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Brief history of PBHs
Hawking 1971   “Gravitationally collapsed objects of very low mass”



“there may be a large number of gravitationally collapsed objects of mass 10-5 g 
upwards which were formed as a result of fluctuations in the early Universe”

See also Niemeyer and Jedamzik 99, Shibata and Sasaki 99, Musco et al. 05, Musco 18.

• Formation mechanism:
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“there may be a large number of gravitationally collapsed objects of mass 10-5 g 
upwards which were formed as a result of fluctuations in the early Universe”

See also Niemeyer and Jedamzik 99, Shibata and Sasaki 99, Musco et al. 05, Musco 18.

• Formation mechanism:

• PBHs could be the dark matter:
“This extra density [in collapsed objects] could stabilize clusters of galaxies 
which, otherwise, appear mostly not to be gravitationally bound”
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Carr 1975   “The primordial black hole mass spectrum”
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exceeding 10“10. Whatever mechanisms play a role in possibility (3), it is very ad hoc to suppose that they will 
become ineffective only when m ~ mmax, so the most natural conclusion is that they prevent (3.14) from ever 
being applicable. If this is not the case, then models which involve prolonged soft periods must be rejected; if it is 
the case, then the spectrum of pbh’s formed in the Hagedorn era is described by equation (4.15) with/ = 0. 

VI. OBSERVATIONAL LIMITS ON THE PBH MASS SPECTRUM 
Although there is no observational evidence that pbh’s exist at all, several observations place limits on their 

spectrum. Some of these limitations are summarized in Figure 4. 
1. Measurements of the universe’s deceleration parameter (Sandage 1961) indicate that the mean density of 

pbh’s today, /xß, cannot exceed the critical density, or equivalently, 104 times the present energy density of the back- 
ground radiation, /xfí. As we go back in time, increases like R“3 while ijlr increases like R-4. Thus at times 
sufficiently early that the total density of the universe, /xw, is dominated by radiation 

H'Át) 
(t \1/2 

ïü) • 
(6.1) 

This equation holds until about i = 1 s, before which particle pairs are created. The fraction of the universe in 
pbh’s at earlier times depends on the equation of state in the hadron era. At 10"23 s, 

- 10-17Oß in EP model 

~ in Hagedorn’s model, (6.2) 

so the pbh’s which exist now could only represent a tiny fraction of the universe at early times. This supports the 
assumption that the early universe was nearly Friedmann. Also, unless tn ~ 1012 s (so that the radiation era is 
virtually eliminated), one can reject any model in which half the universe goes into pbh’s at early times. 

2. According to Hawking (1974), a black hole of mass M will emit all types of particles with sufficiently small 
mass like a blackbody of temperature T ~ 1027M-1 K. This means that any pbh should evaporate in a time 
r ~ 10-28M3, which will be less than the age of the universe (1017 s) if M is less than about 1015 g. In the EP 
picture the evaporation will terminate in an explosion, releasing about 1030 ergs in the last 0.1 s. In the CP picture, 
where many more species of particle are emitted in the final moments, the explosion may be much more powerful, 
releasing 1035 ergs in the last 10“23 s. Hawking’s prediction has two observational consequences. First, pbh’s of 
about 1015 g could be exploding today. Each explosion should appear as a hard gamma-ray burst, which could be 
detectable if the pbh was within 10 pc. Thus the observed (or nonobserved) frequency of such bursts puts an 
upper limit on the number density of 1015 g pbh’s. Although gamma-ray bursts have been observed (at a frequency 
of one every few months), they do not appear to have the characteristics expected of black hole explosions, since 
the gamma rays are too soft. A more important limitation derived from a second consequence of Hawking’s 

Fig. 4.—The diagram shows the observational limits on the density of pbh’s in various mass ranges. The density is shown in 
units of critical density, and the mass in grams. The numbers refer to the text. Some of the limits discussed in the text are not shown 
because they do not have a simple interpretation in terms of this diagram. 
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Carr 1975   “The primordial black hole mass spectrum”

“Observational limits on the spectrum of primordial black holes place strong 
constraints on the magnitude of density fluctuations in the early universe”

• PBHs inform about initial conditions (even if not all dark matter)
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sufficiently early that the total density of the universe, /xw, is dominated by radiation 

H'Át) 
(t \1/2 

ïü) • 
(6.1) 

This equation holds until about i = 1 s, before which particle pairs are created. The fraction of the universe in 
pbh’s at earlier times depends on the equation of state in the hadron era. At 10"23 s, 

- 10-17Oß in EP model 

~ in Hagedorn’s model, (6.2) 

so the pbh’s which exist now could only represent a tiny fraction of the universe at early times. This supports the 
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virtually eliminated), one can reject any model in which half the universe goes into pbh’s at early times. 

