fabrication of gated quantum dots

The bulk of the experiments discussed in this review
was performed on electrostatically defined quantum
dots in GaAs. These devices are sometimes referred to
as lateral dots because of the lateral gate geometry.

Lateral GaAs quantum dots are fabricated from het-
erostructures of GaAs and AlGaAs grown by molecular-

beam epitaxy !see Fig. 2". By doping the AlGaAs layer
with Si, free electrons are introduced. These accumulate
at the GaAs/AlGaAs interface, typically 50–100 nm be-
low the surface, forming a two-dimensional electron gas
!2DEG"—a thin !#10 nm" sheet of electrons that can
only move along the interface. The 2DEG can have high
mobility and relatively low electron density $typically
105−107 cm2/V s and #!1−5"!1015 m−2, respectively%.
The low electron-density results in a large Fermi wave-
length !#40 nm" and a large screening length, which al-
lows us to locally deplete the 2DEG with an electric
field. This electric field is created by applying negative
voltages to metal gate electrodes on top of the hetero-
structure $see Fig. 2!a"%.

Electron-beam lithography enables fabrication of gate
structures with dimensions down to a few tens of na-
nometers !Fig. 2", yielding local control over the deple-
tion of the 2DEG with roughly the same spatial resolu-
tion. Small islands of electrons can be isolated from the
rest of the 2DEG by choosing a suitable design of the
gate structure, thus creating quantum dots. Finally, low-

FIG. 1. Schematic picture of a quantum dot in !a" a lateral
geometry and !b" in a vertical geometry. The quantum dot
!represented by a disk" is connected to source and drain reser-
voirs via tunnel barriers, allowing the current through the de-
vice I to be measured in response to a bias voltage VSD and a
gate voltage VG.

FIG. 2. Lateral quantum dot device defined by metal surface
electrodes. !a" Schematic view. Negative voltages applied to
metal gate electrodes !dark gray" lead to depleted regions
!white" in the 2DEG !light gray". Ohmic contacts !light gray
columns" enable bonding wires !not shown" to make electrical
contact to the 2DEG reservoirs. !b", !c" Scanning electron mi-
crographs of !b" a few-electron single-dot device and !c" a
double dot device, showing the gate electrodes !light gray" on
top of the surface !dark gray". White dots indicate the location
of the quantum dots. Ohmic contacts are shown in the corners.
White arrows outline the path of current IDOT from one reser-
voir through the dot!s" to the other reservoir. For the device in
!c", the two gates on the side can be used to create two quan-
tum point contacts, which can serve as electrometers by pass-
ing a current IQPC. Note that this device can also be used to
define a single dot. Image in !b" courtesy of A. Sachrajda.
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E↵ective time-reversal symmetry breaking in the spin relaxation

in a graphene quantum dot

P. R. Struck and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: March 10, 2010)

We study the relaxation of a single electron spin in a circular gate-tunbable quantum dot in gapped
graphene. Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit
coupling leads to a relaxation time T1 which is independent of the B-field at low fields. We also
find that Rashba spin-orbit induced admixture of opposite spin states in combination with the
emission of in-plane phonons provides various further relaxation channels via deformation potential
and bond-length change. In the absence of valley mixing, spin relaxation takes place within each
valley separately and thus time-reversal symmetry is e�ectively broken, thus inhibiting the van
Vleck cancellation at B = 0 known from GaAs quantum dots. Both the absence of the van Vleck
cancellation as well as the out-of-plane phonons lead to a behavior of the spin relaxation rate at low
magnetic fields which is markedly di�erent from the known results for GaAs. For low B-fields, we
find that the rate is constant in B and then crosses over to � B2 or � B4 at higher fields.

Introduction—The electronic spin degree of freedom is
under intense investigation as a possible implementation
of a qubit [1]. While the feasibility of all required oper-
ations has been experimentally demonstrated for GaAs
quantum dots (QDs) [2], the decoherence caused by the
surrounding nuclear spins in the host material remains
challenging. Regarding the use of the electron spin as
a qubit in quantum computation devices, spin decoher-
ence and relaxation are limiting factors. In general, a
necessary condition for a working qubit is that the time
required to perform an operation is significantly shorter
than the decoherence and relaxation times. Motivated by
this, the implementation of qubits in QDs in graphene
has been proposed [3]. Graphene consisting of natural
carbon comprises 99% of the carbon isotope 12C which
has no nuclear spin, hence the hyperfine interaction is ex-
pected to play only a minor role. Furthermore, spin-orbit
interaction (SOI) in graphene is expected to be relatively
weak and therefore long decoherence times are expected.
However, for spins localized in QDs in carbon nanotubes,
SOI has turned out to be unexpectedly strong [4, 5] due
to curvature-induced e�ects. It has also been shown the-
oretically that van Hove singluarities in the phonon den-
sity of states in one dimension can lead to strong varia-
tions in the spin relaxation rate [6]. It is therefore impor-
tant to investigate the spin relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, is known [7], and there are several works
on its strength depending on various parameters such as
curvature or electric field [8, 9]. There have also been
experimental [10] and theoretical [11] studies on spin re-
laxation of extended states in graphene.

In this paper we determine theoretically the spin relax-
ation time T1 for an electron confined to a circular QD in
gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs
can be formed with electrostatic confinement in either
single-layer graphene with a substrate-induced band gap
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FIG. 1: (Color online) a) The two states of a spin qubit
(blue solid arrows) reside in the same valley, as opposed to a
Kramers qubit (empty red arrows), formed by a Kramers pair
related by time-reversal symmetry (T ). While in single-valley
semiconductors such as GaAs these two cases are identical, in
graphene the Kramers qubit involves states in di�erent valleys
(K and K�). b) The B-field orientation is given with spherical
coordinates � and ⇥B relative to the normal to the graphene
plane. The propagation direction of the emitted phonon (red
wavy arrow) is described by the angle ⇥q.

or bilayer graphene with an electrically controlled gap
[12]. At B = 0, the states in these QDs have a two-
fold valley degeneracy which can be lifted in a perpen-
dicular magnetic field. Being a centro-symmetric crystal,
phonons in graphene do not couple piezo-electrically, thus
leaving three possible electron-phonon coupling (EPC)
mechanisms: deformation potential, bond length change,
and direct spin-phonon coupling. From these EPC mech-
anisms, we derive two spin relaxation mechanisms. One
such mechanism involves the admixture of states of oppo-
site spin and excited orbitals into the dot eigenstates due
to SOI, in combination with energy relaxation via phonon
emission [13, 14]. It turns out that to lowest order in the
EPC, this only involves in-plane phonons coupled via the
deformation potential and bond-length change. The sec-
ond mechanism directly couples the spin to out-of-plane
phonons via curvature induced SOI. For comparison, in a
parabolic GaAs QD, a strong dependence � B5 has been
predicted for both mechanisms [13]. Relaxation times in

T1

spin orbit interaction
electron phonon coupling
spin relaxation
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Amasha et al., PRL 2008
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Carbon as a material for spin qubits

Because a quantum dot is such a general kind of sys-
tem, there exist quantum dots of many different sizes
and materials: for instance, single molecules trapped be-
tween electrodes !Park et al., 2002", normal metal !Petta
and Ralph, 2001", superconducting !Ralph et al., 1995;
von Delft and Ralph, 2001", or ferromagnetic nanopar-
ticles !Guéron et al., 1999", self-assembled quantum dots
!Klein et al., 1996", semiconductor lateral !Kouwen-
hoven et al., 1997" or vertical dots !Kouwenhoven et al.,
2001", and also semiconducting nanowires or carbon
nanotubes !Dekker, 1999; McEuen, 2000; Björk et al.,
2004".

The electronic properties of quantum dots are domi-
nated by two effects. First, the Coulomb repulsion be-
tween electrons on the dot leads to an energy cost for
adding an extra electron to the dot. Due to this charging
energy tunneling of electrons to or from the reservoirs
can be suppressed at low temperatures; this phenom-
enon is called Coulomb blockade !van Houten et al.,
1992". Second, the confinement in all three directions
leads to quantum effects that influence the electron dy-
namics. Due to the resulting discrete energy spectrum,
quantum dots behave in many ways as artificial atoms
!Kouwenhoven et al., 2001".

The physics of dots containing more than two elec-
trons has been previously reviewed !Kouwenhoven et
al., 1997; Reimann and Manninen, 2002". Therefore we
focus on single and coupled quantum dots containing
only one or two electrons. These systems are particularly
important as they constitute the building blocks of pro-
posed electron spin-based quantum information proces-
sors !Loss and DiVincenzo, 1998; DiVincenzo et al.,
2000; Byrd and Lidar, 2002; Levy, 2002; Wu and Lidar,
2002a, 2002b; Meier et al., 2003; Kyriakidis and Penney,
2005; Taylor et al., 2005; Hanson and Burkard, 2007".

B. Fabrication of gated quantum dots

The bulk of the experiments discussed in this review
was performed on electrostatically defined quantum
dots in GaAs. These devices are sometimes referred to
as lateral dots because of the lateral gate geometry.

Lateral GaAs quantum dots are fabricated from het-
erostructures of GaAs and AlGaAs grown by molecular-

beam epitaxy !see Fig. 2". By doping the AlGaAs layer
with Si, free electrons are introduced. These accumulate
at the GaAs/AlGaAs interface, typically 50–100 nm be-
low the surface, forming a two-dimensional electron gas
!2DEG"—a thin !#10 nm" sheet of electrons that can
only move along the interface. The 2DEG can have high
mobility and relatively low electron density $typically
105−107 cm2/V s and #!1−5"!1015 m−2, respectively%.
The low electron-density results in a large Fermi wave-
length !#40 nm" and a large screening length, which al-
lows us to locally deplete the 2DEG with an electric
field. This electric field is created by applying negative
voltages to metal gate electrodes on top of the hetero-
structure $see Fig. 2!a"%.

Electron-beam lithography enables fabrication of gate
structures with dimensions down to a few tens of na-
nometers !Fig. 2", yielding local control over the deple-
tion of the 2DEG with roughly the same spatial resolu-
tion. Small islands of electrons can be isolated from the
rest of the 2DEG by choosing a suitable design of the
gate structure, thus creating quantum dots. Finally, low-

FIG. 1. Schematic picture of a quantum dot in !a" a lateral
geometry and !b" in a vertical geometry. The quantum dot
!represented by a disk" is connected to source and drain reser-
voirs via tunnel barriers, allowing the current through the de-
vice I to be measured in response to a bias voltage VSD and a
gate voltage VG.

FIG. 2. Lateral quantum dot device defined by metal surface
electrodes. !a" Schematic view. Negative voltages applied to
metal gate electrodes !dark gray" lead to depleted regions
!white" in the 2DEG !light gray". Ohmic contacts !light gray
columns" enable bonding wires !not shown" to make electrical
contact to the 2DEG reservoirs. !b", !c" Scanning electron mi-
crographs of !b" a few-electron single-dot device and !c" a
double dot device, showing the gate electrodes !light gray" on
top of the surface !dark gray". White dots indicate the location
of the quantum dots. Ohmic contacts are shown in the corners.
White arrows outline the path of current IDOT from one reser-
voir through the dot!s" to the other reservoir. For the device in
!c", the two gates on the side can be used to create two quan-
tum point contacts, which can serve as electrometers by pass-
ing a current IQPC. Note that this device can also be used to
define a single dot. Image in !b" courtesy of A. Sachrajda.
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Quantum dots in graphene
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Quantum dots in 
nanostructured graphene

Chaotic Dirac Billiard in
Graphene Quantum Dots
L. A. Ponomarenko,1 F. Schedin,1 M. I. Katsnelson,2 R. Yang,1 E. W. Hill,1
K. S. Novoselov,1* A. K. Geim1

The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic
quantum particles and its formidable potential in various applications, have ensured a rapid
growth of interest in this new material. We report on electron transport in quantum dot devices
carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional
single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller
than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of
quantum confinement. Random peak spacing and its statistics are well described by the theory of
chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive
and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of
molecular-scale electronics based on graphene.

One of the most discussed and tantalizing
directions in research on graphene (1, 2)
is its use as the base material for elec-

tronic circuitry that is envisaged to consist of
nanometer-sized elements. Most attention has
so far been focused on graphene nanoribbons
(3–12). An alternative is quantum dot (QD) de-
vices that, as described below, can be made en-
tirely from graphene, including their central
islands (CIs), quantum barriers, source and drain
contacts, and side-gate electrodes.

Our experimental devices were microfabri-
cated from graphene crystallites prepared by
cleavage on top of an oxidized Si wafer (300
nm of SiO2) (1). By using high-resolution
electron-beam lithography, we defined a 30-nm-
thick polymethylmethacrylate (PMMA) mask
that protected chosen areas during oxygen
plasma etching and allowed us to carve graphene
into a desired geometry. The inset in Fig. 1A
shows one of our working devices that generally
consisted of the CI of diameter D, connected via
two short constrictions to wide source and drain
regions; the devices also had side-gate electrodes
[we often placed them ~1 mm away from the CI
as explained in (13)]. The Si wafer was used as a
back gate. The constrictions were designed to
have equal length and width of 20 nm (13), and
we refer to them as quantum point contacts
(QPCs). They provided quantum barriers to
decouple the CI from the contacts (14, 15). If
necessary, by using further etching (after the
devices were tested), we could narrow QPCs by
several nm, exploiting the gradual etching away
of the PMMA mask not only from top but also
sideways. This allowed us to tune the resistance
of QDs to a value of several hundred kilohm, i.e.,
much larger than resistance quantum h/e2 (e is
the electron charge, and h is Planck’s constant),

which is essential for single-electron transport.
Graphene QDs with features as small as 10 nm
could be fabricated reliably with this approach.
For even smallerD, irregularities in PMMA[~5nm
(16)] became comparable in size with the de-
signed features and, unavoidably on this scale,
we could only estimate the device geometry. The
measurements were carried out using the stan-
dard lock-in technique with dc bias at temper-
atures T from 0.3 to 300 K. We used both side
and back gates; the latter allowed extensive
changes in the population of QD levels, whereas
the former was useful for accurate sweeps over
small energy intervals (13). The response to the
side-gate potential differed for different devices
but could be related to back-gate voltage Vg
through a numerical factor. For consistency, all
the data are presented as a function of Vg.

We have found three basic operational re-
gimes for QDs, depending on their D. Our large
devices exhibit (nearly) periodic Coulomb block-
ade (CB) resonances that at low T are separated
by regions of zero conductanceG (Fig. 1A). As T
increases, the peaks become broader and overlap,
gradually transforming into CB oscillations (Fig.
1B). The oscillations become weaker as G in-
creases with carrier concentration or T, and com-
pletely disappear for G larger than ~0.5e2/h
because the barriers become too transparent to
allow CB. For the data in Fig. 1B, we have iden-
tified more than 1000 oscillations. Their pe-
riodicity, DVg ≈ 16 mV, yields the capacitance
between the back gate and CI, Cg = e/DVg ≈
10 aF, which is close toCg ≈ 2e0(e + 1)D ≈ 20 aF,
as expected for a disk placed on top of SiO2

(dielectric constant e ≈ 4) and at a distance h ≥
D = 250 nm from the metallic Si gate (in this
case,Cg is nearly the same as for an isolated disk)
(17). The difference by a factor of 2 can be
accounted for in terms of screening by the contact
regions (17).

The overall shape of the conductance curve
G(Vg) in Fig. 1B resembles that of bulk
graphene but is distorted by smooth (on the
scale of DVg) fluctuations that are typical for

mesoscopic devices and are due to quantum
interference (1–4, 18–20). Smooth variations in
the CB peak height (Fig. 1A) are attributed to
interference-induced changes in the barriers’
transparency, as shown by studying individual
QPCs (13). Furthermore, we have measured the
dependence of CB on applied bias Vb and, from
the standard stability diagrams (Coulomb
diamonds), found the charging energy Ec. The
lower inset in Fig. 1B shows such diamonds for
D ≈ 250 nm, which yields Ec ≈ 3 meV and the
total capacitance C = e2/Ec ≈ 50 aF. The rather
largeEc implies that the CB oscillations in Fig. 1B

1Manchester Centre for Mesoscience and Nanotechnology,
University of Manchester, Manchester M13 9PL, UK.
2Institute for Molecules and Materials, Radboud University
Nijmegen, 6525 ED Nijmegen, Netherlands.

*To whom correspondence should be addressed. E-mail:
novoselov@manchester.ac.uk
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Fig. 1. Graphene-based single-electron transistor.
(A) Conductance G of a device with the central
island of 250 nm in diameter and distant side
gates (13) as a function of Vg in the vicinity of +15 V
(B); T = 0.3 K. The inset shows one of our smaller
devices to illustrate the high resolution of our
lithography that allows features down to 10 nm.
Dark areas in the scanning electron micrograph
are gaps in the PMMA mask so that graphene is
removed from these areas by plasma etching. In
this case, a 30-nm QD is connected to contact
regions through narrow constrictions and there are
four side gates. (B) Conductance of the same
device as in (A) over a wide range of Vg (T = 4 K).
Upper inset: Zooming into the low-G region re-
veals hundreds of CB oscillations. The lower inset
shows Coulomb diamonds: differential conductance
Gdiff =dI/dV as a function of Vg (around +10 V) and
bias Vb (yellow-to-red scale corresponds to Gdiff
varying from zero to 0.3e2/h).

18 APRIL 2008 VOL 320 SCIENCE www.sciencemag.org356
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FIG. 2: Source-drain current as a function of the two bar-
rier gate voltages VSG1 and VSG2 for constant bias, Vbias =
200µV . The dashed lines indicate transmission modulations
and oscillations attributed to the graphene constrictions (hor-
izontal and vertical lines) and to the island (diagonal line).
Measurements are preformed at VBG = −6 V and VPG = 0 V.

tional back gate (BG) is used to adjust the overall Fermi
energy.

Transport measurements have been performed in a
variable temperature He cryostat at a base temperature
of ≈ 1.7 K. Before the cool-down the sample has been
baked in vacuum at 135◦C for 12 h. We have measured
the two-terminal conductance through the dot by apply-
ing a small (symmetric) DC or AC bias voltage Vbias, and
measuring the current through the dot with a resolution
better than 20 fA. At high bias (e.g., Vbias = 100 mV,
not shown), the (back) gate characteristics clearly re-
veal the charge neutrality point of the graphene material.
Such measurements are used to adjust the range of the
back gate voltage. In the following we kept the back
gate fixed close to the overall charge neutrality point
at VBG = −6 V, where transport can be pinched off
by the two side gates VSG1 and VSG2. At small bias
(Vbias < 200 µV) transport is dominated (i) by the two
narrow junctions, where strong transmission modulations
and gap effects appear, and (ii) by Coulomb blockade due
to charging of the graphene island. Both effects can be
seen in Fig. 2, where the source-drain current is plotted
as a function of the two barrier gate voltages VSG1 and
VSG2 for constant Vbias = 200 µV. The large scale hori-
zontal and vertical current modulations can be attributed
to either one or the other narrow graphene constriction,
being tuned (almost) independently from each other. On
top we observe Coulomb resonances which are associated
with charging of the graphene island and, thus, tuned by
both side gate potentials VSG1 and VSG2 (diagonal lines).

By sweeping VSG1 and VSG2 to a regime where the
background current is significantly suppressed (see white
point in Fig. 2), the plunger gate VPG can be used to
trace Coulomb resonances as shown in Fig. 3(a). In this
configuration of gate voltages the peak positions were
stable in more than 10 consecutive plunger gate sweeps.
Among regions where transport is completely pinched

off by the narrow constrictions, large scale conductance

FIG. 3: Source-drain current through the graphene nanos-
tructure as function of the plunger gate voltage VPG. (a) clear
Coulomb resonances are observed on top and next to large
scale conductance modulations. (b) shows a marked close-up
of (a) and in (c) the peak spacing is plotted for 18 consecutive
peaks. Measurements are preformed in the dot configuration:
VBG = −6 V, VSG1 = 25 mV, and VSG2 = −510 mV.