2. According to Hawking (1974), a black hole of mass M will emit all types of particles with sufficiently small 
mass like a blackbody of temperature T ~ 1027M-1 K. This means that any pbh should evaporate in a time 
r ~ 10-28M3, which will be less than the age of the universe (1017 s) if M is less than about 1015 g. In the EP 
picture the evaporation will terminate in an explosion, releasing about 1030 ergs in the last 0.1 s. In the CP picture, 
where many more species of particle are emitted in the final moments, the explosion may be much more powerful, 
releasing 1035 ergs in the last 10“23 s. Hawking’s prediction has two observational consequences. First, pbh’s of 
about 1015 g could be exploding today. Each explosion should appear as a hard gamma-ray burst, which could be 
detectable if the pbh was within 10 pc. Thus the observed (or nonobserved) frequency of such bursts puts an 
upper limit on the number density of 1015 g pbh’s. Although gamma-ray bursts have been observed (at a frequency 
of one every few months), they do not appear to have the characteristics expected of black hole explosions, since 
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Status of limits

Figure from Sato-Polito, Kovetz & Kamionkowski 2019, 
adapted with results from Montero-Camacho et al. 2019

3

strongly lensed by PBHs would produce two images of
the burst. Although the angular separation between the
images might not be resolved, the time delay between
them can be, since lenses with masses above ⇠ 10M�
will generate a time delay larger than the pulse width.
The dashed green line in Fig. 1 shows the forecast of
one year of observations for an experiment like CHIME
[58]. The constraint shown corresponds to the smallest
fraction fPBH that would produce at least one lensing
event with a time delay longer than 1 ms, the typical
intrinsic width of an FRB [59]. Ref. [37] investigated
using gamma-ray-burst (GRB) light curves to search for
echoes induced by compact dark matter, but concluded
that current experiments cannot achieve the necessary
signal-to-noise for the echo to be detectable.

Caustic perturbations. Distant galaxies can be
lensed by galaxy clusters. In a smooth lens model, clus-
ters have critical curves where the magnification is for-
mally infinite. As a star that belongs to the lensed galaxy
moves outward and crosses the caustic curve, its two im-
ages move closer together and merge. The presence of
compact objects such as intracluster stars or compact
dark matter can disturb the smooth caustic and produce
a network of corrugated microcaustics. Ref. [38] stud-
ied the lensing properties of a cluster with a granular
mass density and proposed using the peak magnification
and frequency of caustic-crossing events to probe dark
matter. In the vicinity of the smooth critical curve pro-
duced by the cluster, the microcritical curves of the point
masses will merge and form a band of width 2rw. The
constraint shown in Fig. 1 corresponds to the smallest
fraction of PBHs such that they dominate the width of
the microcaustic network rw over the intracuster stars.
For an abundance greater than the green dash-dotted
line, rw is larger than what would be expected from intr-
acluster stars. We emphasize, however, that this forecast
is for idealized observations, rather than any specific ob-
servational program.

Pulsar timing array experiments. The passage of
a PBH near the line of sight between the Earth and a
pulsar would shift the pulse arrival times. Pulsar tim-
ing can be used to constrain the PBH abundance via the
non-detection of third-order Shapiro time delay in the
mass range ⇠ 1 � 103M� [39]. Fig. 1 includes the pro-
jected constraints from known pulsars and from future
SKA pulsars.

LIGO merger rates. If PBHs can form binaries in
the early Universe [60] that remain bound to the present
day, their merger rate would dominate that of PBH bina-
ries formed in the late Universe [61]. Ref. [40] constrained
the PBH abundance in the mass range ⇠ 10�300M� by
requiring that the merger rate of PBHs does not exceed
the upper limit on the merger rate from the O1 LIGO ob-
serving run [62]. Meanwhile, Ref. [41] derived constraints
on the PBH abundance from the non-observation of a
stochastic gravitational wave background.