FIG. 4: (color online) Coulomb diamonds in differential con-
ductance Gdiff , represented in a logarithmic color scale plot
(dark regions represent low conductance). A DC bias Vbias

with a small AC modulation (50 µV) is applied symmetri-
cally across the dot and the current through the dot is mea-
sured. Differential conductance has been directly measured by
a Lock-in amplifier. The charging energy is estimated to be
≈ 3.6 meV from this measurements. Measurements are pre-
formed in the dot configuration: VBG = −6 V, VSG1 = 25 mV,
and VSG2 = −510 mV.

modulations in the barriers are observed. Nearby and on
top of these large features clear Coulomb peaks are mea-
sured (see e.g. Fig. 3(b), which is a close-up of Fig. 3(a)).
The period of the Coulomb oscillations measured over 18
consecutive peaks is ∆V pp ≈ 18.2 mV, as shown in
Fig. 3(c). There are no systematic peak spacing fluctua-
tions, and the observed deviations might be influenced by
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Tunable Coulomb blockade in nanostructured graphene

C. Stampfer∗, J. Güttinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin
Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland

(Dated: September 24, 2007)

We report on Coulomb blockade and Coulomb diamond measurements on an etched, tunable
single-layer graphene quantum dot. The device consisting of a graphene island connected via two
narrow graphene constrictions is fully tunable by three lateral graphene gates. Coulomb blockade
resonances are observed and from Coulomb diamond measurements a charging energy of ≈ 3.5 meV
is extracted. For increasing temperatures we detect a peak broadening and a transmission increase
of the nanostructured graphene barriers.

PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw, 81.07.Ta

Graphene is a promising material [1, 2] to investigate
mesoscopic phenomena in two-dimensions (2d). Unique
electronic properties, such as massless carriers, electron-
hole symmetry near the charge neutrality point, and
weak spin-orbit coupling [3] makes graphene interesting
for high mobility electronics [4, 5], for tracing quantum
electrodynamics in 2d solids, and for the realization of
spin-qubits [6]. Whereas diffusive transport in graphene
and the anomalous quantum Hall effect have been inves-
tigated intensively [7, 8], graphene quantum dots are still
in their infancy from an experimental point of view [9].
This is mainly due to difficulties in creating tunable quan-
tum dots in graphene because of the absence of an en-
ergy gap. Also phenomena related to Klein tunneling
make it hard to confine carriers laterally using electro-
static potentials [10, 11]. Here we report on Coulomb
blockade and Coulomb diamond measurements on an
etched graphene quantum dot tunable by graphene side
gates [12].

The nanodevice, schematically shown in Fig. 1(a), has
been fabricated from graphene, which has been extracted
from bulk graphite by mechanical exfoliation onto 300 nm
SiO2 on n-Si substrate as described in Ref. [13]. Raman
imaging [14] is applied to verify the single-layer character
of the investigated devices [15, 16, 17]. 90 nm PMMA
(positive e-beam resist) is then spun onto the samples
and electron-beam (e-beam) lithography is used to pat-
tern the etch mask for the graphene devices. Reactive ion
etching (RIE) based on an Ar/O2 (9:1) plasma is intro-
duced to etch away unprotected graphene. A scanning
force microscope (SFM) image of the etched graphene
structure after removing the residual PMMA is shown in
Fig. 1(b). Finally, the graphene device is contacted by
e-beam patterned 2 nm Ti and 50 nm Au electrodes as
shown in Fig. 1(c). A Raman spectrum recorded on the
final device taken at the location of the graphene island
is plotted in Fig. 1(e). It is an unambiguous fingerprint
of single-layer graphene with a line width of the 2D line
of approx. 33 cm−1 [15, 16, 17]. The elevated back-
ground originates from the nearby metal electrodes and

∗Corresponding author, e-mail: stampfer@phys.ethz.ch

the significant D line is due to edges within the area of
the laser spot size of ≈ 400 nm. In addition to Raman
spectroscopy, the SFM step height of ≈ 0.5 nm, shown
in Fig. 1(d), proves also the single-layer character of the
graphene flake and shows that the RIE etching does not
attack the SiO2.

The fabricated device consists of two ≈ 50 nm nar-
row graphene constrictions connecting source (S) and
drain (D) electrodes to a graphene island with an area
A ≈ 0.06 µm2. The twoelectrostatically the two barriers
and the island, respectively. For assignment of the gate
electrodes see Fig. 1(a). All three graphene side gates
have been patterned closer than 100 nm to the active
graphene regions, as shown in Figs. 1(b,c). The addi-

FIG. 1: (color online) Nanostructured graphene quantum dot
device. (a) Schematic illustration of the tunable graphene
quantum dot. (b) Scanning force microscope (SFM) image of
the investigated graphene device after RIE etching and (c) af-
ter contacting the graphene structure. The minimum feature
size is approx. 50 nm. The dashed lines indicate the outline
of the graphene areas. (d) shows a SFM cross-section along a
path x [marked in (b)] averaged over ≈ 40 nm perpendicular
to the path proving the selective etch process. (e) Confocal
Raman spectra recorded on the final device at the graphene
island with a spot size of approx. 400 nm, clearly proving the
single-layer character of the investigated device. For more
information on the D, G and 2D (also called D’) line please
refer to Ref. [17].

Ponomarenko et al., Science 2008
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Valley degeneracy and exchange
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State preparation and measurement

Energy spectrum belonging to the first column

 

Double quantum dot with
• only lowest energy level in each dot reachable
• number of electrons: 2
• hopping term small compared to Coulomb interaction

ordinary spin qubits:
• six-dimensional Hilbert space
• four-dimensional logic space = two qubits
(one singlet, three triplet states)

• singlet-triplet splitting by exchange interaction
• enables universal two-qubit gate [1]

in carbon based materials:
• valley degree of freedom
• Hilbert space of 28 dimensions
• logic space: 16-dimensional = four qubits 
(6 supersinglets, 10 supertriplets) [2]

Questions:
Can we find a universal two-qubit gate for the
spin/valley qubits with the exchange interaction
when both degrees of  freedom are present?

Are state preparation and projective measurement on one
      specific state possible?

Exchange interaction Basis sets

He↵ =
J

4
~s1 · ~s2

J = t2/U

t

spin-valley coupling             N. Rohling & GB, unpublished
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Graphene Nanoribbon QDs

k

E(k)

Vbarrier

dot barrier2barrier1

Vgate

Dirac particle in a box:  solve transcendental equation for ε

Vbarrier

Vgate

L=5/q0 L=2/q0

Trauzettel, Bulaev, Loss & GB,  Nature Physics (2007)

• energy gap
• broken valley degeneracy
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B

Quantum dots in gapped graphene
single layer:  substrate-induced gap
Giovannetti et al., Phys. Rev. B 76, 073103 (2007).
Zhou et al., Nature Mat. 6, 770 (2007).

bilayer:  electrically induced gap
McCann, PRB (2006).
Ohta et al., Science (2006).

Recher, Nilsson, GB & Trauzettel, PRB 79, 085407 (2009)

single layer case:

3.4 T (R=25nm)0 T

165 meV/R[nm]
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Outline

• quantum dots in graphene

• spin-valley hyperfine interaction in graphene

• spin relaxation of localized electrons

• spin relaxation of mobile electrons
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Hyperfine interaction in Graphene

main idea

• 13C atom is an atomically sharp impurity

• can take up momentum on the order of 2K, 
thus leading to inter-valley scattering

• invisible to electron charge

• visible to spin via hyperfine coupling

• strength of coupling: same as hyperfine

��(r)

Ii

5

one finds

Hspin,00 = SAI, (22)

where

A =
C

30ã3
B





− 1
2 0 0

0 − 1
2 0

0 0 1



 ≈ gegN × 215.2 neV





− 1
2 0 0

0 − 1
2 0

0 0 1



 . (23)

where

C =
µ0

4π
geµBgNµN ≈ gegN × 29.28 neV Å3. (24)

We give an upper estimate for the on-site contribution of the Zeeman term on the nearest-neighbor site i of the
13C nucleus:

Hspin,ii =

∫

d3r ψ2
210(r − ri)geµBS · B(r) < 2CS · I

∫

d3r
ψ2

210(r − ri)

r3
≈

2CS · I
a3
0

≈
2CS · I
(10ãB)3

. (25)

Therefore Hspin,ii is at least one order of magnitude smaller then the Hspin,00.
In the followings, we neglect all contributions of the nuclear spin—electron spin interaction except the on-site term

on the site of the spinful nucleus. The corresponding Hamiltonian is

Hspin,ij = δ0iδ0jSAI . (26)

Now we express Hspin in the four-dimensional subspace spanned by the four degenerate eigenfunctions of Eqs. (5)
and (6):

H ′
spin = ΩcellSAI

(

|Ψσ0
(r0)|2 e−2iK·r0Ψ∗

σ0
(r0)Ψ′

σ0
(r0)

e2iK·r0Ψ
′∗
σ0

(r0)Ψσ0
(r0) |Ψ′

σ0
(r0)|2

)

. (27)

To estimate the characteristic energy scale of this Hamiltonian, we use the toy model envelope function of Eq. (15):

H ′
spin =

Ωcell

2πR2
SAI

(

1 e−2iK·r0{δσ0Ae−iδ(r0) + δσ0Bei[δ(r0)+π]}
e2iK·r0{δσ0Aeiδ(r0) + δσ0Be−i[δ(r0)+π]} 1

)

. (28)

Since Ωcell = 3a2
0/2, the energy scale of this Hamiltonian is

εspin :=
ΩcellA33

2πR2
=

3

4π

(a0

R

)2
A33 ≈ gN ×

{

1.32 × 10−11 eV if R/a0 = 100
1.32 × 10−15 eV if R/a0 = 10000

. (29)

We took ge = 2 in the above estimation.

3. Comparison of the two contributions

Comparing the energy scales describing the orbital (εorb) and spin (εspin) part of the hyperfine interaction, we find
that they have the same order of magnitude. However, we have argued that the valley-mixing part of the orbital
hyperfine interaction is strongly suppressed compared to the estimate εorb, and therefore we neglect it in the followings.

C. Presence of many nuclear spins

We consider a graphene or carbon nanotube quantum dot containing both 12C and 13C isotopes. The following
analysis holds in the absence of magnetic field and sublattice-symmetry-breaking effects. As we have shown, the
hyperfine interaction in graphene or carbon nanotube is dominated by the nuclear spin—electron spin interaction,
and therefore the hyperfine interaction in the presence of many nuclear spins is described by the following Hamiltonian
in the first-quantized tight binding formalism :

Hhf,ij = δijSAI i. (30)

Palyi & GB, PRB 80, 201404(R) (2009)
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Hyperfine interaction in Graphene

6

Here i and j are site indices. Ii represents the nuclear spin on site i. It is a spin-1/2 operator (without the !/2
prefactor) if site i is occupied by a 13C isotope and zero if the site is occupied by a 12C isotope. The complete
Hamiltonian describing the quantum dot is H = H0 + Hhf .

In the followings we consider four degenerate states given by Eqs. (5) and (6). The hyperfine Hamiltonian repre-
sented in this four-dimensional basis looks

H ′
hf = ΩcellSA

∑

i

Ii

(

|Ψσ(ri)|2 e−i2KxiΨ∗
σ(ri)Ψ′

σ(ri)
ei2KxiΨ

′∗
σ (ri)Ψσ(ri) |Ψ′

σ(ri)|2

)

(31)

Note that the 2× 2 block structure of this Hamiltonian represents the valley degree of freedom.

D. Simplifications

At this point we make use of the fact that ΨA(r) = −Ψ′
B(r) and ΨB(r) = Ψ′

A(r), which is a consequence of the
identical effective Schrödinger equations describing the two valleys (Eqs. (3) and (4)). Furthermore, we assume that
the magnitude of the two wavefunction components is the same, i.e. ΨA(r) = f(r)eiα(r) and ΨB(r) = f(r)eiβ(r),
where f , α and β are real-valued functions. Then

H ′
hf = ΩcellSA

∑

i

Iif
2(ri)

(

1 e−i2Kxi
{

δσAe−iδ(ri) + δσBei[δ(ri)+π]
}

ei2Kxi
{

δσAeiδ(ri) + δσBe−i[δ(ri)+π]
}

1

)

(32)

Here δσσ′ is the Kronecker delta, and δ(r) = α(r) − β(r). As a further simplification, following Ref. ? we assume
that f(r) is independent of the position. Together with the normalization condition for the wavefunction this means

1 =

∫

dr2
[

|ΨA(r)|2 + |ΨB(r)|2
]

= 2

∫

dr2f2(r) = 2
∑

i

Ωatomf2(ri) = ΩcellNf2, (33)

where N is the number of atoms interacting with the electron. Then using f2 = 1/(ΩcellN) we get

H ′
hf =

1

N
SA

(

Iτ0 + J (x)τx + J (y)τy

)

, (34)

where

I =
∑

i

Ii, (35)

J (x) =
∑

hσc

Ihσc {δAσ cos[c2π/3 + δ(rhσc)] − δBσ cos[c2π/3 − δ(rhσc)]} , (36)

J (y) =
∑

hσc

Ihσc {δAσ sin[c2π/3 + δ(rhσc)] − δBσ sin[c2π/3 − δ(rhσc)]} (37)

Here we used that for any h and σ, exp(i2Kxhσc) = exp(ic2π/3) (cf. the caption of Fig. 1). We make use of the fact
that the envelope functions are smoothly varying, i.e. one can use δh := δ(rhA1) ≈ δ(rhσc). Then

J(x) =
∑

hσc

Ihσc cos∆hσc, (38)

J(y) =
∑

hσc

Ihσc sin∆hσc, (39)

where ∆hAc = c2π/3 + δh and ∆hBc = c2π/3 + π − δh.

E. Effect of the disordered nuclear field in a 13C sample

From this point we restrict our consideration to carbon nanostructures containing only 13C isotopes.
The configuration of the nuclear spins is completely random if no attempt is made to control them. (Ref ?)

That means each component of each nuclear spin is an independent random variable characterized by the ‘coin toss’

hyperfine Hamiltonian for Dirac wavefunctions:
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Hyperfine-induced valley mixing and the spin-valley blockade in carbon-based quantum dots

András Pályi and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: August 7, 2009)

Hyperfine interaction (HFI) in carbon nanotube and graphene quantum dots is due to the presence of
13C atoms. We theoretically show that in these structures the short-range nature of the HFI gives rise

to a coupling between the valley degree of freedom of the electron and the nuclear spin, in addition

to the usual electron spin-nuclear spin coupling. We predict that this property of the HFI affects the

Pauli blockade transport in carbon-based double quantum dots. In particular, we show that transport is

blocked only if both the spin and the valley degeneracies of the quantum dot levels are lifted, e.g., by

an appropriately oriented magnetic field. The blockade is caused by four ‘supertriplet’ states in the (1,1)

charge configuration.

PACS numbers: 73.63.Kv, 73.63.Fg, 73.23.Hk, 31.30.Gs

Introduction. In the past decade, fundamental steps have

been made towards the realization of quantum information

processing, including isolation, manipulation, and read-

out of single electron spins in the solid state [1]. How-

ever, the majority of the existing quantum dot (QD) spin

qubits is fabricated in material systems where hyperfine in-

teraction (HFI) with nuclear spins limits the device perfor-

mance via spin decoherence. Carbon structures like car-

bon nanotubes (CNTs) or graphene are expected to have

weak HFI, due to the small, 1% natural abundance of spin-

carrying 13C nuclei. This expectation has motivated in-

tensive theoretical investigation [2, 3, 4, 5] and the ex-

perimental realization of QDs in carbon nanostructures

[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. A further perspective

of carbon-based quantum information processing has been

opened by proposals suggesting to utilize the valley degree

of freedom of the delocalized electrons as a qubit [16, 17].

Relaxation and decoherence mechanisms of these valley-

qubits are yet to be explored. One possible source of those

is short-range disorder, which is known to couple the two

different valley states [18].

Double quantum dot (DQD) structures in the two-

electron regime are particularly well suited for studying

the effects of HFI [19, 20, 21, 22, 23]. In the so-called

Pauli blockade regime, the measurement of the direct cur-

rent through a serially coupled GaAs DQD as a function of

the external magnetic field has been used to infer the hy-

perfine energy scale [20, 21]. Another experiment in GaAs

DQDs showed that HFI can be utilized to perform coherent

rotations between the states of a singlet-triplet qubit, and at

the same time, acts as a source of decoherence [22].

The effect of the HFI in carbon is most pronounced in

fully 13C-enriched samples [5, 9, 10, 24, 25, 26]. Such

nanotube DQD devices have been used recently to estimate

the energy scale of the atomic HFI as ∼ 100µeV, using

transport [10] and singlet-triplet dephasing time [9] mea-

surements. In contrast, theory predicts an atomic hyperfine

energy scale ∼ 1µeV [5, 24]. This discrepancy between

theory and experiment, together with unexplained features

of the dephasing time measurements of [9], show that addi-

tional theoretical efforts have to be made to gain a complete

understanding of the role of HFI in carbon-based QDs.

Here, we study the influence of the 13C nuclear spins

on the spin and valley degrees of freedom of the electrons

in carbon-based QDs. In particular, we derive the 4 × 4
Hamiltonian describing the effect of HFI on a single four-

fold (spin and valley) degenerate QD energy level. We find

that due to the short-range nature of the HFI, it couples the

nuclear spins not only with the spin, but also with the valley

degree of freedom of the electron. The effective hyperfine

Hamiltonian can be expressed as

Hhf = S ·

(

h
(0)τ0 +

∑

i=x,y,z

h
(i)τi

)

. (1)

Here S = (sx, sy, sz)/2 is the spin operator, τ0 is the unit

operator in valley space, si (τi) denotes the Pauli matrices

acting in spin (valley) space, and the quantities h
(0,x,y,z)

are different linear combinations of the individual nuclear

spin operators (see below). Equation (1) should be con-

trasted with the widely used 2 × 2 hyperfine Hamiltonian

Hhf,GaAs = S ·h, which describes the effect of the nuclear

spin on a twofold degenerate level in a GaAs QD, and in-

corporates only a single Overhauser field h. We estimate

that the order of magnitude of the valley-conserving (∼ τ0)

and valley-mixing parts of Hhf are the same.

As a physical consequence of the valley coupling due to

the HFI, we predict that the response of the Pauli blockade

leakage current through a carbon-based DQD to an applied

external magnetic field is remarkably different from the

case of GaAs DQDs. In the Pauli or spin blockade regime

[1], transport from the source to the drain through a serially

coupled DQD occurs via the (0, 1) → (1, 1) → (0, 2) →
(0, 1) cycle, (nL, nR) denoting the charge state with nL

(nR) electrons in the left (right) QD (see Fig. 1 inset). In a

GaAs DQD, blocking of the current occurs when there is at

least one two-electron energy eigenstate in the (1,1) charge

configuration having a spin wave function which is sym-

metric under particle exchange (i.e., a triplet). Due to HFI,

this condition is achieved only in the presence of an exter-

nal magnetic field, which splits two triplet states apart from

hyperfine Hamiltonian
for Dirac electrons 
in graphene

valley-conserving terms
(same form as e.g. in GaAs)

valley-mixing terms (x,y)
valley dephasing term (z)

four ‘nuclear fields’ instead of one 

i = (l�)

unit 
cell

sublattice

Palyi & GB, PRB 80, 201404(R) (2009)

K

valley mixing

K’
valley mixing
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Spin blockade in graphene dots
Pályi & GB, PRB 2009
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direction of the magnetic field (SL + SR) · B/B, the to-
tal valley operator (τ L + τ R)2/4 and the z-component
of the valley operator (τz,L + τz,R)/2. The correspond-
ing quantum numbers are s ∈ {0, 1}, ms ∈ {−s, . . . , s},
v ∈ {0, 1} and mv ∈ {−v, . . . , v}. We denote these
basis states with |s,ms, v,mv〉. These are eigenstates of
the system Hamiltonian in the absence of HFI. The com-

bined spin-valley wave functions of the ten states fulfilling

s = v are supertriplets, therefore these states cannot be
squeezed into a (0,2) charge configuration. In contrast, the

spin-valley wave functions of the six states with s $= v are
supersinglets, hence their transition to (0,2) is allowed.

The energy diagram of the 16 states of the (1,1)

charge configuration, corresponding to the three high-

lighted points of Fig. 1 are presented in Fig. 3. Figure

3a shows the situation where ∆s = ∆v = 0. In this case
there is a 16-fold degenerate level, and the HFI mixes su-

persinglet and supertriplet states effectively. This results

in a maximal current through the DQD. The Zeeman ef-

fect splits the states with different ms quantum numbers

(Fig. 3b) and suppresses hyperfine-induced hybridization

between them if ∆s > hhf , which leads to a decrease in

the leakage current. However, the valley mixing contribu-

tion of the HFI still induces strong mixing within the states

with the samems. This mixing prevents the appearance of

‘pure’ supertriplet energy eigenstates which would block

the transport, therefore the current does not drop to zero.

As mentioned earlier, this behavior is in contrast to the case

of GaAs DQDs. Figure 3c shows the energy diagram when

both∆s and∆v are finite. If those are larger than the HFI,

then the four supertriplet states |1,±1, 1,±1〉 become de-
coupled from supersinglets. Thus the system gets trapped

whenever any of these four states is occupied during the

transport process, which results in a strong suppression of

the current. Note that only two blocked states remain if

∆s ≈ ∆v . In that case, |1, 1, 1,−1〉 and |1,−1, 1, 1〉 be-
come degenerate with the fourfold degenerate |s, 0, v, 0〉
and mix with those due to HFI, slightly enhancing the cur-

rent, visible along the diagonal |∆s| = |∆v| lines in Fig.
1.

Another characteristic of the spin-valley blockade is the

appearance of a dip in the green 〈I(∆v)〉 curve in Fig. 2
at ∆v = 0. Similar dip structures have been predicted
[30, 31] and measured [10, 20, 32] in conventional semi-

conductors and they were attributed to various microscopic

origins including cotunneling, spin-orbit interaction, and

exchange coupling. In our case, the dip has a different ori-

gin: it is due to the strong valley anisotropy of the HFI,

i.e., that in our above estimations h(z)
j vanishes and there-

foreHhf does not include the τz operator.

Conclusions.We have established the form of the Hamil-

tonian describing the effect of HFI on a fourfold degener-

ate energy level in a carbon-based QD. We have found that

the short range nature of the HFI leads to a significant nu-

clear spin-electron valley coupling. We have calculated the
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FIG. 3: (Color online) Schematic energy diagrams of the

(1,1) charge configuration corresponding to the three highlighted

points of Fig. 1. The effect of hyperfine interaction is excluded.

Dashed lines: transport-blocking supertriplet states.

effect of this interaction on the leakage current through a

DQD in the Pauli blockade regime. Our findings may have

profound consequences for both spin and valley manipula-

tion in carbon-based QDs.
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(Fig. 3b) and suppresses hyperfine-induced hybridization

between them if ∆s > hhf , which leads to a decrease in

the leakage current. However, the valley mixing contribu-

tion of the HFI still induces strong mixing within the states

with the samems. This mixing prevents the appearance of

‘pure’ supertriplet energy eigenstates which would block

the transport, therefore the current does not drop to zero.

As mentioned earlier, this behavior is in contrast to the case

of GaAs DQDs. Figure 3c shows the energy diagram when

both∆s and∆v are finite. If those are larger than the HFI,

then the four supertriplet states |1,±1, 1,±1〉 become de-
coupled from supersinglets. Thus the system gets trapped

whenever any of these four states is occupied during the

transport process, which results in a strong suppression of

the current. Note that only two blocked states remain if

∆s ≈ ∆v . In that case, |1, 1, 1,−1〉 and |1,−1, 1, 1〉 be-
come degenerate with the fourfold degenerate |s, 0, v, 0〉
and mix with those due to HFI, slightly enhancing the cur-

rent, visible along the diagonal |∆s| = |∆v| lines in Fig.
1.

Another characteristic of the spin-valley blockade is the

appearance of a dip in the green 〈I(∆v)〉 curve in Fig. 2
at ∆v = 0. Similar dip structures have been predicted
[30, 31] and measured [10, 20, 32] in conventional semi-

conductors and they were attributed to various microscopic

origins including cotunneling, spin-orbit interaction, and

exchange coupling. In our case, the dip has a different ori-

gin: it is due to the strong valley anisotropy of the HFI,

i.e., that in our above estimations h(z)
j vanishes and there-

foreHhf does not include the τz operator.

Conclusions.We have established the form of the Hamil-

tonian describing the effect of HFI on a fourfold degener-

ate energy level in a carbon-based QD. We have found that

the short range nature of the HFI leads to a significant nu-

clear spin-electron valley coupling. We have calculated the
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effect of this interaction on the leakage current through a

DQD in the Pauli blockade regime. Our findings may have

profound consequences for both spin and valley manipula-

tion in carbon-based QDs.
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i.e., that in our above estimations h(z)
j vanishes and there-
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Spin relaxation of localized electrons

E↵ective time-reversal symmetry breaking in the spin relaxation

in a graphene quantum dot

P. R. Struck and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: March 10, 2010)

We study the relaxation of a single electron spin in a circular gate-tunbable quantum dot in gapped
graphene. Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit
coupling leads to a relaxation time T1 which is independent of the B-field at low fields. We also
find that Rashba spin-orbit induced admixture of opposite spin states in combination with the
emission of in-plane phonons provides various further relaxation channels via deformation potential
and bond-length change. In the absence of valley mixing, spin relaxation takes place within each
valley separately and thus time-reversal symmetry is e�ectively broken, thus inhibiting the van
Vleck cancellation at B = 0 known from GaAs quantum dots. Both the absence of the van Vleck
cancellation as well as the out-of-plane phonons lead to a behavior of the spin relaxation rate at low
magnetic fields which is markedly di�erent from the known results for GaAs. For low B-fields, we
find that the rate is constant in B and then crosses over to � B2 or � B4 at higher fields.

Introduction—The electronic spin degree of freedom is
under intense investigation as a possible implementation
of a qubit [1]. While the feasibility of all required oper-
ations has been experimentally demonstrated for GaAs
quantum dots (QDs) [2], the decoherence caused by the
surrounding nuclear spins in the host material remains
challenging. Regarding the use of the electron spin as
a qubit in quantum computation devices, spin decoher-
ence and relaxation are limiting factors. In general, a
necessary condition for a working qubit is that the time
required to perform an operation is significantly shorter
than the decoherence and relaxation times. Motivated by
this, the implementation of qubits in QDs in graphene
has been proposed [3]. Graphene consisting of natural
carbon comprises 99% of the carbon isotope 12C which
has no nuclear spin, hence the hyperfine interaction is ex-
pected to play only a minor role. Furthermore, spin-orbit
interaction (SOI) in graphene is expected to be relatively
weak and therefore long decoherence times are expected.
However, for spins localized in QDs in carbon nanotubes,
SOI has turned out to be unexpectedly strong [4, 5] due
to curvature-induced e�ects. It has also been shown the-
oretically that van Hove singluarities in the phonon den-
sity of states in one dimension can lead to strong varia-
tions in the spin relaxation rate [6]. It is therefore impor-
tant to investigate the spin relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, is known [7], and there are several works
on its strength depending on various parameters such as
curvature or electric field [8, 9]. There have also been
experimental [10] and theoretical [11] studies on spin re-
laxation of extended states in graphene.

In this paper we determine theoretically the spin relax-
ation time T1 for an electron confined to a circular QD in
gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs
can be formed with electrostatic confinement in either
single-layer graphene with a substrate-induced band gap
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FIG. 1: (Color online) a) The two states of a spin qubit
(blue solid arrows) reside in the same valley, as opposed to a
Kramers qubit (empty red arrows), formed by a Kramers pair
related by time-reversal symmetry (T ). While in single-valley
semiconductors such as GaAs these two cases are identical, in
graphene the Kramers qubit involves states in di�erent valleys
(K and K�). b) The B-field orientation is given with spherical
coordinates � and ⇥B relative to the normal to the graphene
plane. The propagation direction of the emitted phonon (red
wavy arrow) is described by the angle ⇥q.

or bilayer graphene with an electrically controlled gap
[12]. At B = 0, the states in these QDs have a two-
fold valley degeneracy which can be lifted in a perpen-
dicular magnetic field. Being a centro-symmetric crystal,
phonons in graphene do not couple piezo-electrically, thus
leaving three possible electron-phonon coupling (EPC)
mechanisms: deformation potential, bond length change,
and direct spin-phonon coupling. From these EPC mech-
anisms, we derive two spin relaxation mechanisms. One
such mechanism involves the admixture of states of oppo-
site spin and excited orbitals into the dot eigenstates due
to SOI, in combination with energy relaxation via phonon
emission [13, 14]. It turns out that to lowest order in the
EPC, this only involves in-plane phonons coupled via the
deformation potential and bond-length change. The sec-
ond mechanism directly couples the spin to out-of-plane
phonons via curvature induced SOI. For comparison, in a
parabolic GaAs QD, a strong dependence � B5 has been
predicted for both mechanisms [13]. Relaxation times in

n
n’

SO

electron-phonon coupling

• spin-orbit (SO) interaction   +    electron phonon coupling (EPC), piezo-phonons

• van Vleck cancellation at B=0:  qubit states form Kramers doublet
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We study the relaxation of a single electron spin in a circular gate-tunbable quantum dot in gapped
graphene. Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit
coupling leads to a relaxation time T1 which is independent of the B-field at low fields. We also
find that Rashba spin-orbit induced admixture of opposite spin states in combination with the
emission of in-plane phonons provides various further relaxation channels via deformation potential
and bond-length change. In the absence of valley mixing, spin relaxation takes place within each
valley separately and thus time-reversal symmetry is e�ectively broken, thus inhibiting the van
Vleck cancellation at B = 0 known from GaAs quantum dots. Both the absence of the van Vleck
cancellation as well as the out-of-plane phonons lead to a behavior of the spin relaxation rate at low
magnetic fields which is markedly di�erent from the known results for GaAs. For low B-fields, we
find that the rate is constant in B and then crosses over to � B2 or � B4 at higher fields.

Introduction—The electronic spin degree of freedom is
under intense investigation as a possible implementation
of a qubit [1]. While the feasibility of all required oper-
ations has been experimentally demonstrated for GaAs
quantum dots (QDs) [2], the decoherence caused by the
surrounding nuclear spins in the host material remains
challenging. Regarding the use of the electron spin as
a qubit in quantum computation devices, spin decoher-
ence and relaxation are limiting factors. In general, a
necessary condition for a working qubit is that the time
required to perform an operation is significantly shorter
than the decoherence and relaxation times. Motivated by
this, the implementation of qubits in QDs in graphene
has been proposed [3]. Graphene consisting of natural
carbon comprises 99% of the carbon isotope 12C which
has no nuclear spin, hence the hyperfine interaction is ex-
pected to play only a minor role. Furthermore, spin-orbit
interaction (SOI) in graphene is expected to be relatively
weak and therefore long decoherence times are expected.
However, for spins localized in QDs in carbon nanotubes,
SOI has turned out to be unexpectedly strong [4, 5] due
to curvature-induced e�ects. It has also been shown the-
oretically that van Hove singluarities in the phonon den-
sity of states in one dimension can lead to strong varia-
tions in the spin relaxation rate [6]. It is therefore impor-
tant to investigate the spin relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, is known [7], and there are several works
on its strength depending on various parameters such as
curvature or electric field [8, 9]. There have also been
experimental [10] and theoretical [11] studies on spin re-
laxation of extended states in graphene.

In this paper we determine theoretically the spin relax-
ation time T1 for an electron confined to a circular QD in
gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs
can be formed with electrostatic confinement in either
single-layer graphene with a substrate-induced band gap
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FIG. 1: (Color online) a) The two states of a spin qubit
(blue solid arrows) reside in the same valley, as opposed to a
Kramers qubit (empty red arrows), formed by a Kramers pair
related by time-reversal symmetry (T ). While in single-valley
semiconductors such as GaAs these two cases are identical, in
graphene the Kramers qubit involves states in di�erent valleys
(K and K�). b) The B-field orientation is given with spherical
coordinates � and ⇥B relative to the normal to the graphene
plane. The propagation direction of the emitted phonon (red
wavy arrow) is described by the angle ⇥q.

or bilayer graphene with an electrically controlled gap
[12]. At B = 0, the states in these QDs have a two-
fold valley degeneracy which can be lifted in a perpen-
dicular magnetic field. Being a centro-symmetric crystal,
phonons in graphene do not couple piezo-electrically, thus
leaving three possible electron-phonon coupling (EPC)
mechanisms: deformation potential, bond length change,
and direct spin-phonon coupling. From these EPC mech-
anisms, we derive two spin relaxation mechanisms. One
such mechanism involves the admixture of states of oppo-
site spin and excited orbitals into the dot eigenstates due
to SOI, in combination with energy relaxation via phonon
emission [13, 14]. It turns out that to lowest order in the
EPC, this only involves in-plane phonons coupled via the
deformation potential and bond-length change. The sec-
ond mechanism directly couples the spin to out-of-plane
phonons via curvature induced SOI. For comparison, in a
parabolic GaAs QD, a strong dependence � B5 has been
predicted for both mechanisms [13]. Relaxation times in
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We study the relaxation of a single electron spin in a circular gate-tunbable quantum dot in gapped
graphene. Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit
coupling leads to a relaxation time T1 which is independent of the B-field at low fields. We also
find that Rashba spin-orbit induced admixture of opposite spin states in combination with the
emission of in-plane phonons provides various further relaxation channels via deformation potential
and bond-length change. In the absence of valley mixing, spin relaxation takes place within each
valley separately and thus time-reversal symmetry is e�ectively broken, thus inhibiting the van
Vleck cancellation at B = 0 known from GaAs quantum dots. Both the absence of the van Vleck
cancellation as well as the out-of-plane phonons lead to a behavior of the spin relaxation rate at low
magnetic fields which is markedly di�erent from the known results for GaAs. For low B-fields, we
find that the rate is constant in B and then crosses over to � B2 or � B4 at higher fields.

Introduction—The electronic spin degree of freedom is
under intense investigation as a possible implementation
of a qubit [1]. While the feasibility of all required oper-
ations has been experimentally demonstrated for GaAs
quantum dots (QDs) [2], the decoherence caused by the
surrounding nuclear spins in the host material remains
challenging. Regarding the use of the electron spin as
a qubit in quantum computation devices, spin decoher-
ence and relaxation are limiting factors. In general, a
necessary condition for a working qubit is that the time
required to perform an operation is significantly shorter
than the decoherence and relaxation times. Motivated by
this, the implementation of qubits in QDs in graphene
has been proposed [3]. Graphene consisting of natural
carbon comprises 99% of the carbon isotope 12C which
has no nuclear spin, hence the hyperfine interaction is ex-
pected to play only a minor role. Furthermore, spin-orbit
interaction (SOI) in graphene is expected to be relatively
weak and therefore long decoherence times are expected.
However, for spins localized in QDs in carbon nanotubes,
SOI has turned out to be unexpectedly strong [4, 5] due
to curvature-induced e�ects. It has also been shown the-
oretically that van Hove singluarities in the phonon den-
sity of states in one dimension can lead to strong varia-
tions in the spin relaxation rate [6]. It is therefore impor-
tant to investigate the spin relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, is known [7], and there are several works
on its strength depending on various parameters such as
curvature or electric field [8, 9]. There have also been
experimental [10] and theoretical [11] studies on spin re-
laxation of extended states in graphene.

In this paper we determine theoretically the spin relax-
ation time T1 for an electron confined to a circular QD in
gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs
can be formed with electrostatic confinement in either
single-layer graphene with a substrate-induced band gap

K K �

x

y
z

�B

�q

gµBB

a) b)

BT
�

Monday, March 8, 2010

FIG. 1: (Color online) a) The two states of a spin qubit
(blue solid arrows) reside in the same valley, as opposed to a
Kramers qubit (empty red arrows), formed by a Kramers pair
related by time-reversal symmetry (T ). While in single-valley
semiconductors such as GaAs these two cases are identical, in
graphene the Kramers qubit involves states in di�erent valleys
(K and K�). b) The B-field orientation is given with spherical
coordinates � and ⇥B relative to the normal to the graphene
plane. The propagation direction of the emitted phonon (red
wavy arrow) is described by the angle ⇥q.

or bilayer graphene with an electrically controlled gap
[12]. At B = 0, the states in these QDs have a two-
fold valley degeneracy which can be lifted in a perpen-
dicular magnetic field. Being a centro-symmetric crystal,
phonons in graphene do not couple piezo-electrically, thus
leaving three possible electron-phonon coupling (EPC)
mechanisms: deformation potential, bond length change,
and direct spin-phonon coupling. From these EPC mech-
anisms, we derive two spin relaxation mechanisms. One
such mechanism involves the admixture of states of oppo-
site spin and excited orbitals into the dot eigenstates due
to SOI, in combination with energy relaxation via phonon
emission [13, 14]. It turns out that to lowest order in the
EPC, this only involves in-plane phonons coupled via the
deformation potential and bond-length change. The sec-
ond mechanism directly couples the spin to out-of-plane
phonons via curvature induced SOI. For comparison, in a
parabolic GaAs QD, a strong dependence � B5 has been
predicted for both mechanisms [13]. Relaxation times in
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Rashba SOI
• tunable with 
   external E-field
• selection rule  �j = ±1

2

the millisecond range at a field B = 1T have been pre-
dicted and even longer T1 exceeding one second have been
experimentally verified [15]. The prediction for graphene
QDs looks markedly di⇥erent because of the absence of
the van Vleck cancellation for spin qubits in a single val-
ley as opposed to “Kramers qubits” (see Fig. 1a), as well
as the absence of piezo phonons and the two-dimensional
nature of phonons.

Model—To study spin relaxation in a circular and gate-
tunable QD in single-layer graphene, we assume the host
graphene layer to be su⇧ciently large to ensure that the
edges do not induce inter-valley mixing. The QD can be
described with the Hamiltonian [12],

H0 = vF (p+ eA⌃) ·�+
1

2
gµBB · s+U(r) + ⇧�⌅z, (1)

where the first term is the well-known Dirac Hamiltonian
for graphene [16] in the presence of a vector potential
A⌃ with B⌃ = � ⇤ A⌃ = (0, 0, B cos �) being the per-
pendicular component of an arbitrarily oriented B-field
(Fig. 1b). The second and third terms describe the Zee-
man coupling of the electron spin to the total B-field and
the smooth and circularly symmetric confinement poten-
tial U(r). The last term opens a band gap 2� which can
e.g. arise due to the influence of the substrate [17, 18].
Here, ⇧ = ±1 denote the K and K ⌅ valleys. In the ab-
sence of valley-scattering, we can restrict ourselves to a
single valley, e.g. ⇧ = +1. Weak inter-valley coupling
can arise from atomic defects or boundaries [16], or from
the hyperfine interaction with the remaining 13C atoms
[19].

The eigenstates |n, s↵(0) of H0 in Eq. (1) with energy
En + sgµBB/2 are simultaneously eigenstates of the to-
tal angular momentum j � Z + 1

2 , i.e. orbital quantum
number and pseudo-spin, with spinor wavefunctions (in
the K valley),

⌦r,⌃|n; s↵ = �n(r,⌃) = ei(j�1/2)⌅

�
⌥j,⇥
A (r)

⌥j,⇥
B (r)e�i⌅

⇥
. (2)

The spinor components ⌥j,⇥
⇤ (r) can be given in closed

form for a step-like potential U(r) = U0�(r�R) [12], how-
ever the eigenenergies En have to be evaluated numeri-
cally. Each eigenstate is characterized by a pair (n, s)
where s =⌃, ⌥= ±1 is the spin and where n = (⇤, j) has
a radial and angular momentum part.

In-Plane Phonons—In order to study processes based
on the admixture mechanism, we begin with the Hamil-
tonian H = H0 +HSO +HEPC, where H0 describes the
graphene QD without SOI as explained above, HSO de-
scribes the SOI, and HEPC describes EPC. The e⇥ect of
the SOI is to weakly mix the eigenstates Eq. (2). In this
manner, e.g. the QD ground state, say |n = (0, 1/2), ⌃↵(0)
acquires components of the excited states |n⌅, ⌥↵(0) with

n⌅ = (⇤⌅, j⌅)  = n and opposite spin, to first order in HSO,

|n ⌃↵ = |n ⌃↵(0) +
⇧

n0 ⇧=n

(0)⌦n⌅ ⌥ |HSO|n ⌃↵(0)

En � En0 � 1
2gµBB

|n⌅ ⌥↵(0), (3)

and similarly for |n ⌥↵. With this admixed state the spin-
conserving EPC can cause spin relaxation,

⌦n ⌃ |HEPC|n ⌥↵ ⇧ (HEPC)
⇥⇤
nn =

⇧

n0 ⇧=n

⇤
(HSO)

⇥⇤
nn0 (HEPC)n0n

En � En0 � 1
2gµBB

+
(HEPC)nn0 (HSO)

⇥⇤
n0n

En � En0 + 1
2gµBB

⌅
. (4)

For su⇧ciently small B-fields this can be expanded
around B = 0. In the case of GaAs, the expres-
sion Eq. (4) vanishes for B = 0 due to the symmetry

(HSO)
⇥⇤
nm = � (HSO)

⇥⇤
mn and (HEPC)nm = (HEPC)mn.

This van Vleck cancelation [13, 14] is one of the rea-
sons for the high power of B that appears in the spin
relaxation rate in GaAs QDs and can be traced back to
the time-reversal invariance of H and its eigenstates, i.e.,
the fact that both SOI and EPC preserve time-reversal
invariance. In particular, the spin relaxation takes place
from one state, say |n ⌃↵, to its partner |n ⌥↵ within a
Kramers pair, which are linked by time reversal.
In our case, the states |n⌃↵ and |n⌥↵ lie in the same

valley and therefore do not form a Kramers pair (see
Fig. 1a). The time-reversed partner of |n ⌃↵ is |n ⌥↵⌅,
where the prime denotes the opposite valley. Since nei-
ther the EPC nor the SOI lead to inter-valley mixing,
spin-relaxation is e⇥ectively constrained to a single val-
ley. Therefore the selection of spin qubit states within
the same valley breaks time-reversal symmetry and leads
to the absence of the van Vleck cancelation. We now
proceed to the evaluation of the matrix elements of the
SOI and the EPC in Eq. (4) in order to calculate the spin
relaxation rate.
We divide the SOI Hamiltonian into its intrinsic and

Rahsba terms [7],

HSO = Hi +HR = �i⇧⌅zsz +�R(⇧⌅xsy � ⌅ysx), (5)

where ⌅i and si denote the Pauli matrices acting on
the pseudo-spin and real spin. We use a spin quanti-
zation axis aligned with the external B-field (see Fig. 1b)
and corresponding spinors | ⌃B↵ and | ⌥B↵ and obtain
fx ⇧ ⌦⌃B |sx|⌥B↵ = cos2 �

2 � e�2i⌅B sin2 �
2 and fy ⇧ ⌦⌃B

|sy|⌥B↵ = �i(cos2 �
2 + e�2i⌅B sin2 �

2 ). First we consider
HR and calculate its matrix elements with states |n ⌃B↵
and |n⌅ ⌥B↵. The two spin states we use are orthogonal,
i.e. ⌦⌃B | ⌥B↵ = 0 but they are not sz eigenstates. In
principle this allows both the intrinsic and Rashba SOI
to provide a relaxation channel in the admixture mech-
anism. However, due to the circular symmetry of the
dot, selection rules for j apply. In the case of HR only
dipole transitions (|j � j⌅| = 1) are allowed, whereas the

intrinsic SOI
• selection rule �j = 0
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instead of the functions φAA
zz (q) and φAB

zz (q) we have to
substitute respectively the 2 × 2 matrices

φAA(q) =

(

φAA
ξη (q) φAA

ξξ (q)
φAA

ξξ (q)∗ φAA
ξη (q)

)

, (11)

φAB(q) =

(

φAB
ξη (q) φAB

ξξ (q)
φAB

ηη (q) φAB
ξη (q)

)

. (12)

The matrix elements φAA
ξη (q) and φAB

ξη (q) are obtained

from φAA
zz (q) and φAB

zz (q), Eqs. (7), respectively, with
substitutions γ and α instead of γz and αz. The off-
diagonal elements are given by

φAA
ξξ (q) = (13)

δ[exp(i
√

3qy) + 2 cos (3qx/2 + 2π/3) exp(−i
√

3qy/2)] +

δ∗[exp(−i
√

3qy) + 2 cos (3qx/2 − 2π/3) exp (i
√

3qy/2)],

φAB
ξξ (q) =

β[exp (iqx) + 2 exp (−iqx/2) cos (
√

3qy/2 − 2π/3)].

The matrix elements for the B sublattice can be ob-
tained from that ones for the A sublattice by C2 rotation
(x, y) → −(x, y) of the graphene symmetry group.

The optical phonon frequencies for the in-plane
branches at Γ and K are found

ωin−pl
1,2 (Γ) =

√
−6α, doublet,

ωin−pl
1,2 (K) =

√

−3α − 9γ, doublet, (14)

ωin−pl
3,4 (K) =

√

−3α − 9γ ± 3β.

Using Eqs. (11)-(13), we find the in-plane mode disper-
sion in the explicit form for the G − K direction. An
algebraic equation of the forth order have to be solved
for the M point as well as for points of the general posi-
tion.

The in-plane vibrations make a contribution into the
elastic constants C11 and C12. The corresponding rela-
tion between the dynamic matrix elements and the elas-
tic constants can be deduced taking the long-wavelength
limit (q → 0) in the matrices (11) and (12). In this limit,
separating the acoustic vibrations uac from the optical
modes, we obtain the equation of motion in the matrix
form

[

(φAA + φAB + φBB + φBA)/2
+ φAB

1 (φAB
0 )−1φAB

1 − ω2
]

uac = 0,
(15)

where the subscripts 0 and 1 mean that the terms of the
zero and first order in q should, correspondingly, be kept
in the matrices (11) and (12) but the expansion to the
second order is used in other terms. We find the matrix
factor of uac in Eqs. (15):

(

s1q2 − ω2 s2q2
+

s2q2
−

s1q2 − ω2

)

, (16)

where

s1 = −
9

2
γ −

3

4
(α − β2/α), s2 =

9

8
δ −

3

8
β. (17)

With the help of Eq. (16), we obtain the velocities of
longitudinal and transverse acoustic in-plane modes

sLA = a
√

s1 + s2 =
√

C11/ρ,
sTA = a

√
s1 − s2 =

√

(C11 − C12)/2ρ,
(18)

corresponding them to elastic constants and density of
graphite. The values of force constants from Table 1
give the sound velocities s LA = 2.03 × 106cm/s, sTA =
1.31 × 106cm/s .

TABLE I: Force constants in 105 cm−2 .

α β γ δ αz γz

-3.980 -1.132 -0.297 1.123 -1.270 0.204

TABLE II: Elastic constants (in 10 GPa) calculated (theo)
and observed24 (exp).

C11 C12 C44

theo 93 16 0.56

exp 106 ± 2 18 ± 2 0.45 ± .05

The calculated phonon dispersion is shown in Fig. 2.
Notice, first, that the sound velocities (for the long waves,
q → Γ) are isotropic in the xy plane as it should be ap-
propriate for the symmetry of graphene. Second, the in-
plane LO/TO modes at Γ, the in-plane LO/LA modes
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FIG. 2: Calculated phonon dispersion for graphene; the force
constants, elastic constants, and phonon frequencies in critical
points are listed in Tables 1, 2, and 3 correspondingly.

Falkovsky, JETP 2007 [cond-mat/0702409]

10 T

Phonons in Graphene

Tuesday, January 17, 12



Ando, J. Phys. Soc. Jpn. 2005
Suzuura & Ando, PRB 2002
Mariani & von Oppen, PRL 2008.

(2) bond-length change
     (LA, and TA, g2~1.5 eV)

(1) deformation potential
     (only LA phonons, g1~30 eV)

(0) no piezo phonons!

HEPC,1 =
ig1qp
A⇢!q,µ

✓
1 0
0 1

◆ �
eiqrb† � e�iqrb

�

HEPC,2 =
ig2qp
A⇢!q,µ

✓
0 e2i�q

e�2i�q 0

◆ �
eiqrb† � e�iqrb

�

(3) direct spin-phonon coupling (ZA phonons)

2

the millisecond range at a field B = 1T have been pre-
dicted and even longer T1 exceeding one second have been
experimentally verified [15]. The prediction for graphene
QDs looks markedly di⇥erent because of the absence of
the van Vleck cancellation for spin qubits in a single val-
ley as opposed to “Kramers qubits” (see Fig. 1a), as well
as the absence of piezo phonons and the two-dimensional
nature of phonons.

Model—To study spin relaxation in a circular and gate-
tunable QD in single-layer graphene, we assume the host
graphene layer to be su⇧ciently large to ensure that the
edges do not induce inter-valley mixing. The QD can be
described with the Hamiltonian [12],

H0 = vF (p+ eA⌃) ·�+
1

2
gµBB · s+U(r) + ⇧�⌅z, (1)

where the first term is the well-known Dirac Hamiltonian
for graphene [16] in the presence of a vector potential
A⌃ with B⌃ = � ⇤ A⌃ = (0, 0, B cos �) being the per-
pendicular component of an arbitrarily oriented B-field
(Fig. 1b). The second and third terms describe the Zee-
man coupling of the electron spin to the total B-field and
the smooth and circularly symmetric confinement poten-
tial U(r). The last term opens a band gap 2� which can
e.g. arise due to the influence of the substrate [17, 18].
Here, ⇧ = ±1 denote the K and K ⌅ valleys. In the ab-
sence of valley-scattering, we can restrict ourselves to a
single valley, e.g. ⇧ = +1. Weak inter-valley coupling
can arise from atomic defects or boundaries [16], or from
the hyperfine interaction with the remaining 13C atoms
[19].

The eigenstates |n, s↵(0) of H0 in Eq. (1) with energy
En + sgµBB/2 are simultaneously eigenstates of the to-
tal angular momentum j � Z + 1

2 , i.e. orbital quantum
number and pseudo-spin, with spinor wavefunctions (in
the K valley),

⌦r,⌃|n; s↵ = �n(r,⌃) = ei(j�1/2)⌅

�
⌥j,⇥
A (r)

⌥j,⇥
B (r)e�i⌅

⇥
. (2)

The spinor components ⌥j,⇥
⇤ (r) can be given in closed

form for a step-like potential U(r) = U0�(r�R) [12], how-
ever the eigenenergies En have to be evaluated numeri-
cally. Each eigenstate is characterized by a pair (n, s)
where s =⌃, ⌥= ±1 is the spin and where n = (⇤, j) has
a radial and angular momentum part.

In-Plane Phonons—In order to study processes based
on the admixture mechanism, we begin with the Hamil-
tonian H = H0 +HSO +HEPC, where H0 describes the
graphene QD without SOI as explained above, HSO de-
scribes the SOI, and HEPC describes EPC. The e⇥ect of
the SOI is to weakly mix the eigenstates Eq. (2). In this
manner, e.g. the QD ground state, say |n = (0, 1/2), ⌃↵(0)
acquires components of the excited states |n⌅, ⌥↵(0) with

n⌅ = (⇤⌅, j⌅)  = n and opposite spin, to first order in HSO,

|n ⌃↵ = |n ⌃↵(0) +
⇧

n0 ⇧=n

(0)⌦n⌅ ⌥ |HSO|n ⌃↵(0)

En � En0 � 1
2gµBB

|n⌅ ⌥↵(0), (3)

and similarly for |n ⌥↵. With this admixed state the spin-
conserving EPC can cause spin relaxation,

⌦n ⌃ |HEPC|n ⌥↵ ⇧ (HEPC)
⇥⇤
nn =

⇧

n0 ⇧=n

⇤
(HSO)

⇥⇤
nn0 (HEPC)n0n

En � En0 � 1
2gµBB

+
(HEPC)nn0 (HSO)

⇥⇤
n0n

En � En0 + 1
2gµBB

⌅
. (4)

For su⇧ciently small B-fields this can be expanded
around B = 0. In the case of GaAs, the expres-
sion Eq. (4) vanishes for B = 0 due to the symmetry

(HSO)
⇥⇤
nm = � (HSO)

⇥⇤
mn and (HEPC)nm = (HEPC)mn.

This van Vleck cancelation [13, 14] is one of the rea-
sons for the high power of B that appears in the spin
relaxation rate in GaAs QDs and can be traced back to
the time-reversal invariance of H and its eigenstates, i.e.,
the fact that both SOI and EPC preserve time-reversal
invariance. In particular, the spin relaxation takes place
from one state, say |n ⌃↵, to its partner |n ⌥↵ within a
Kramers pair, which are linked by time reversal.
In our case, the states |n⌃↵ and |n⌥↵ lie in the same

valley and therefore do not form a Kramers pair (see
Fig. 1a). The time-reversed partner of |n ⌃↵ is |n ⌥↵⌅,
where the prime denotes the opposite valley. Since nei-
ther the EPC nor the SOI lead to inter-valley mixing,
spin-relaxation is e⇥ectively constrained to a single val-
ley. Therefore the selection of spin qubit states within
the same valley breaks time-reversal symmetry and leads
to the absence of the van Vleck cancelation. We now
proceed to the evaluation of the matrix elements of the
SOI and the EPC in Eq. (4) in order to calculate the spin
relaxation rate.
We divide the SOI Hamiltonian into its intrinsic and

Rahsba terms [7],

HSO = Hi +HR = �i⇧⌅zsz +�R(⇧⌅xsy � ⌅ysx), (5)

where ⌅i and si denote the Pauli matrices acting on
the pseudo-spin and real spin. We use a spin quanti-
zation axis aligned with the external B-field (see Fig. 1b)
and corresponding spinors | ⌃B↵ and | ⌥B↵ and obtain
fx ⇧ ⌦⌃B |sx|⌥B↵ = cos2 �

2 � e�2i⌅B sin2 �
2 and fy ⇧ ⌦⌃B

|sy|⌥B↵ = �i(cos2 �
2 + e�2i⌅B sin2 �

2 ). First we consider
HR and calculate its matrix elements with states |n ⌃B↵
and |n⌅ ⌥B↵. The two spin states we use are orthogonal,
i.e. ⌦⌃B | ⌥B↵ = 0 but they are not sz eigenstates. In
principle this allows both the intrinsic and Rashba SOI
to provide a relaxation channel in the admixture mech-
anism. However, due to the circular symmetry of the
dot, selection rules for j apply. In the case of HR only
dipole transitions (|j � j⌅| = 1) are allowed, whereas the

3

matrix element of Hi gives rise to selection rules j = j⇧

which turns out to be incompatible with the selection
rule |j � j⇧| = 1 for the EPC.

The matrix element ofHR can be written as (HR)
⇤⌅
nn0 =

2⇧⇥R

⇤
fy(�jj0+1NAB

nn0 + �jj0�1NAB
n0n ) � ifx(�jj0+1NAB

nn0 �
�jj0�1NAB

n0n )
⌅
, where NAB

nn0 =
⌦
dr r �n

A�
n0

B . The matrix

element (HR)
⇤⌅
nn0 is neither symmetric nor antisymmetric

in contrast to the case of GaAs where an antisymmetry
leads to van Vleck cancelation.

We consider two di⇤erent EPC mechanisms which cor-
respond to di⇤erent changes in the lattice induced by
phonons. The deformation potential is caused by an area
change of the unit cell, whereas the bond-length change
mechanism corresponds to a modified hopping propabil-
ity [20, 21]. Because we work in the low-energy regime,
we only consider acoustic phonons. In principle there are
six possible relaxation channels: (i) longitudinal acoustic
(LA), transversal acoustic (TA), transversal out-of-plane
(ZA) phonons, and (ii) deformation potential (g1) and
bond-length change (g2) mechanisms. In lowest order in
the atomic displacement, the EPC has the form [20, 21]

HEPC =
q�

A⌃ q,µ

�
g1a1 g2a⇥2
g2a2 g1a1

 �
eiqrb† � e�iqrb

⇥
,

(6)
with a1 = i and a2 = ie2i⌅q for LA phonons, and a2 =
e2i⌅q and a1 = 0 for TA phonons, and A the area of
the graphene sheet. The vanishing of a1 is due to the
fact that in the regime of linear atomic displacements the
coupling of the TA mode is a two-phonon process. Here,
we restrict our considerations to one-phonon processes.
For a B-field of B = 1T and a sound velocity of s =
2 ⇥ 104 m/s [22], we obtain from gµBB = �sq a phonon
wavelength of ⇤ ⇧ 300 nm which is an order of magnitude
larger than a typical QD size of 25 nm [3], thus justifying
the use of the dipole approximation for typical laboratory
fields.

For the matrix element for LA phonon coupling
via the deformation potential we find

�
HLA

EPC

⇥
nn0 =

� g1⇥⌥
A⇤sLA

q3/2Mnn0
�
�jj0+1e�i⌅q + �jj0�1ei⌅q

⇥
with

Mnn0 =
⌦
dr r2

⌃
�n
A
⇥�n0

A + �n
B
⇥�n0

B

⌥
. The dependence

on the phonon emission angle ⌥q disappears upon
summation over final states. For the TA phonons we
find that the coupling via the deformation potential is a
two-phonon process which will not be discussed here.

The bond-length change mechanism leads to similar
results for both LA and TA phonons, (HEPC)nn0 =
Diq1/2

�
�jj0+1e�2i⌅qNAB

nn0 ± �jj0�1ei2⌅qNAB
n0n

⇥
with

DLA = �i2⇧g2/
⌥
A⌃sLA and DTA = 2⇧g2/

⌥
A⌃sTA, and

where the plus (minus) sign corresponds to LA (TA).
In linear order in the atomic displacement the ZA mode
is decoupled from the other modes. The Hamiltonian
Eq. (6) cannot account for a coupling to the out-of-plane
mode.

With the matrix elements derived above, we can write

� = 1 � = 2 � = 3

j = �0.5 1.1⇥ 104 2.6⇥ 10�2 1.3⇥ 10�3

j = 1.5 1.6⇥ 104 1.2⇥ 101 9.3⇥ 10�2

TABLE I: Individual relaxation rates in units of s�1 for LA
phonons via the deformation potential at B = 1T. For higher
quantum numbers �, the rate decreases quickly.

the transition rates using Fermi’s golden rule as 1/T1 ⌅
� = 2⇧A

⌦ d2q
(2⇥)2

⇧⇧⇧(HEPC)
⇤⌅
nn

⇧⇧⇧
2
�(sq � gµBB). For all

mechanisms we find the same dependence on the ori-
entation of the B-field, f(⇥) = cos4(⇥/2) + sin4(⇥/2) =
(3+ cos(2⇥))/4. We find for the relaxation rate from the
deformation potential

�LA
g1 =

16⇧4g21⇥
2
R

⌃

(gµBB)4

s6LA

f(⇥)

⇥

⇧⇧⇧⇧⇧⇧

↵

n0 ⌃=n

Mnn0Rnn0(�jj0+1N
AB
nn0 + �jj0�1N

AB
n0n )

⇧⇧⇧⇧⇧⇧

2

, (7)

while for the bond-length change mechanism, we have

�LA,TA
g2 =

64⇧4g22⇥
2
R

⌃

(gµBB)2

s4LA,TA

f(⇥)

⇥

⇧⇧⇧⇧⇧⇧

↵

n0 ⌃=n

Rnn0
�
�jj0+1(N

AB
nn0 )2 + �jj0�1(N

AB
n0n )

2
⇥
⇧⇧⇧⇧⇧⇧

2

, (8)

with Rnn0 = (En � En0)�1. For numerical evaluation,
we assume a QD size of R = 25nm and ⇥ = 10� where
� = v/R is the average level distance. The depth of the
quantum well is also set to U0 = 10�. The Rashba SOI
constant can be adjusted by an external electric field [9]
or by using di⇤erent types of substrates. We chose a
value of ⇥R = 48µeV to calculate the relaxation times
displayed in Fig. 2. For the EPC constants we assume
g1 = 30 eV and g2 = 1.5 eV [20]. We use as sound veloci-
ties sLA = 1.95⇥ 104 m/s and sTA = 1.22⇥ 104 m/s [22].
The overlap integrals NAB

nn0 and Mnn0 are calculated nu-
merically. The sum over n⇧ runs over all states, including
the continuum. As shown in Table I, the contributions
from higher levels vanish quickly so that we only take
the first three levels into account. The relaxation rate
T1 = 1/� is plotted in Fig. 2.
Direct Spin-Phonon Coupling— In flat graphene the

acoustic phonons with perpendicular (ZA) polarization
are decoupled from the in-plane modes (LA,TA). We
extend the SOI Hamiltonian Eq. (5) for the case of
a graphene layer which is curved due to ZA phonons.
For displacements much smaller than the wavelength the
normal vector of the graphene plane can be written as
n̂(z) ⇧ ẑ+�uz(x, y) where uz(x, y) is the displacement
field representing the ZA-phonons. Rotating the spin ma-

uz

x, y

B

4

LA,g1LA,g2

⌅B2
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⌅B2
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FIG. 2: (color online) Log-log plot of the spin relaxation time
T1 as a function of an external B-field perpendicular to the
plane (� = 0) defined by the graphene sheet. The radius of
the dot is R = 25nm, both energy gap and depth of the dot
are 260meV. The individual relaxation channels are the cou-
pling to LA in-plane phonons via deformation potential (g1,
red dotted line) and the coupling to LA and TA phonons via
bond-length change (g1, blue dashed and green dot-dashed
lines), as well as the direct coupling to the out-of-plane (ZA)
phonons (purple, long-dashed line). The black solid line rep-
resents the sum of all four processes. Inset: Dependence of
the relaxation rate on the inclination angle � of the B-field.

trices into the local frame determined by the normal vec-
tor n̂(z) we obtain in linear order in u(z) a generalized
SOI Hamiltonian HSO = Hi +HR with

Hi = H(0)
i +⇥i (�xuzsx + �yuzsy)⌃z⌥, (9)

HR = H(0)
R +⇥R (�⌃y�xuz + ⌥⌃x�yuz) sz, (10)

where H(0)
i and H(0)

R are the SOI Hamiltonians for
flat graphene given in Eq. (5). We evaluate these
expressions for transverse out-of-plane (ZA) phonons,
with a quadratic dispersion relation ⌦q = µq2 where

µ =
⌥
⇥/⇧ with ⇥ = 1.1 eV the bending rigidity and

⇧ = 7.5 · 10�7 kg/m2 the mass area density [22, 24].
The EPC Hamiltonian is then obtained by substituting
the displacement operator for the ZA phonons uz =⌥

1/A⇧⌦q

�
eiq·rb† + e�iq·rb

⇥
into Eqs. (9) and (10). For

the intrinsic SOI we obtain the matrix element (Hi)
⇤⌅
nn =

i⇥i

⌥
1/A⇧⌦q (qx⌥⌅ |sx| ⇧�+ qy⌥⌅ |sy| ⇧�) ⌥n|⌃zeiq·r|n�.

When evaluating the orbital matrix element only the
lowest order in the dipole approximation contributes.
All higher orders contain a factor ⌃ ei�q which averages
to zero when the integration over �q is carried out.

Finally, Fermi’s Golden Rule is used to find the relax-
ation rate

�ZA =
2⌅2⇥2

i

⇧µ2
f(�)

⇤⇤⇤⇤
⌃

dr r
⌅
| n

A|
2 � | n

B |
2
⇧⇤⇤⇤⇤

2

, (11)

which is independent of B. The Matrix element itself
depend only weakly on B. For the numerical evaluation

we use ⇥i = 12µeV [23] and sZA = 1.59 ⇤ 103 m/s [22].
The same calculation for the Rashba SOI yields vanishing
matrix elements and therefore no additional contribution.
In some cases, boundary conditions may lead to a linear
dispersion relation for the ZA-phonons. We find that in
this case the contribution due to ZA-phonons is negligible
compared to the in-plane phonon contributions.

Conclusion—We have calculated the electron spin re-
laxation time T1 in a gate-tunable graphene QD aris-
ing from the combination of SOI and EPC. We have re-
stricted ourselves to the zero-temperature case, i.e. pure
phonon emission which is realistic at 0.1T and 100mK
and higher temperatures for larger fields. We have taken
into account two mechanisms: Admixture mechanism
and direct spin-phonon coupling. Due to selection rules
in a circular QD, the admixture mechanism only leads
to spin relaxation in combination with the Rashba SOI.
The deformation potential EPC with LA phonons leads
to a spin relaxation rate scaling as B4 (Fig. 2), while the
bond length change EPC with both LA and TA phonons
results in B2 dependencies. The relatively low powers
compared to GaAs QDs can be traced back to the ab-
sence of the van Vleck cancelation, in combination with
the 2D phonon density of states. The direct coupling of
electronic spins to ZA phonons only leads to spin relax-
ation in combination with the intrinsic SOI whose rate
does not depend on the applied B-field (in lowest order)
and thus leads to a B-field dependence at low fields which
is markedly di⇤erent from that in GaAs QD.
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expressions for transverse out-of-plane (ZA) phonons,
with a quadratic dispersion relation ⌦q = µq2 where

µ =
⌥
⇥/⇧ with ⇥ = 1.1 eV the bending rigidity and

⇧ = 7.5 · 10�7 kg/m2 the mass area density [22, 24].
The EPC Hamiltonian is then obtained by substituting
the displacement operator for the ZA phonons uz =⌥

1/A⇧⌦q

�
eiq·rb† + e�iq·rb

⇥
into Eqs. (9) and (10). For

the intrinsic SOI we obtain the matrix element (Hi)
⇤⌅
nn =

i⇥i

⌥
1/A⇧⌦q (qx⌥⌅ |sx| ⇧�+ qy⌥⌅ |sy| ⇧�) ⌥n|⌃zeiq·r|n�.

When evaluating the orbital matrix element only the
lowest order in the dipole approximation contributes.
All higher orders contain a factor ⌃ ei�q which averages
to zero when the integration over �q is carried out.

Finally, Fermi’s Golden Rule is used to find the relax-
ation rate

�ZA =
2⌅2⇥2

i

⇧µ2
f(�)

⇤⇤⇤⇤
⌃

dr r
⌅
| n

A|
2 � | n

B |
2
⇧⇤⇤⇤⇤

2

, (11)

which is independent of B. The Matrix element itself
depend only weakly on B. For the numerical evaluation

we use ⇥i = 12µeV [23] and sZA = 1.59 ⇤ 103 m/s [22].
The same calculation for the Rashba SOI yields vanishing
matrix elements and therefore no additional contribution.
In some cases, boundary conditions may lead to a linear
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this case the contribution due to ZA-phonons is negligible
compared to the in-plane phonon contributions.

Conclusion—We have calculated the electron spin re-
laxation time T1 in a gate-tunable graphene QD aris-
ing from the combination of SOI and EPC. We have re-
stricted ourselves to the zero-temperature case, i.e. pure
phonon emission which is realistic at 0.1T and 100mK
and higher temperatures for larger fields. We have taken
into account two mechanisms: Admixture mechanism
and direct spin-phonon coupling. Due to selection rules
in a circular QD, the admixture mechanism only leads
to spin relaxation in combination with the Rashba SOI.
The deformation potential EPC with LA phonons leads
to a spin relaxation rate scaling as B4 (Fig. 2), while the
bond length change EPC with both LA and TA phonons
results in B2 dependencies. The relatively low powers
compared to GaAs QDs can be traced back to the ab-
sence of the van Vleck cancelation, in combination with
the 2D phonon density of states. The direct coupling of
electronic spins to ZA phonons only leads to spin relax-
ation in combination with the intrinsic SOI whose rate
does not depend on the applied B-field (in lowest order)
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flat graphene given in Eq. (5). We evaluate these
expressions for transverse out-of-plane (ZA) phonons,
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we use ⇥i = 12µeV [23] and sZA = 1.59 ⇤ 103 m/s [22].
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In some cases, boundary conditions may lead to a linear
dispersion relation for the ZA-phonons. We find that in
this case the contribution due to ZA-phonons is negligible
compared to the in-plane phonon contributions.

Conclusion—We have calculated the electron spin re-
laxation time T1 in a gate-tunable graphene QD aris-
ing from the combination of SOI and EPC. We have re-
stricted ourselves to the zero-temperature case, i.e. pure
phonon emission which is realistic at 0.1T and 100mK
and higher temperatures for larger fields. We have taken
into account two mechanisms: Admixture mechanism
and direct spin-phonon coupling. Due to selection rules
in a circular QD, the admixture mechanism only leads
to spin relaxation in combination with the Rashba SOI.
The deformation potential EPC with LA phonons leads
to a spin relaxation rate scaling as B4 (Fig. 2), while the
bond length change EPC with both LA and TA phonons
results in B2 dependencies. The relatively low powers
compared to GaAs QDs can be traced back to the ab-
sence of the van Vleck cancelation, in combination with
the 2D phonon density of states. The direct coupling of
electronic spins to ZA phonons only leads to spin relax-
ation in combination with the intrinsic SOI whose rate
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the millisecond range at a field B = 1T have been pre-
dicted and even longer T1 exceeding one second have been
experimentally verified [15]. The prediction for graphene
QDs looks markedly di⇥erent because of the absence of
the van Vleck cancellation for spin qubits in a single val-
ley as opposed to “Kramers qubits” (see Fig. 1a), as well
as the absence of piezo phonons and the two-dimensional
nature of phonons.

Model—To study spin relaxation in a circular and gate-
tunable QD in single-layer graphene, we assume the host
graphene layer to be su⇧ciently large to ensure that the
edges do not induce inter-valley mixing. The QD can be
described with the Hamiltonian [12],

H0 = vF (p+ eA⌃) ·�+
1

2
gµBB · s+U(r) + ⇧�⌅z, (1)

where the first term is the well-known Dirac Hamiltonian
for graphene [16] in the presence of a vector potential
A⌃ with B⌃ = � ⇤ A⌃ = (0, 0, B cos �) being the per-
pendicular component of an arbitrarily oriented B-field
(Fig. 1b). The second and third terms describe the Zee-
man coupling of the electron spin to the total B-field and
the smooth and circularly symmetric confinement poten-
tial U(r). The last term opens a band gap 2� which can
e.g. arise due to the influence of the substrate [17, 18].
Here, ⇧ = ±1 denote the K and K ⌅ valleys. In the ab-
sence of valley-scattering, we can restrict ourselves to a
single valley, e.g. ⇧ = +1. Weak inter-valley coupling
can arise from atomic defects or boundaries [16], or from
the hyperfine interaction with the remaining 13C atoms
[19].

The eigenstates |n, s↵(0) of H0 in Eq. (1) with energy
En + sgµBB/2 are simultaneously eigenstates of the to-
tal angular momentum j � Z + 1

2 , i.e. orbital quantum
number and pseudo-spin, with spinor wavefunctions (in
the K valley),

⌦r,⌃|n; s↵ = �n(r,⌃) = ei(j�1/2)⌅

�
⌥j,⇥
A (r)

⌥j,⇥
B (r)e�i⌅

⇥
. (2)

The spinor components ⌥j,⇥
⇤ (r) can be given in closed

form for a step-like potential U(r) = U0�(r�R) [12], how-
ever the eigenenergies En have to be evaluated numeri-
cally. Each eigenstate is characterized by a pair (n, s)
where s =⌃, ⌥= ±1 is the spin and where n = (⇤, j) has
a radial and angular momentum part.

In-Plane Phonons—In order to study processes based
on the admixture mechanism, we begin with the Hamil-
tonian H = H0 +HSO +HEPC, where H0 describes the
graphene QD without SOI as explained above, HSO de-
scribes the SOI, and HEPC describes EPC. The e⇥ect of
the SOI is to weakly mix the eigenstates Eq. (2). In this
manner, e.g. the QD ground state, say |n = (0, 1/2), ⌃↵(0)
acquires components of the excited states |n⌅, ⌥↵(0) with

n⌅ = (⇤⌅, j⌅)  = n and opposite spin, to first order in HSO,

|n ⌃↵ = |n ⌃↵(0) +
⇧

n0 ⇧=n

(0)⌦n⌅ ⌥ |HSO|n ⌃↵(0)

En � En0 � 1
2gµBB

|n⌅ ⌥↵(0), (3)

and similarly for |n ⌥↵. With this admixed state the spin-
conserving EPC can cause spin relaxation,

⌦n ⌃ |HEPC|n ⌥↵ ⇧ (HEPC)
⇥⇤
nn =

⇧

n0 ⇧=n

⇤
(HSO)

⇥⇤
nn0 (HEPC)n0n

En � En0 � 1
2gµBB

+
(HEPC)nn0 (HSO)
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n0n

En � En0 + 1
2gµBB

⌅
. (4)

For su⇧ciently small B-fields this can be expanded
around B = 0. In the case of GaAs, the expres-
sion Eq. (4) vanishes for B = 0 due to the symmetry

(HSO)
⇥⇤
nm = � (HSO)

⇥⇤
mn and (HEPC)nm = (HEPC)mn.

This van Vleck cancelation [13, 14] is one of the rea-
sons for the high power of B that appears in the spin
relaxation rate in GaAs QDs and can be traced back to
the time-reversal invariance of H and its eigenstates, i.e.,
the fact that both SOI and EPC preserve time-reversal
invariance. In particular, the spin relaxation takes place
from one state, say |n ⌃↵, to its partner |n ⌥↵ within a
Kramers pair, which are linked by time reversal.
In our case, the states |n⌃↵ and |n⌥↵ lie in the same

valley and therefore do not form a Kramers pair (see
Fig. 1a). The time-reversed partner of |n ⌃↵ is |n ⌥↵⌅,
where the prime denotes the opposite valley. Since nei-
ther the EPC nor the SOI lead to inter-valley mixing,
spin-relaxation is e⇥ectively constrained to a single val-
ley. Therefore the selection of spin qubit states within
the same valley breaks time-reversal symmetry and leads
to the absence of the van Vleck cancelation. We now
proceed to the evaluation of the matrix elements of the
SOI and the EPC in Eq. (4) in order to calculate the spin
relaxation rate.
We divide the SOI Hamiltonian into its intrinsic and

Rahsba terms [7],

HSO = Hi +HR = �i⇧⌅zsz +�R(⇧⌅xsy � ⌅ysx), (5)

where ⌅i and si denote the Pauli matrices acting on
the pseudo-spin and real spin. We use a spin quanti-
zation axis aligned with the external B-field (see Fig. 1b)
and corresponding spinors | ⌃B↵ and | ⌥B↵ and obtain
fx ⇧ ⌦⌃B |sx|⌥B↵ = cos2 �

2 � e�2i⌅B sin2 �
2 and fy ⇧ ⌦⌃B

|sy|⌥B↵ = �i(cos2 �
2 + e�2i⌅B sin2 �

2 ). First we consider
HR and calculate its matrix elements with states |n ⌃B↵
and |n⌅ ⌥B↵. The two spin states we use are orthogonal,
i.e. ⌦⌃B | ⌥B↵ = 0 but they are not sz eigenstates. In
principle this allows both the intrinsic and Rashba SOI
to provide a relaxation channel in the admixture mech-
anism. However, due to the circular symmetry of the
dot, selection rules for j apply. In the case of HR only
dipole transitions (|j � j⌅| = 1) are allowed, whereas the
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1

2
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(Fig. 1b). The second and third terms describe the Zee-
man coupling of the electron spin to the total B-field and
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Fermi’s Golden Rule

matrix elements
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matrix element of Hi gives rise to selection rules j = j⇧

which turns out to be incompatible with the selection
rule |j � j⇧| = 1 for the EPC.

The matrix element ofHR can be written as (HR)
⇤⌅
nn0 =

2⇧⇥R

⇤
fy(�jj0+1NAB

nn0 + �jj0�1NAB
n0n ) � ifx(�jj0+1NAB

nn0 �
�jj0�1NAB

n0n )
⌅
, where NAB

nn0 =
⌦
dr r �n

A�
n0

B . The matrix

element (HR)
⇤⌅
nn0 is neither symmetric nor antisymmetric

in contrast to the case of GaAs where an antisymmetry
leads to van Vleck cancelation.

We consider two di⇤erent EPC mechanisms which cor-
respond to di⇤erent changes in the lattice induced by
phonons. The deformation potential is caused by an area
change of the unit cell, whereas the bond-length change
mechanism corresponds to a modified hopping propabil-
ity [20, 21]. Because we work in the low-energy regime,
we only consider acoustic phonons. In principle there are
six possible relaxation channels: (i) longitudinal acoustic
(LA), transversal acoustic (TA), transversal out-of-plane
(ZA) phonons, and (ii) deformation potential (g1) and
bond-length change (g2) mechanisms. In lowest order in
the atomic displacement, the EPC has the form [20, 21]

HEPC =
q�

A⌃ q,µ

�
g1a1 g2a⇥2
g2a2 g1a1

 �
eiqrb† � e�iqrb

⇥
,

(6)
with a1 = i and a2 = ie2i⌅q for LA phonons, and a2 =
e2i⌅q and a1 = 0 for TA phonons, and A the area of
the graphene sheet. The vanishing of a1 is due to the
fact that in the regime of linear atomic displacements the
coupling of the TA mode is a two-phonon process. Here,
we restrict our considerations to one-phonon processes.
For a B-field of B = 1T and a sound velocity of s =
2 ⇥ 104 m/s [22], we obtain from gµBB = �sq a phonon
wavelength of ⇤ ⇧ 300 nm which is an order of magnitude
larger than a typical QD size of 25 nm [3], thus justifying
the use of the dipole approximation for typical laboratory
fields.

For the matrix element for LA phonon coupling
via the deformation potential we find

�
HLA

EPC

⇥
nn0 =

� g1⇥⌥
A⇤sLA

q3/2Mnn0
�
�jj0+1e�i⌅q + �jj0�1ei⌅q

⇥
with

Mnn0 =
⌦
dr r2

⌃
�n
A
⇥�n0

A + �n
B
⇥�n0

B

⌥
. The dependence

on the phonon emission angle ⌥q disappears upon
summation over final states. For the TA phonons we
find that the coupling via the deformation potential is a
two-phonon process which will not be discussed here.

The bond-length change mechanism leads to similar
results for both LA and TA phonons, (HEPC)nn0 =
Diq1/2

�
�jj0+1e�2i⌅qNAB

nn0 ± �jj0�1ei2⌅qNAB
n0n

⇥
with

DLA = �i2⇧g2/
⌥
A⌃sLA and DTA = 2⇧g2/

⌥
A⌃sTA, and

where the plus (minus) sign corresponds to LA (TA).
In linear order in the atomic displacement the ZA mode
is decoupled from the other modes. The Hamiltonian
Eq. (6) cannot account for a coupling to the out-of-plane
mode.

With the matrix elements derived above, we can write

� = 1 � = 2 � = 3

j = �0.5 1.1⇥ 104 2.6⇥ 10�2 1.3⇥ 10�3

j = 1.5 1.6⇥ 104 1.2⇥ 101 9.3⇥ 10�2

TABLE I: Individual relaxation rates in units of s�1 for LA
phonons via the deformation potential at B = 1T. For higher
quantum numbers �, the rate decreases quickly.

the transition rates using Fermi’s golden rule as 1/T1 ⌅
� = 2⇧A

⌦ d2q
(2⇥)2

⇧⇧⇧(HEPC)
⇤⌅
nn

⇧⇧⇧
2
�(sq � gµBB). For all

mechanisms we find the same dependence on the ori-
entation of the B-field, f(⇥) = cos4(⇥/2) + sin4(⇥/2) =
(3+ cos(2⇥))/4. We find for the relaxation rate from the
deformation potential

�LA
g1 =

16⇧4g21⇥
2
R

⌃

(gµBB)4

s6LA

f(⇥)

⇥

⇧⇧⇧⇧⇧⇧

↵

n0 ⌃=n

Mnn0Rnn0(�jj0+1N
AB
nn0 + �jj0�1N

AB
n0n )

⇧⇧⇧⇧⇧⇧

2

, (7)

while for the bond-length change mechanism, we have

�LA,TA
g2 =

64⇧4g22⇥
2
R

⌃

(gµBB)2

s4LA,TA

f(⇥)

⇥

⇧⇧⇧⇧⇧⇧

↵

n0 ⌃=n

Rnn0
�
�jj0+1(N

AB
nn0 )2 + �jj0�1(N

AB
n0n )

2
⇥
⇧⇧⇧⇧⇧⇧

2

, (8)

with Rnn0 = (En � En0)�1. For numerical evaluation,
we assume a QD size of R = 25nm and ⇥ = 10� where
� = v/R is the average level distance. The depth of the
quantum well is also set to U0 = 10�. The Rashba SOI
constant can be adjusted by an external electric field [9]
or by using di⇤erent types of substrates. We chose a
value of ⇥R = 48µeV to calculate the relaxation times
displayed in Fig. 2. For the EPC constants we assume
g1 = 30 eV and g2 = 1.5 eV [20]. We use as sound veloci-
ties sLA = 1.95⇥ 104 m/s and sTA = 1.22⇥ 104 m/s [22].
The overlap integrals NAB

nn0 and Mnn0 are calculated nu-
merically. The sum over n⇧ runs over all states, including
the continuum. As shown in Table I, the contributions
from higher levels vanish quickly so that we only take
the first three levels into account. The relaxation rate
T1 = 1/� is plotted in Fig. 2.
Direct Spin-Phonon Coupling— In flat graphene the

acoustic phonons with perpendicular (ZA) polarization
are decoupled from the in-plane modes (LA,TA). We
extend the SOI Hamiltonian Eq. (5) for the case of
a graphene layer which is curved due to ZA phonons.
For displacements much smaller than the wavelength the
normal vector of the graphene plane can be written as
n̂(z) ⇧ ẑ+�uz(x, y) where uz(x, y) is the displacement
field representing the ZA-phonons. Rotating the spin ma-
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FIG. 2: (color online) Log-log plot of the spin relaxation time
T1 as a function of an external B-field perpendicular to the
plane (� = 0) defined by the graphene sheet. The radius of
the dot is R = 25nm, both energy gap and depth of the dot
are 260meV. The individual relaxation channels are the cou-
pling to LA in-plane phonons via deformation potential (g1,
red dotted line) and the coupling to LA and TA phonons via
bond-length change (g1, blue dashed and green dot-dashed
lines), as well as the direct coupling to the out-of-plane (ZA)
phonons (purple, long-dashed line). The black solid line rep-
resents the sum of all four processes. Inset: Dependence of
the relaxation rate on the inclination angle � of the B-field.

trices into the local frame determined by the normal vec-
tor n̂(z) we obtain in linear order in u(z) a generalized
SOI Hamiltonian HSO = Hi +HR with

Hi = H(0)
i +⇥i (�xuzsx + �yuzsy)⌃z⌥, (9)

HR = H(0)
R +⇥R (�⌃y�xuz + ⌥⌃x�yuz) sz, (10)

where H(0)
i and H(0)

R are the SOI Hamiltonians for
flat graphene given in Eq. (5). We evaluate these
expressions for transverse out-of-plane (ZA) phonons,
with a quadratic dispersion relation ⌦q = µq2 where

µ =
⌥
⇥/⇧ with ⇥ = 1.1 eV the bending rigidity and

⇧ = 7.5 · 10�7 kg/m2 the mass area density [22, 24].
The EPC Hamiltonian is then obtained by substituting
the displacement operator for the ZA phonons uz =⌥

1/A⇧⌦q

�
eiq·rb† + e�iq·rb

⇥
into Eqs. (9) and (10). For

the intrinsic SOI we obtain the matrix element (Hi)
⇤⌅
nn =

i⇥i

⌥
1/A⇧⌦q (qx⌥⌅ |sx| ⇧�+ qy⌥⌅ |sy| ⇧�) ⌥n|⌃zeiq·r|n�.

When evaluating the orbital matrix element only the
lowest order in the dipole approximation contributes.
All higher orders contain a factor ⌃ ei�q which averages
to zero when the integration over �q is carried out.

Finally, Fermi’s Golden Rule is used to find the relax-
ation rate

�ZA =
2⌅2⇥2

i

⇧µ2
f(�)

⇤⇤⇤⇤
⌃

dr r
⌅
| n

A|
2 � | n

B |
2
⇧⇤⇤⇤⇤

2

, (11)

which is independent of B. The Matrix element itself
depend only weakly on B. For the numerical evaluation

we use ⇥i = 12µeV [23] and sZA = 1.59 ⇤ 103 m/s [22].
The same calculation for the Rashba SOI yields vanishing
matrix elements and therefore no additional contribution.
In some cases, boundary conditions may lead to a linear
dispersion relation for the ZA-phonons. We find that in
this case the contribution due to ZA-phonons is negligible
compared to the in-plane phonon contributions.

Conclusion—We have calculated the electron spin re-
laxation time T1 in a gate-tunable graphene QD aris-
ing from the combination of SOI and EPC. We have re-
stricted ourselves to the zero-temperature case, i.e. pure
phonon emission which is realistic at 0.1T and 100mK
and higher temperatures for larger fields. We have taken
into account two mechanisms: Admixture mechanism
and direct spin-phonon coupling. Due to selection rules
in a circular QD, the admixture mechanism only leads
to spin relaxation in combination with the Rashba SOI.
The deformation potential EPC with LA phonons leads
to a spin relaxation rate scaling as B4 (Fig. 2), while the
bond length change EPC with both LA and TA phonons
results in B2 dependencies. The relatively low powers
compared to GaAs QDs can be traced back to the ab-
sence of the van Vleck cancelation, in combination with
the 2D phonon density of states. The direct coupling of
electronic spins to ZA phonons only leads to spin relax-
ation in combination with the intrinsic SOI whose rate
does not depend on the applied B-field (in lowest order)
and thus leads to a B-field dependence at low fields which
is markedly di⇤erent from that in GaAs QD.
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E↵ective time-reversal symmetry breaking in the spin relaxation

in a graphene quantum dot

P. R. Struck and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: March 10, 2010)

We study the relaxation of a single electron spin in a circular gate-tunbable quantum dot in gapped
graphene. Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit
coupling leads to a relaxation time T1 which is independent of the B-field at low fields. We also
find that Rashba spin-orbit induced admixture of opposite spin states in combination with the
emission of in-plane phonons provides various further relaxation channels via deformation potential
and bond-length change. In the absence of valley mixing, spin relaxation takes place within each
valley separately and thus time-reversal symmetry is e�ectively broken, thus inhibiting the van
Vleck cancellation at B = 0 known from GaAs quantum dots. Both the absence of the van Vleck
cancellation as well as the out-of-plane phonons lead to a behavior of the spin relaxation rate at low
magnetic fields which is markedly di�erent from the known results for GaAs. For low B-fields, we
find that the rate is constant in B and then crosses over to � B2 or � B4 at higher fields.

Introduction—The electronic spin degree of freedom is
under intense investigation as a possible implementation
of a qubit [1]. While the feasibility of all required oper-
ations has been experimentally demonstrated for GaAs
quantum dots (QDs) [2], the decoherence caused by the
surrounding nuclear spins in the host material remains
challenging. Regarding the use of the electron spin as
a qubit in quantum computation devices, spin decoher-
ence and relaxation are limiting factors. In general, a
necessary condition for a working qubit is that the time
required to perform an operation is significantly shorter
than the decoherence and relaxation times. Motivated by
this, the implementation of qubits in QDs in graphene
has been proposed [3]. Graphene consisting of natural
carbon comprises 99% of the carbon isotope 12C which
has no nuclear spin, hence the hyperfine interaction is ex-
pected to play only a minor role. Furthermore, spin-orbit
interaction (SOI) in graphene is expected to be relatively
weak and therefore long decoherence times are expected.
However, for spins localized in QDs in carbon nanotubes,
SOI has turned out to be unexpectedly strong [4, 5] due
to curvature-induced e�ects. It has also been shown the-
oretically that van Hove singluarities in the phonon den-
sity of states in one dimension can lead to strong varia-
tions in the spin relaxation rate [6]. It is therefore impor-
tant to investigate the spin relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, is known [7], and there are several works
on its strength depending on various parameters such as
curvature or electric field [8, 9]. There have also been
experimental [10] and theoretical [11] studies on spin re-
laxation of extended states in graphene.

In this paper we determine theoretically the spin relax-
ation time T1 for an electron confined to a circular QD in
gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs
can be formed with electrostatic confinement in either
single-layer graphene with a substrate-induced band gap
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FIG. 1: (Color online) a) The two states of a spin qubit
(blue solid arrows) reside in the same valley, as opposed to a
Kramers qubit (empty red arrows), formed by a Kramers pair
related by time-reversal symmetry (T ). While in single-valley
semiconductors such as GaAs these two cases are identical, in
graphene the Kramers qubit involves states in di�erent valleys
(K and K�). b) The B-field orientation is given with spherical
coordinates � and ⇥B relative to the normal to the graphene
plane. The propagation direction of the emitted phonon (red
wavy arrow) is described by the angle ⇥q.

or bilayer graphene with an electrically controlled gap
[12]. At B = 0, the states in these QDs have a two-
fold valley degeneracy which can be lifted in a perpen-
dicular magnetic field. Being a centro-symmetric crystal,
phonons in graphene do not couple piezo-electrically, thus
leaving three possible electron-phonon coupling (EPC)
mechanisms: deformation potential, bond length change,
and direct spin-phonon coupling. From these EPC mech-
anisms, we derive two spin relaxation mechanisms. One
such mechanism involves the admixture of states of oppo-
site spin and excited orbitals into the dot eigenstates due
to SOI, in combination with energy relaxation via phonon
emission [13, 14]. It turns out that to lowest order in the
EPC, this only involves in-plane phonons coupled via the
deformation potential and bond-length change. The sec-
ond mechanism directly couples the spin to out-of-plane
phonons via curvature induced SOI. For comparison, in a
parabolic GaAs QD, a strong dependence � B5 has been
predicted for both mechanisms [13]. Relaxation times in
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SOI has turned out to be unexpectedly strong [4, 5] due
to curvature-induced e�ects. It has also been shown the-
oretically that van Hove singluarities in the phonon den-
sity of states in one dimension can lead to strong varia-
tions in the spin relaxation rate [6]. It is therefore impor-
tant to investigate the spin relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, is known [7], and there are several works
on its strength depending on various parameters such as
curvature or electric field [8, 9]. There have also been
experimental [10] and theoretical [11] studies on spin re-
laxation of extended states in graphene.

In this paper we determine theoretically the spin relax-
ation time T1 for an electron confined to a circular QD in
gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs
can be formed with electrostatic confinement in either
single-layer graphene with a substrate-induced band gap
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plane. The propagation direction of the emitted phonon (red
wavy arrow) is described by the angle ⇥q.
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[12]. At B = 0, the states in these QDs have a two-
fold valley degeneracy which can be lifted in a perpen-
dicular magnetic field. Being a centro-symmetric crystal,
phonons in graphene do not couple piezo-electrically, thus
leaving three possible electron-phonon coupling (EPC)
mechanisms: deformation potential, bond length change,
and direct spin-phonon coupling. From these EPC mech-
anisms, we derive two spin relaxation mechanisms. One
such mechanism involves the admixture of states of oppo-
site spin and excited orbitals into the dot eigenstates due
to SOI, in combination with energy relaxation via phonon
emission [13, 14]. It turns out that to lowest order in the
EPC, this only involves in-plane phonons coupled via the
deformation potential and bond-length change. The sec-
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FIG. 2: (color online) Log-log plot of the spin relaxation time
T1 as a function of an external B-field perpendicular to the
plane (� = 0) defined by the graphene sheet. The radius of
the dot is R = 25nm, both energy gap and depth of the dot
are 260meV. The individual relaxation channels are the cou-
pling to LA in-plane phonons via deformation potential (g1,
red dotted line) and the coupling to LA and TA phonons via
bond-length change (g1, blue dashed and green dot-dashed
lines), as well as the direct coupling to the out-of-plane (ZA)
phonons (purple, long-dashed line). The black solid line rep-
resents the sum of all four processes. Inset: Dependence of
the relaxation rate on the inclination angle � of the B-field.

trices into the local frame determined by the normal vec-
tor n̂(z) we obtain in linear order in u(z) a generalized
SOI Hamiltonian HSO = Hi +HR with

Hi = H(0)
i +⇥i (�xuzsx + �yuzsy)⌃z⌥, (9)

HR = H(0)
R +⇥R (�⌃y�xuz + ⌥⌃x�yuz) sz, (10)

where H(0)
i and H(0)

R are the SOI Hamiltonians for
flat graphene given in Eq. (5). We evaluate these
expressions for transverse out-of-plane (ZA) phonons,
with a quadratic dispersion relation ⌦q = µq2 where

µ =
⌥
⇥/⇧ with ⇥ = 1.1 eV the bending rigidity and

⇧ = 7.5 · 10�7 kg/m2 the mass area density [22, 24].
The EPC Hamiltonian is then obtained by substituting
the displacement operator for the ZA phonons uz =⌥

1/A⇧⌦q

�
eiq·rb† + e�iq·rb

⇥
into Eqs. (9) and (10). For

the intrinsic SOI we obtain the matrix element (Hi)
⇤⌅
nn =

i⇥i

⌥
1/A⇧⌦q (qx⌥⌅ |sx| ⇧�+ qy⌥⌅ |sy| ⇧�) ⌥n|⌃zeiq·r|n�.

When evaluating the orbital matrix element only the
lowest order in the dipole approximation contributes.
All higher orders contain a factor ⌃ ei�q which averages
to zero when the integration over �q is carried out.

Finally, Fermi’s Golden Rule is used to find the relax-
ation rate

�ZA =
2⌅2⇥2

i

⇧µ2
f(�)

⇤⇤⇤⇤
⌃

dr r
⌅
| n

A|
2 � | n

B |
2
⇧⇤⇤⇤⇤

2

, (11)

which is independent of B. The Matrix element itself
depend only weakly on B. For the numerical evaluation

we use ⇥i = 12µeV [23] and sZA = 1.59 ⇤ 103 m/s [22].
The same calculation for the Rashba SOI yields vanishing
matrix elements and therefore no additional contribution.
In some cases, boundary conditions may lead to a linear
dispersion relation for the ZA-phonons. We find that in
this case the contribution due to ZA-phonons is negligible
compared to the in-plane phonon contributions.

Conclusion—We have calculated the electron spin re-
laxation time T1 in a gate-tunable graphene QD aris-
ing from the combination of SOI and EPC. We have re-
stricted ourselves to the zero-temperature case, i.e. pure
phonon emission which is realistic at 0.1T and 100mK
and higher temperatures for larger fields. We have taken
into account two mechanisms: Admixture mechanism
and direct spin-phonon coupling. Due to selection rules
in a circular QD, the admixture mechanism only leads
to spin relaxation in combination with the Rashba SOI.
The deformation potential EPC with LA phonons leads
to a spin relaxation rate scaling as B4 (Fig. 2), while the
bond length change EPC with both LA and TA phonons
results in B2 dependencies. The relatively low powers
compared to GaAs QDs can be traced back to the ab-
sence of the van Vleck cancelation, in combination with
the 2D phonon density of states. The direct coupling of
electronic spins to ZA phonons only leads to spin relax-
ation in combination with the intrinsic SOI whose rate
does not depend on the applied B-field (in lowest order)
and thus leads to a B-field dependence at low fields which
is markedly di⇤erent from that in GaAs QD.
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• spin relaxation T1 in circular graphene QD

• no van Vleck cancellation

• B-independent T1 at low B for quadratic dispersion of ZA mode,  
  crossover to B2 or B4

!"j− j!"=1# are allowed, whereas the matrix element of Hi
gives rise to selection rules j= j! which turns out to be in-
compatible with the selection rule "j− j!"=1 for the EPC.

The matrix element of HR can be written as

!HR#nn!
↑↓ = 2!"R$fy!# j j!+1Nnn!

AB + # j j!−1Nn!n
AB #

− ifx!# j j!+1Nnn!
AB − # j j!−1Nn!n

AB #% , !8#

where Nnn!
AB =&drr$A

n$B
n!. The matrix element !HR#nn!

↑↓ is nei-
ther symmetric nor antisymmetric in contrast to the case of
GaAs where an antisymmetry leads to Van Vleck cancella-
tion.

We consider two different EPC mechanisms which corre-
spond to different changes in the lattice induced by phonons.
The deformation potential is caused by an area change in the
unit cell, whereas the bond-length change mechanism corre-
sponds to a modified hopping probability.23,24 Because we
work in the low-energy regime, we only consider acoustic
phonons. In principle, there are six possible relaxation chan-
nels: !i# longitudinal-acoustic !LA#, transversal-acoustic
!TA#, transversal out-of-plane !ZA# phonons, and !ii# defor-
mation potential !g1# and bond-length change !g2# mecha-
nisms. In lowest order in the atomic displacement, the EPC
has the form23,24

HEPC =
q

'A%&q,'
(g1a1 g2a2

!

g2a2 g1a1
)!eiqrb† − e−iqrb# !9#

with a1= i and a2= ie2i(q for LA phonons, and a2=e2i(q and
a1=0 for TA phonons, and A the area of the graphene sheet.
The vanishing of a1 is due to the fact that in the regime of
linear atomic displacements the coupling of the TA mode is a
two-phonon process. Here, we restrict our considerations to
one-phonon processes. For a B field of B=1 T and a sound
velocity of s=2)104 m /s,25 we obtain from g'BB=*sq a
phonon wavelength of +*300 nm which is an order of
magnitude larger than a typical QD size of 25 nm,3 thus
justifying the use of the dipole approximation for typical
laboratory fields.

For the matrix element for LA phonon coupling via the
deformation potential we find

!HEPC
LA #nn! = −

g1!q3/2Mnn!
'A%sLA

!# j j!+1e−i(q + # j j!−1ei(q# !10#

with Mnn!=&drr2!$A
n!$A

n!+$B
n!$B

n!#. The dependence on the
phonon-emission angle (q disappears upon summation over
final states. For the TA phonons we find that the coupling via
the deformation potential is a two-phonon process which will
not be discussed here.

The bond-length change mechanism leads to similar re-
sults for both LA and TA phonons,

!HEPC#nn! = Diq
1/2!# j j!+1e−2i(qNnn!

AB , # j j!−1ei2(qNn!n
AB #

!11#

with DLA=−i2!g2 /'A%sLA and DTA=2!g2 /'A%sTA, and
where the plus !minus# sign corresponds to LA !TA#. In lin-
ear order in the atomic displacement the ZA mode is decou-

pled from the other modes. The Hamiltonian !9# cannot ac-
count for a coupling to the out-of-plane mode.

With the matrix elements derived above, we can write the
transition rates using Fermi’s golden rule as

1
T1

+ - = 2!A, d2q

!2!#2 "!HEPC#nn
↑↓"2#!sq − g'BB# . !12#

For all mechanisms we find the same dependence on the
orientation of the B field,

f!.# = cos4!./2# + sin4!./2# = $3 + cos!2.#%/4. !13#

We find for the relaxation rate from the deformation poten-
tial,

-g1

LA =
16!4g1

2"R
2

%

!g'BB#4

sLA
6 f!.#

)- .
n!!n

Mnn!Rnn!!# j j!+1Nnn!
AB + # j j!−1Nn!n

AB #-2 !14#

while for the bond-length change mechanism, we have

-g2

LA,TA =
64!4g2

2"R
2

%

!g'BB#2

sLA,TA
4 f!.#

)- .
n!!n

Rnn!$# j j!+1!Nnn!
AB #2 + # j j!−1!Nn!n

AB #2%-2

!15#

with Rnn!= !En−En!#
−1. For numerical evaluation, we assume

a QD size of R=25 nm and "=10#, where #=v /R is the
average level distance. The depth of the quantum well is also

LA, g1; !B4

LA, g2

!B2

TA, g2; !B2

ZA'; !B2

ZA"const.

linear

quadratic
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FIG. 2. !Color online# Log-log plot of the spin-relaxation time
T1 as a function of an external B field perpendicular to the plane
!.=0# defined by the graphene sheet. The radius of the dot is R
=25 nm and "=U0=260 meV. The individual relaxation channels
are the coupling to LA in-plane phonons via deformation potential
!g1# and the coupling to LA and TA phonons via bond-length
change !g2#. Also shown are the direct coupling to the out-of-plane
phonons with quadratic !ZA# and linear !ZA!# dispersion. The red
dotted, blue dashed, and solid black lines represent the sum of all
four processes. For the red !blue# curve, a quadratic !linear# disper-
sion relation is assumed, while for the black curve a crossover from
linear to quadratic is assumed !see text#. Inset: dependence of the
relaxation rate on the inclination angle . of the B field.

EFFECTIVE TIME-REVERSAL SYMMETRY BREAKING IN… PHYSICAL REVIEW B 82, 125401 !2010#

125401-3

Spin relaxation in graphene QDs
Struck & GB, PRB (2010)

U0 = � = 260meV

R = 25nm

Tuesday, January 17, 12
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• quantum dots in graphene

• spin-valley hyperfine interaction in graphene

• spin relaxation of localized electrons

• spin relaxation of mobile electrons
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Spin transport relaxation mechanisms

D’yakonov-Perel’ Elliot-Yafet

injected at x = 0. Note that here the spin diffusion constant is equal to the ordinary electron
diffusion constant D, since the spin is simply carried by band electrons.

If we measure the spin accumulation at a distance L we need to integrate over all possible
transit times t, thereby accounting for all the possible routes an electron might take to travel
from x = 0 to x = L (c.t. [12], [36]):

Sy(L) µ
•
Z

0

dt
1p

4pDst
e�

y2
4Dst e�

t
tS cos wLt . (5.9)

At zero field, i.e. wL = 0 the above integral is solved by a simple exponential

Sy(L, wL = 0) µ
1
2

r

tS

DS
e
� Lp

DStS =
1
2

lS

DS
e�

L
lS , (5.10)

where lS ⌘ p
DStS defines the spin diffusion length, which gives the length scale for the

spread of the injected spin accumulation. In general this solution would already suffice to
experimentally determine spin relaxation, if one was able to observe the spin polarization at a
varying distance L. Usually (as in the case of a fixed F-N junction) this is however not possible.
Instead one makes use of the implicit dependence of the observed spin polarization (5.9) on B0

by varying the magnetic field amplitude with constant L. Figure 5.3 shows the Hanle signal
measured at a distance of the spin diffusion length, L = lS, as well as the experimental setup
used in the spin relaxation measurements discussed in section 6.

5.3. Elliott-Yafet spin relaxation

The Elliot-Yafet mechanism essentially describes a spin relaxation through finite spin-flip prob-
abilities during scattering events. The basic principle is very simple: Say the spin of an electron
moving through the solid flips with a probability a, whenever the electron is scattered. The
average number of scattering events or collisions Ncol, necessary for a spin to lose its initial
orientation, is then given by aNcol ⇡ 1. The average time in between two such collisions is
given by the momentum relaxation time tp. Thus we can estimate the spin relaxation time by
tS ⌘ Ncoltp = 1

a

tp. More generally the rate of spin relaxation, since the spin flips at the event
of scattering, is proportional to the momentum relaxation time (c.t [12]):

1
tS

µ
1
tp

or tS µ tp (5.11)

The above is known as the Elliot-Yafet relation, which can be viewed as the signature of spin
relaxation caused by the Elliot-Yafet mechanism. The corresponding proportionality constant,
that is the spin-flip probability for a single scattering event, is usually calculated using the Born
approximation and Fermi’s golden rule.

A subtlety that was realized by Elliot (1954), is that there are in fact two distinctly different
origins of such finite spin-flip probability. Namely, it can be caused either by the spin-orbit
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the momentum relaxation time. The smaller the average scattering time the smaller the typ-
ical random precession angle and thus the less efficient the overall dephasing. According to
our rough calculation (5.20) the momentum relaxation time is also proportional to the square
amplitude of the effective spin-orbit field, which as we will see in the following section can
already give a good estimate.

Figure 5.4 shows a comparison of the basic concepts of the D’yakonov-Perel’- and the two
previously discussed types of Elliott-Yafet-type spin relaxation processes. If present the D’ya-
konov-Perel’ mechanism generally gives the more efficient relaxation and thus ultimately the
one which restricts the spin life time in the limit of a clean sample. In the following sections
I will focus on calculating spin relaxation rates of D’yakonov-Perel’-type spin relaxation in
both single- and bilayer graphene. The theoretical rate equations used for these calculations is
introduced in the next section.

Figure 5.4.: Basic concepts of spin relaxation for mobile electrons: According to the D’yakonov-
Perel’ mechanism the spin relaxes due to a spin precession about an effective spin-
orbit field coupled to a scattering induced motional narrowing. For the Elliott-
Yafet mechanism on the other hand the spin relaxes during scattering events a)
due to spin flip scattering off an spin-orbit coupling potential or b) due to spin-
orbit interaction in the host lattice, which causes an overlap of opposite spin states
in the wave function resulting in spin flips for ordinary scattering.

5.5. Kinetic spin Bloch equation

In section 4.1 we derived the Boltzmann equation, that is the kinetic equation for the charge
carrier distribution function in the semiclassical limit. However so far we have not included
the spin of these charge carriers. In this section I will introduce a kinetic equation, that can
be seen as a generalization of the Boltzmann equation including spin degree of freedom: the
so-called kinetic spin Bloch equation (KSBE) (see for example [12]). Again, we will rely on the
semiclassical approximation, so all the conditions and restrictions discussed in section 4 need
to be taken into account.
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so-called kinetic spin Bloch equation (KSBE) (see for example [12]). Again, we will rely on the
semiclassical approximation, so all the conditions and restrictions discussed in section 4 need
to be taken into account.
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Summary of experimental observations

coherence time ~150 ps
impurity limited
Elliot-Yafet (EY) ?

N. Tombros et al., PRL 2008 anisotropy

T.-J. Yang et al., PRL 2011 bilayer up to 2 ns
D’yakonov-Perel’ (DP)

W. Han and R. K. Kawakami,
PRL 2011

single layer                     ~1ns

bilayer                            up to 6 ns
          D’yakonov-Perel’ (DP)

D’yakonov-Perel’ Elliot-Yafet

injected at x = 0. Note that here the spin diffusion constant is equal to the ordinary electron
diffusion constant D, since the spin is simply carried by band electrons.

If we measure the spin accumulation at a distance L we need to integrate over all possible
transit times t, thereby accounting for all the possible routes an electron might take to travel
from x = 0 to x = L (c.t. [12], [36]):

Sy(L) µ
•
Z

0

dt
1p

4pDst
e�

y2
4Dst e�

t
tS cos wLt . (5.9)

At zero field, i.e. wL = 0 the above integral is solved by a simple exponential

Sy(L, wL = 0) µ
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r

tS

DS
e
� Lp

DStS =
1
2

lS

DS
e�

L
lS , (5.10)

where lS ⌘ p
DStS defines the spin diffusion length, which gives the length scale for the

spread of the injected spin accumulation. In general this solution would already suffice to
experimentally determine spin relaxation, if one was able to observe the spin polarization at a
varying distance L. Usually (as in the case of a fixed F-N junction) this is however not possible.
Instead one makes use of the implicit dependence of the observed spin polarization (5.9) on B0

by varying the magnetic field amplitude with constant L. Figure 5.3 shows the Hanle signal
measured at a distance of the spin diffusion length, L = lS, as well as the experimental setup
used in the spin relaxation measurements discussed in section 6.

5.3. Elliott-Yafet spin relaxation

The Elliot-Yafet mechanism essentially describes a spin relaxation through finite spin-flip prob-
abilities during scattering events. The basic principle is very simple: Say the spin of an electron
moving through the solid flips with a probability a, whenever the electron is scattered. The
average number of scattering events or collisions Ncol, necessary for a spin to lose its initial
orientation, is then given by aNcol ⇡ 1. The average time in between two such collisions is
given by the momentum relaxation time tp. Thus we can estimate the spin relaxation time by
tS ⌘ Ncoltp = 1

a

tp. More generally the rate of spin relaxation, since the spin flips at the event
of scattering, is proportional to the momentum relaxation time (c.t [12]):

1
tS

µ
1
tp

or tS µ tp (5.11)

The above is known as the Elliot-Yafet relation, which can be viewed as the signature of spin
relaxation caused by the Elliot-Yafet mechanism. The corresponding proportionality constant,
that is the spin-flip probability for a single scattering event, is usually calculated using the Born
approximation and Fermi’s golden rule.

A subtlety that was realized by Elliot (1954), is that there are in fact two distinctly different
origins of such finite spin-flip probability. Namely, it can be caused either by the spin-orbit
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the momentum relaxation time. The smaller the average scattering time the smaller the typ-
ical random precession angle and thus the less efficient the overall dephasing. According to
our rough calculation (5.20) the momentum relaxation time is also proportional to the square
amplitude of the effective spin-orbit field, which as we will see in the following section can
already give a good estimate.

Figure 5.4 shows a comparison of the basic concepts of the D’yakonov-Perel’- and the two
previously discussed types of Elliott-Yafet-type spin relaxation processes. If present the D’ya-
konov-Perel’ mechanism generally gives the more efficient relaxation and thus ultimately the
one which restricts the spin life time in the limit of a clean sample. In the following sections
I will focus on calculating spin relaxation rates of D’yakonov-Perel’-type spin relaxation in
both single- and bilayer graphene. The theoretical rate equations used for these calculations is
introduced in the next section.

Figure 5.4.: Basic concepts of spin relaxation for mobile electrons: According to the D’yakonov-
Perel’ mechanism the spin relaxes due to a spin precession about an effective spin-
orbit field coupled to a scattering induced motional narrowing. For the Elliott-
Yafet mechanism on the other hand the spin relaxes during scattering events a)
due to spin flip scattering off an spin-orbit coupling potential or b) due to spin-
orbit interaction in the host lattice, which causes an overlap of opposite spin states
in the wave function resulting in spin flips for ordinary scattering.

5.5. Kinetic spin Bloch equation

In section 4.1 we derived the Boltzmann equation, that is the kinetic equation for the charge
carrier distribution function in the semiclassical limit. However so far we have not included
the spin of these charge carriers. In this section I will introduce a kinetic equation, that can
be seen as a generalization of the Boltzmann equation including spin degree of freedom: the
so-called kinetic spin Bloch equation (KSBE) (see for example [12]). Again, we will rely on the
semiclassical approximation, so all the conditions and restrictions discussed in section 4 need
to be taken into account.
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where the obtained in- and out-of-plane spin relaxation rates and Larmor frequency shift are
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Here the electron k-states are initially isotropically distributed about the Fermi surface with
a spin pointing in the direction Sk(0)~ex + S?(0)~ez. Note that it is the out-of-plane spin polar-
ization which is parallel to the magnetic field. In case of zero magnetic field, i.e. wC, wL ! 0,
we recover the results of section 8.1. A notable deviation is however achieved if the cyclotron
frequency and the scattering rate are comparable.6 Moreover, the spin relaxation time is a non-
monotonic function of the momentum relaxation time. Instead, it changes from the typical
inverse D’yakonov-Perel’ relation 1/tS µ tp to the linear relation tS µ tp usually obtained
for Elliot-Yafet type spin relaxation in the limit (wC � wL)2

t

2
p � 1. Figure 8.4 shows this fea-

ture of the in- and out-of-plane spin relaxation times. The Larmor frequency shift DwL in
equation (8.90) is quadratic in wRtp and thus always relatively small in the strong scattering
limit. It is however largest for small magnetic fields, especially if one considers the relative
change DwL/wL. Though very small in the large magnetic field limit, there is a very interest-
ing feature. Namely in this limit the frequency shift becomes independent of the momentum
scattering time:

DwL
(wC�wL)tp�1�������! �1

2
w

2
R

wC � wL
. (8.91)

This should allow one to directly determine the Rashba-splitting experimentally, which could
than again be used to check the validity of the expressions for the spin-relaxation times given
in equation (8.90). In the same limit the spin decoherence time becomes proportional to the
square amplitude of the magnetic field:

1
T2

(wC�wL)tp�1�������! w

2
R

2(wC � wL)2
tp

µ
1
B2 (8.92)

Validity of the steady state solutions One way we can check the validity of the approxi-
mations made in the deduction of the results given in equation (8.89) and (8.90), that is the
omission of the fluctuation term and the assumption of a steady state for the anisotropic parts
of the spin distribution function, is to again compare them with numerical data obtained from
the numerical model from section 7.1. Figure 8.5 shows such a comparison for a wide range
of external magnetic fields and both in- and out-of-plane spin relaxation. The plots clearly

6As mentioned previously the Larmor frequency in graphene is much smaller than the cyclotron frequency.
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B [mT] 1 10 100

wR [s�1] 7.6 ⇥ 1010 7.6 ⇥ 1010 7.6 ⇥ 1010

wC [s�1] 1.0 ⇥ 1010 1.0 ⇥ 1011 1.0 ⇥ 1012

wL [s�1] 1.8 ⇥ 108 1.8 ⇥ 109 1.8 ⇥ 1010

D [s�1] 7.7 ⇥ 1010 1.2 ⇥ 1011 9.9 ⇥ 1011

Table 8.2.: Comparision of the Rashba frequency wR = 2lR
h̄ , the cyclotron frequency wC =

ev2
F

EF
B

and the Larmor frequency wL = 2 µB
h̄ B as function of the external field B using lR =

25µeV and a Fermi energy EF = 0.1 eV. Also shown is the derived frequency D ⌘
p

(wC � wL)2 + w

2
R.

The first row of figure 8.3 shows the evolution of a spin starting with ~S0 ⌘ (1, 0, 0)T. The
spin is initially aligned with the graphene layer but orthogonal to the effective spin-orbit field.
The corresponding trajectory described by (8.46) simplifies to

Sx(t) =
(D � w�) cos [(D + wC) t] + (D + w�) cos [(D � wC) t]

2D
,

Sy(t) =
(D � w�) sin [(D + wC) t]� (D + w�) sin [(D � wC) t]

2D
,

Sz(t) = �wR sin Dt
D

. (8.47)

In the case of no magnetic field (not shown in the figure), equation (8.47) equals a precession
of the spin about the fixed spin orbit field in y-direction: Sx = cos wRt, Sy = 0, Sz = � sin wRt.
If the field is finite but small, as in the case of B = 1mT the spin motion is still dominated
by the precession about the spin orbit field. But the finite cyclotron frequency leads to a slow
rotation of the direction of the spin orbit field. The precession of spin follows this rotation and
the trajectory is thus no longer confined to the x-z-plane. The out-of-plane component of the
effective field ~w(t) due to the external magnetic field is negligible as wL is almost three orders
of magnitude smaller than wR (see table 8.2).

For a small field and spin starting in z-direction, i.e. ~S0 ⌘ (0, 0, 1)T as in the first plot of
the second row in figure 8.3 the trajectory is similar. Again the spin is initially orthogonal
to the spin-orbit field and precesses about a slowly rotating spin-orbit field. In the case of
~S0 ⌘ (0, 1, 0)T as shown in the first plot of the last row the trajectory looks different. Spin and
spin-orbit field are initially parallel, so at the t = 0 there is no torque on the spin. Due to the
orbital motion of the electron the effective spin-orbit field starts to rotate and creates a finite
torque on the spin leading to a corresponding precession. One can think of this as in the case
of a fixed point on the edge of a rolling wheel. The spin would refer to the fixed point and the
axis of the wheel to the direction of the spin orbit field, which moves as the wheel rolls. The
analogy is however not perfect, as the distance between spin and field, referring to the radius
of the wheel, does not remain constant over time.

For intermediate fields, such as B = 10 mT, where the cyclotron and the Rashba frequency
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Figure 8.4.: In- (red curve) and out-of-plane (blue curve) spin relaxation times as function of
the momentum scattering time tp in the presence of out-of-plane magnetic field
B = 400 mT. The relation between tS and tp crosses over form inverse to linear
around a critical value t

⇤
p = 1/(wC � wL) = 2.5 · 10�13s.

B[mT] tS,k[ns] best fit tS,?[ns] best fit wL[109 1
s ] DwL[109 1

s ] best fit

0 0.346 0.348 0.173 0.176 0 0 0.
50 0.430 0.432 0.215 0.215 8.80 -1.14 -1.13
100 0.681 0.673 0.340 0.344 17.6 -1.44 -1.42
200 1.68 1.66 0.818 0.831 35.2 -1.17 -1.16

Table 8.3.: In- and out-of-plane spin relaxation times, tS,k and tS,? respectively, as well as the
Larmor frequency wL and its shift DwL for different external magnetic fields ~B = B~ez.
Shown are the steady state values (8.90) as well as the numerical best fits to the data
points in figure 8.5. As expected, we find tS,k = 2tS,?

demonstrate a good agreement between the to independent approaches. This is further sup-
ported by table 8.3, where the values for spin relaxation times and Larmor frequency shifts are
compared with their best fit values obtained from the numerical data. Although there are a
few small deviations, these do not seem to be systematic and might even be associated with
statistical errors in the numerics.
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⌧S,k
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8. D’yakonov-Perel’-type spin relaxation in

single-layer graphene

8.1. Spin relaxation in single-layer with Rashba-SOI

In section 5.5 we derived a kinetic equation capable of describing D’yakonov-Perel’-type spin
relaxation in the semiclassical approximation, the so called kinetic spin Bloch equation (5.35).
In this section we want to apply this result to calculate a first estimation of the spin relaxation
induced by the Rashba effective spin-orbit field.

Assumptions I therefore consider the simplest possible case, where there are no external
forces present (~F~k = 0) and gradients in the spin distribution can also be neglected (∂~s~k/∂~r = 0).
Furthermore I assume to be sufficiently far away from the Dirac point, so spin-orbit interaction
may be approximated by the previously found effective spin-orbit field (EF � lI , lR) and we
consider electrons at the Fermi surface (EF > kBT). Additionally I will only consider elastic
and symmetric scattering, as it is typically found from using Fermi’s golden rule. In other
words the scattering rates are of the form W~k,~k0 = W~k0 ,~k = W(f � f

0)2ph̄vFd(~E~k � E~k0), where
f

(0) = arctan(k(
0)

y /k(
0)

x ). Within the range of linearity (1 eV > EF) the dispersion relation is also
symmetric, which implies |~k| = |~k0|. So the collision integral only needs to be taken over a
circle of radius |~k| ⇡ kF. As we will see the calculation is independent of the specific value of
|~k|. Under the above assumptions, the kinetic spin Bloch equation (5.35) simplifies to

∂~s~k
∂t

� ~W(~k)⇥~s~k = �
2p

Z

0

df

0

2p

W(f � f

0) (~s~k �~s~k0) , (8.1)

where the effective spin-orbit field is given by equation (3.13):

~W(~k) = m
2lR

h̄
|{z}

wR

0

B

@

� sin(f)
cos(f)

0

1

C

A

, (8.2)

with m = 1 for electrons (EF > 0) and m = �1 for holes (EF < 0).

In the following I will present an approximate solution of equation (8.1) valid in the strong
scattering limit wRtp ⌧ 1, which is based on the solution given in [12] - here in the context of
conventional semiconductors.
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kinetic spin Bloch equation:

longitudinal spin relaxation (decoherence):
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such, that they are eigenstates of sz. As previously, the band index m denotes conduction
(electrons, m = 1) and valance band states (holes, m = �1) and t denotes the valley (t = 1
for K and t = �1 for K’). After rotation into the Basis {y

0,"
m,t , y

0,#
m,t} the full Hamiltonian (3.7a)
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where # ⌘ h̄vFk and apart from the shift by �lI , Hee
SO, Hhh

SO and Heh
SO are the electron, hole and

electron-hole spin-orbit interactions. Note that Hee
SO = �Hhh

SO are independent of the valley,
while all three Hamiltonians are first order in the spin-orbit coupling. Since electrons and
hole are separated by an energy difference of 2#, we can use perturbation theory to argue that
the lowest order correction in the spin orbit interaction due to the electron-hole coupling Heh

SO

for both electrons and holes is of order l

2
I

#

, l
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R
#

or lI lR
#

(see section 3.1.2). For sufficiently large
Fermi energies (# ⌧ lI , lR) I will thus neglect Heh

SO. In this approximation the Hamiltonian Heh
t

becomes 2x2-block-diagonal and independent of the valley index t. Using the band index m
to distinguish electrons and holes the two blocks are given by
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From a simple expansion in Pauli matrices we obtain the effective spin-orbit field that we were
looking for:
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A

, (3.13)

where I reintroduced the sub label to emphasize its~k-dependence. This agrees with the result
previously found in [8]. Similar to the Rashba spin-orbit field in semiconductor heterostruc-
tures ~WR,SC = 2aR

h̄ (�ky, kx, 0)T (see for example [12]), the Bychkov-Rashba spin-orbit interaction
in graphene leads to an effective in plane rotating magnetic field. The two corresponding spin-
orbit-split bands refer to electrons (holes) with spins parallel or antiparallel to this field. Unlike
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DP spin relaxation in BLG

B2. The corresponding tight-binding Hamiltonian is

Ht.b. =� g0 Â
<i,j>
µ,s
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a†
µ,i,sbµ,j,s + H.c.
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� g1 Â
j,s

⇣
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2,j,sb1,j,s + H.c.

⌘

� g3 Â
j,s

⇣

a†
1,j,sb2,j,s + H.c.

⌘

, (2.37)

where i, j denote the lattice site, µ the layer and s the electron spin.

Hamiltonian near K/K0 As in the case of single-layer graphene, Ht.b. can be expanded in
momenta close to K and K0 points of the Brilloin zone in the continuum limit to obtain a 4x4
effective Hamiltonian:
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Here k and f are the absolute value and the angle (to the direction G ! K, see figure 2.1) of the
wave vector relative to K or K’. The respective valley is denoted by t = 1 for K and t = �1 for
K0. vF = 3

2 ag0/h̄ = 8.0⇥ 105 m/s [21] is the Fermi velocity. g3 introduces an additional velocity
v3 = 3

2 ag3/h̄ = 5.9 ⇥ 104 m/s. U denotes an additional interlayer voltage which corresponds
to the shift in the electrochemical potential between the two layers. In an experimental setup
such a shift can be either due to an explicitly applied gate voltage or simply due to an electronic
coupling to the underling substrate. This not only introduces a gap in the energy spectrum (see
figure 2.4), but it also breaks inversion symmetry, which will be important when discussing the
spin-orbit interaction.

Band structure The Hamiltonian (2.38) can be diagonalized analytically. There are four
bands: two low energy bands with energies E(k = 0) = ±U/2 and two split-off-bands origi-
nating from the strong hybridisation of A2 and B1 with energies E(k = 0) = ±pg

2
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The low energy bands are given by
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(2.39)

where p ⌘ h̄k. Figure 2.4 shows the band structure given by equation (2.39). For large mo-
menta the dispersion becomes linear just like in single-layer graphene. For small momenta
however it is quite different from the single-layer. Without any external voltage (U = 0) the
low energy bands cross in the vicinity of k = 0 due to the finite v3, so there are no well defined
electron- and hole-states. Valance and conduction band are however already separated for bias
voltages as small as 1meV. For zero and small voltages and small (but finite) momenta the dis-
persion is in good approximation quadratic with an effective mass m⇤ = g1

2v2
F
= 0.05me. A finite

26

           
  













  

Figure 2.4.: Band structure of bilayer graphene near the Dirac points: a) shows all of the four
bands from equation (2.39) close K and K’ (dashed lines) along the direction G ! M
at a bias voltage U = 0.1 eV. b) displays the double well in the close proximity of
K for different biases U = 0 eV, 0.01 eV and 0.1 eV; the bands near K’ are simply
mirrored at the z-axis.
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where i, j denote the lattice site, µ the layer and s the electron spin.
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Here k and f are the absolute value and the angle (to the direction G ! K, see figure 2.1) of the
wave vector relative to K or K’. The respective valley is denoted by t = 1 for K and t = �1 for
K0. vF = 3

2 ag0/h̄ = 8.0⇥ 105 m/s [21] is the Fermi velocity. g3 introduces an additional velocity
v3 = 3

2 ag3/h̄ = 5.9 ⇥ 104 m/s. U denotes an additional interlayer voltage which corresponds
to the shift in the electrochemical potential between the two layers. In an experimental setup
such a shift can be either due to an explicitly applied gate voltage or simply due to an electronic
coupling to the underling substrate. This not only introduces a gap in the energy spectrum (see
figure 2.4), but it also breaks inversion symmetry, which will be important when discussing the
spin-orbit interaction.

Band structure The Hamiltonian (2.38) can be diagonalized analytically. There are four
bands: two low energy bands with energies E(k = 0) = ±U/2 and two split-off-bands origi-
nating from the strong hybridisation of A2 and B1 with energies E(k = 0) = ±pg
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where p ⌘ h̄k. Figure 2.4 shows the band structure given by equation (2.39). For large mo-
menta the dispersion becomes linear just like in single-layer graphene. For small momenta
however it is quite different from the single-layer. Without any external voltage (U = 0) the
low energy bands cross in the vicinity of k = 0 due to the finite v3, so there are no well defined
electron- and hole-states. Valance and conduction band are however already separated for bias
voltages as small as 1meV. For zero and small voltages and small (but finite) momenta the dis-
persion is in good approximation quadratic with an effective mass m⇤ = g1
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= 0.05me. A finite
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Figure 2.4.: Band structure of bilayer graphene near the Dirac points: a) shows all of the four
bands from equation (2.39) close K and K’ (dashed lines) along the direction G ! M
at a bias voltage U = 0.1 eV. b) displays the double well in the close proximity of
K for different biases U = 0 eV, 0.01 eV and 0.1 eV; the bands near K’ are simply
mirrored at the z-axis.
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Figure 2.5.: Trigonal warping in bilayer graphene for different surfaces of constant energy at a
bias voltage U=0.1eV.

which only includes the low energy electrons and holes.
Solving equation (2.42) for s we first obtain

s =
1

g

2
1 � p2v2

3

 

t U pvF e�itf p2vFv3 e�i2tf + t g1 pvF eitf

p2vFv3 ei2tf + t g1 pvF e�itf

t U pvF eitf

!

. (2.44)

We can however expect Hint to be correct only up second order in pvF
g1

. Therefore I can safely

neglect terms of order p2vFv3
g

2
1

and higher, as v3 ⌧ vF: 2

s = t

pvF

g1

 

U
g1

e�itf eitf

e�itf � U
g1

eitf

!

. (2.45)

Now from equation (2.43) we obtain the effective low energy Hamiltonian:
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A . (2.46)

2Note Hint = � 1
2
�

v†s + s†v
�

, where v is already of order pvF.
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B2. The corresponding tight-binding Hamiltonian is
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where i, j denote the lattice site, µ the layer and s the electron spin.

Hamiltonian near K/K0 As in the case of single-layer graphene, Ht.b. can be expanded in
momenta close to K and K0 points of the Brilloin zone in the continuum limit to obtain a 4x4
effective Hamiltonian:
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Here k and f are the absolute value and the angle (to the direction G ! K, see figure 2.1) of the
wave vector relative to K or K’. The respective valley is denoted by t = 1 for K and t = �1 for
K0. vF = 3

2 ag0/h̄ = 8.0⇥ 105 m/s [21] is the Fermi velocity. g3 introduces an additional velocity
v3 = 3

2 ag3/h̄ = 5.9 ⇥ 104 m/s. U denotes an additional interlayer voltage which corresponds
to the shift in the electrochemical potential between the two layers. In an experimental setup
such a shift can be either due to an explicitly applied gate voltage or simply due to an electronic
coupling to the underling substrate. This not only introduces a gap in the energy spectrum (see
figure 2.4), but it also breaks inversion symmetry, which will be important when discussing the
spin-orbit interaction.

Band structure The Hamiltonian (2.38) can be diagonalized analytically. There are four
bands: two low energy bands with energies E(k = 0) = ±U/2 and two split-off-bands origi-
nating from the strong hybridisation of A2 and B1 with energies E(k = 0) = ±pg
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where p ⌘ h̄k. Figure 2.4 shows the band structure given by equation (2.39). For large mo-
menta the dispersion becomes linear just like in single-layer graphene. For small momenta
however it is quite different from the single-layer. Without any external voltage (U = 0) the
low energy bands cross in the vicinity of k = 0 due to the finite v3, so there are no well defined
electron- and hole-states. Valance and conduction band are however already separated for bias
voltages as small as 1meV. For zero and small voltages and small (but finite) momenta the dis-
persion is in good approximation quadratic with an effective mass m⇤ = g1

2v2
F
= 0.05me. A finite
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Figure 2.4.: Band structure of bilayer graphene near the Dirac points: a) shows all of the four
bands from equation (2.39) close K and K’ (dashed lines) along the direction G ! M
at a bias voltage U = 0.1 eV. b) displays the double well in the close proximity of
K for different biases U = 0 eV, 0.01 eV and 0.1 eV; the bands near K’ are simply
mirrored at the z-axis.
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Figure 2.5.: Trigonal warping in bilayer graphene for different surfaces of constant energy at a
bias voltage U=0.1eV.

which only includes the low energy electrons and holes.
Solving equation (2.42) for s we first obtain
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Now from equation (2.43) we obtain the effective low energy Hamiltonian:
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, where v is already of order pvF.
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is the effective low energy conduction band energy in the isotropic limit. Note that if we only
consider electrons at the Fermi level, that is |~p| = pF from equation (9.2), the amplitude of the
spin-orbit field (9.1) is simply a constant. Thus, the isotropic limit v3 = 0 allows us to calculate
the spin relaxation rates from the kinetic spin Bloch equation
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for electrons in bilayer graphene at the Fermi level in exactly the same way as we have already
done for Rashba-field in single graphene (see section 8.1). All we need to do is

substitute wR with w

l4 ⌘ |~W0
l4
(pF, f)| . (9.4)

The resulting spin-relaxations are given by
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is given from inverting EF = E00
e f f (see equation (9.2)). As in section 8.1 (8.25) the momentum

relaxation time tp is defined by the following integral:

1
tp

=

2p

Z

0

dq
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W(q)(1 � cos q) . (9.7)

Note that the above result is again only valid in the strong scattering limit w

l4 tp ⌧ 1. Fur-
thermore, it is also restricted to the regime g1 � EF > U/2 (see above). Combining equation
(9.5) and (9.6) we obtain the spin relaxation time as a function of the Fermi energy and the
bias voltage. As shown in figure 9.1 the spin relaxation time is very sensitive to both EF and
U. For a constant bias voltage and sufficiently large Fermi energies the spin relaxation time
monotonically increases as a function of the Fermi energy and can be approximated by1
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1The result corresponds to a second order Taylor expansion in U. Note there are however two energy scales U/g1

and U/2
EF

.
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3.2. Spin-orbit interaction in bilayer graphene

Spin-orbit interaction in bilayer graphene is still a topic of ongoing discussion. An analysis
starting from a tight-binding model and intra-atomic spin-orbit coupling can be found in [13].
In agreement with the lattice symmetries - rotation by 120�, spatial inversion and time inver-
sion - the author finds the following form of spin-orbit interaction near K (K’):

HSO = l1tszsz + l2tµzsz + l3µz (sysx � tsxsy) + l4sz (µysx + tµxsy) , (3.16)

where µi, si and si are Pauli matrices denoting layer, sublattice and electron spin respectively.
As before t = 1,�1 refers two K, K0. The corresponding energy values are given in table 3.1.
The calculation does however not include d-orbitals, which have been previously shown to
be of importance in the case of single-layer graphene [25]. The author also does not include
additional external terms, which could occur if the inversion symmetry of the lattice is broken
as in the case of a finite bias voltage. I will thus also consider an intra-layer Rashba-term,
consisting of to copies of the single-layer Rashba term:

HBR = zRU 1
µ

(tsxsy � sysx) . (3.17)

A rough estimate of the coupling constant can be given by simply taking the value obtained
for single-layer graphene zRU = 5µeV/(V/nm)Ez. Using Ez = (U/e)/d and d = 0.34 nm for
the inter-layer distance [1] we get zR = 0.74µeV/V.
The total Hamiltonian describing bilayer graphene including spin-orbit interaction (SOI) near
K (K’) is given by

H = Hkin + HSO + HR , (3.18)

where the kinetic part is given by equation (2.38) Hkin = H0 ⌦ 1s.

Note An elaborate theoretical study of spin-orbit coupling in bilayer graphene has recently
been published in [29]. Both intrinsic and Rashba-type spin-orbit coupling orginating form a
perpendicular external electric field in conjunction with a bias voltage are investigated. Con-
trary to [13] spin-orbit coupling is predicted to derive essentially form single-layer spin-orbit
coupling. Accordingly the calculated coupling strength are of the order of 20µeV and thus
much small than the largest spin-orbit coupling constant predicted by [13], i.e. l4 = 0.48 meV.
So close to the target date of this thesis a detailed study of the publication was no more possi-
ble. In the following I thus rely on the above results which were published earlier in [13].

l1 [meV] l2 [meV] l3 [meV] l4 [meV]

0.014 0.008 0.0055 0.48

Table 3.1.: Spin-orbit coupling energies in bilayer graphene according to [13]. See equation
(3.16) for the corresponding Hamiltonian.
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starting from a tight-binding model and intra-atomic spin-orbit coupling can be found in [13].
In agreement with the lattice symmetries - rotation by 120�, spatial inversion and time inver-
sion - the author finds the following form of spin-orbit interaction near K (K’):

HSO = l1tszsz + l2tµzsz + l3µz (sysx � tsxsy) + l4sz (µysx + tµxsy) , (3.16)

where µi, si and si are Pauli matrices denoting layer, sublattice and electron spin respectively.
As before t = 1,�1 refers two K, K0. The corresponding energy values are given in table 3.1.
The calculation does however not include d-orbitals, which have been previously shown to
be of importance in the case of single-layer graphene [25]. The author also does not include
additional external terms, which could occur if the inversion symmetry of the lattice is broken
as in the case of a finite bias voltage. I will thus also consider an intra-layer Rashba-term,
consisting of to copies of the single-layer Rashba term:

HBR = zRU 1
µ

(tsxsy � sysx) . (3.17)

A rough estimate of the coupling constant can be given by simply taking the value obtained
for single-layer graphene zRU = 5µeV/(V/nm)Ez. Using Ez = (U/e)/d and d = 0.34 nm for
the inter-layer distance [1] we get zR = 0.74µeV/V.
The total Hamiltonian describing bilayer graphene including spin-orbit interaction (SOI) near
K (K’) is given by

H = Hkin + HSO + HR , (3.18)

where the kinetic part is given by equation (2.38) Hkin = H0 ⌦ 1s.

Note An elaborate theoretical study of spin-orbit coupling in bilayer graphene has recently
been published in [29]. Both intrinsic and Rashba-type spin-orbit coupling orginating form a
perpendicular external electric field in conjunction with a bias voltage are investigated. Con-
trary to [13] spin-orbit coupling is predicted to derive essentially form single-layer spin-orbit
coupling. Accordingly the calculated coupling strength are of the order of 20µeV and thus
much small than the largest spin-orbit coupling constant predicted by [13], i.e. l4 = 0.48 meV.
So close to the target date of this thesis a detailed study of the publication was no more possi-
ble. In the following I thus rely on the above results which were published earlier in [13].

l1 [meV] l2 [meV] l3 [meV] l4 [meV]

0.014 0.008 0.0055 0.48

Table 3.1.: Spin-orbit coupling energies in bilayer graphene according to [13]. See equation
(3.16) for the corresponding Hamiltonian.
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The corresponding 4x4 effective Hamiltonian is given by Heff = HA + Hint. The kinetic part is
simply given by He f f ,kin ⌘ Heff |l4=0= H0

eff ⌦ 1s (see equation (2.46)). The new spin dependent
part Hl4

eff ⌘ Heff � He f f ,kin is

Hl4
eff = l4

pvF

g1

0

B

B

B

B

B

B

B

B

B

B

@

0 2 ie�if 0 �(1 + t) U
g1

ieif

�2 ieif 0 (1 � t) U
g1

ie�if 0
0 �(1 � t) U

g1
ieif 0 �2 ieif

(1 + t) U
g1

ie�if 0 2 ieif

1

C

C

C

C

C

C

C

C

C

C

A

.

(3.22)

Now that we have an effective low energy Hamiltonian of the spin-orbit interaction, the next
step of our recipe is to rotate it into the eigenbasis of the “unperturbed” electrons and holes, i.e.
He f f ,kin. The corresponding unitary transformation is simply given by the Ukin = (Y+, Y�)⌦ 1s

(see paragraph “Eigenstates” of section 2.2). I assume that electron-hole spin-orbit coupling
can be neglected, which is confirmed by numerical analysis. So, if interested in electrons or
holes, we will only need the upper left or lower right 2x2 block of Ukin Hl4

effU†
kin. For electrons
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where E0
eff (see equation 2.47) is the effective energy of the “unperturbed” electrons, which is

equivalent to the positive Eigenvalue of He f f ,kin. The corresponding spin-orbit field ~We
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The corresponding spin-orbit splitting is shown in figure 3.3 for two different values of the bias
voltage, U = 0.1 eV and U = 0.01 eV. In both cases 2h̄|~W

l4 | gives a reasonable approximation
even for wave vectors as large as 4 ⇥ 108 m�1.
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The corresponding 4x4 effective Hamiltonian is given by Heff = HA + Hint. The kinetic part is
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Now that we have an effective low energy Hamiltonian of the spin-orbit interaction, the next
step of our recipe is to rotate it into the eigenbasis of the “unperturbed” electrons and holes, i.e.
He f f ,kin. The corresponding unitary transformation is simply given by the Ukin = (Y+, Y�)⌦ 1s

(see paragraph “Eigenstates” of section 2.2). I assume that electron-hole spin-orbit coupling
can be neglected, which is confirmed by numerical analysis. So, if interested in electrons or
holes, we will only need the upper left or lower right 2x2 block of Ukin Hl4
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where E0
eff (see equation 2.47) is the effective energy of the “unperturbed” electrons, which is

equivalent to the positive Eigenvalue of He f f ,kin. The corresponding spin-orbit field ~We
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The corresponding spin-orbit splitting is shown in figure 3.3 for two different values of the bias
voltage, U = 0.1 eV and U = 0.01 eV. In both cases 2h̄|~W

l4 | gives a reasonable approximation
even for wave vectors as large as 4 ⇥ 108 m�1.
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The corresponding 4x4 effective Hamiltonian is given by Heff = HA + Hint. The kinetic part is
simply given by He f f ,kin ⌘ Heff |l4=0= H0
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Now that we have an effective low energy Hamiltonian of the spin-orbit interaction, the next
step of our recipe is to rotate it into the eigenbasis of the “unperturbed” electrons and holes, i.e.
He f f ,kin. The corresponding unitary transformation is simply given by the Ukin = (Y+, Y�)⌦ 1s

(see paragraph “Eigenstates” of section 2.2). I assume that electron-hole spin-orbit coupling
can be neglected, which is confirmed by numerical analysis. So, if interested in electrons or
holes, we will only need the upper left or lower right 2x2 block of Ukin Hl4
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where E0
eff (see equation 2.47) is the effective energy of the “unperturbed” electrons, which is

equivalent to the positive Eigenvalue of He f f ,kin. The corresponding spin-orbit field ~We
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The corresponding spin-orbit splitting is shown in figure 3.3 for two different values of the bias
voltage, U = 0.1 eV and U = 0.01 eV. In both cases 2h̄|~W

l4 | gives a reasonable approximation
even for wave vectors as large as 4 ⇥ 108 m�1.
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is the effective low energy conduction band energy in the isotropic limit. Note that if we only
consider electrons at the Fermi level, that is |~p| = pF from equation (9.2), the amplitude of the
spin-orbit field (9.1) is simply a constant. Thus, the isotropic limit v3 = 0 allows us to calculate
the spin relaxation rates from the kinetic spin Bloch equation
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for electrons in bilayer graphene at the Fermi level in exactly the same way as we have already
done for Rashba-field in single graphene (see section 8.1). All we need to do is

substitute wR with w

l4 ⌘ |~W0
l4
(pF, f)| . (9.4)
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is given from inverting EF = E00
e f f (see equation (9.2)). As in section 8.1 (8.25) the momentum

relaxation time tp is defined by the following integral:
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Note that the above result is again only valid in the strong scattering limit w

l4 tp ⌧ 1. Fur-
thermore, it is also restricted to the regime g1 � EF > U/2 (see above). Combining equation
(9.5) and (9.6) we obtain the spin relaxation time as a function of the Fermi energy and the
bias voltage. As shown in figure 9.1 the spin relaxation time is very sensitive to both EF and
U. For a constant bias voltage and sufficiently large Fermi energies the spin relaxation time
monotonically increases as a function of the Fermi energy and can be approximated by1
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1The result corresponds to a second order Taylor expansion in U. Note there are however two energy scales U/g1
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is the effective low energy conduction band energy in the isotropic limit. Note that if we only
consider electrons at the Fermi level, that is |~p| = pF from equation (9.2), the amplitude of the
spin-orbit field (9.1) is simply a constant. Thus, the isotropic limit v3 = 0 allows us to calculate
the spin relaxation rates from the kinetic spin Bloch equation
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for electrons in bilayer graphene at the Fermi level in exactly the same way as we have already
done for Rashba-field in single graphene (see section 8.1). All we need to do is

substitute wR with w
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l4
(pF, f)| . (9.4)

The resulting spin-relaxations are given by
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is given from inverting EF = E00
e f f (see equation (9.2)). As in section 8.1 (8.25) the momentum

relaxation time tp is defined by the following integral:
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Note that the above result is again only valid in the strong scattering limit w

l4 tp ⌧ 1. Fur-
thermore, it is also restricted to the regime g1 � EF > U/2 (see above). Combining equation
(9.5) and (9.6) we obtain the spin relaxation time as a function of the Fermi energy and the
bias voltage. As shown in figure 9.1 the spin relaxation time is very sensitive to both EF and
U. For a constant bias voltage and sufficiently large Fermi energies the spin relaxation time
monotonically increases as a function of the Fermi energy and can be approximated by1
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1The result corresponds to a second order Taylor expansion in U. Note there are however two energy scales U/g1
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Figure 9.1.: In-plane spin relaxation time tS,k in bilayer graphene with l4-type SOI in the
isotropic limit (v3 = 0): a) as a function of the Fermi energy EF for different
bias voltages U (semi logarithmic plot); b) as a function of the bias voltage U at
a constant Fermi energy EF = 0.06 eV. In both plots the momentum relaxation is
tp = 10�13 s. Dashed lines correspond to the large Fermi energy approximation
given in equation (9.8)

9.1.2. A first order estimate including trigonal warping

So far we have completely neglected the anisotropy. In the case of a finite trigonal warping
(v3 6= 0) the Fermi wave vector is no longer fixed. Moreover the density of states at the Fermi
level is no longer a constant. Thus solving the general scattering integral, which previously
used to be a simple integral over the angel, becomes a very complicated task. In order to
obtain a first estimate of the effect of trigonal warping on the spin relaxation time I will instead
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Figure 9.3.: In-plane spin relaxation in bilayer graphene with l4-type SOI: The plots show a
comparison of the numerical data obtained form the model in section 7.1 and the
zeroth (green dashed) and first order estimates (continuous red lines), t

0
S,k (9.5) and

t

1
S,k (9.14), for different bias voltages and Fermi energies. All curves are calculated

in the limit of a ⌧ R ⌧ 1/kF, using a mean scattering time tsc = tp = 0.1 ps. Insets
show the trigonal warping of the Fermi surface. The corresponding spin relaxation
times are shown in table 9.1.

106

Figure 9.3.: In-plane spin relaxation in bilayer graphene with l4-type SOI: The plots show a
comparison of the numerical data obtained form the model in section 7.1 and the
zeroth (green dashed) and first order estimates (continuous red lines), t

0
S,k (9.5) and

t

1
S,k (9.14), for different bias voltages and Fermi energies. All curves are calculated

in the limit of a ⌧ R ⌧ 1/kF, using a mean scattering time tsc = tp = 0.1 ps. Insets
show the trigonal warping of the Fermi surface. The corresponding spin relaxation
times are shown in table 9.1.

106

in the regime

DP spin relaxation in BLG

from kinetic spin Bloch equation:
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Summary

• spin-valley hyperfine interaction in graphene
    couples nuclear spin to both electron spin and valley

• spin relaxation of localized electrons
    effect of flexural phonons saturates at low B fields  
    

• spin relaxation of mobile electrons
     SLG: crossover τs ~ 1/τp to τs ~ τp

 BLG: gate tunability of τs

  

λ
4
 spin orbit field

angular dependence

spin orbit splitting

numerical diagonalization

2j~¸4 j
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