Dynamical effects. The presence of massive com-
pact objects can disrupt astrophysical systems through

gravitational interactions. If PBHs are present in ultra-
faint dwarf (UFD) galaxies, they would dynamically heat
the stellar population. Ref. [42] used the stellar distri-
bution of UFD galaxies to constrain PBHs with 1034g <⇠
MPBH

<⇠ 1037g.
Cosmic Microwave background. PBHs from the

primordial plasma could accrete during recombination.
The produced radiation would then affect the CMB tem-
perature and polarization spectrum. The most conser-
vative constraints from Planck 2015 [63] CMB data were
presented in Ref. [43] (see also Refs. [64–66], and Ref. [21]
for constraints from the Lyman-alpha forest).

FIG. 1. Observational (shaded) and forecasted (un-shaded)
constraints to the fraction of PBHs to dark matter. These
include observations of the extra-galactic gamma ray back-
ground (EG�), constraints from white dwarves (WD), lensing
events (HSC, EROS/MACHO, SNe, OGLE), ultra-faint dwarf
galaxies (UFD), the cosmic microwave background (CMB),
and forecasts for observation of lensing of fast radio bursts
(FRB), of caustic-crossing stars (Microcaustic), pulsar tim-
ing (known pulsars and SKA pulsars), the LIGO merger rate,
and the stochastic gravitational wave background. We leave
out additional constraints that are weaker than the observa-
tional limits presented here.

IV. CONSTRAINTS ON THE PRIMORDIAL
CURVATURE POWER SPECTRUM

A region will collapse to form a PBH if its density con-
trast at horizon re-entry is above a certain threshold �c.
Assuming Gaussian initial perturbations, the probability
density of the smoothed density contrast �(R) is given by

P (�(R)) =
1p

2⇡�(R)
exp

✓
� �

2(R)

2�2(R)

◆
, (8)

where R = (aH)�1, and the mass variance is given by



Status of limits

Figure from Sato-Polito, Kovetz & Kamionkowski 2019, 
adapted with results from Montero-Camacho et al. 2019

3

strongly lensed by PBHs would produce two images of
the burst. Although the angular separation between the
images might not be resolved, the time delay between
them can be, since lenses with masses above ⇠ 10M�
will generate a time delay larger than the pulse width.
The dashed green line in Fig. 1 shows the forecast of
one year of observations for an experiment like CHIME
[58]. The constraint shown corresponds to the smallest
fraction fPBH that would produce at least one lensing
event with a time delay longer than 1 ms, the typical
intrinsic width of an FRB [59]. Ref. [37] investigated
using gamma-ray-burst (GRB) light curves to search for
echoes induced by compact dark matter, but concluded
that current experiments cannot achieve the necessary
signal-to-noise for the echo to be detectable.

Caustic perturbations. Distant galaxies can be
lensed by galaxy clusters. In a smooth lens model, clus-
ters have critical curves where the magnification is for-
mally infinite. As a star that belongs to the lensed galaxy
moves outward and crosses the caustic curve, its two im-
ages move closer together and merge. The presence of
compact objects such as intracluster stars or compact
dark matter can disturb the smooth caustic and produce
a network of corrugated microcaustics. Ref. [38] stud-
ied the lensing properties of a cluster with a granular
mass density and proposed using the peak magnification
and frequency of caustic-crossing events to probe dark
matter. In the vicinity of the smooth critical curve pro-
duced by the cluster, the microcritical curves of the point
masses will merge and form a band of width 2rw. The
constraint shown in Fig. 1 corresponds to the smallest
fraction of PBHs such that they dominate the width of
the microcaustic network rw over the intracuster stars.
For an abundance greater than the green dash-dotted
line, rw is larger than what would be expected from intr-
acluster stars. We emphasize, however, that this forecast
is for idealized observations, rather than any specific ob-
servational program.

Pulsar timing array experiments. The passage of
a PBH near the line of sight between the Earth and a
pulsar would shift the pulse arrival times. Pulsar tim-
ing can be used to constrain the PBH abundance via the
non-detection of third-order Shapiro time delay in the
mass range ⇠ 1 � 103M� [39]. Fig. 1 includes the pro-
jected constraints from known pulsars and from future
SKA pulsars.

LIGO merger rates. If PBHs can form binaries in
the early Universe [60] that remain bound to the present
day, their merger rate would dominate that of PBH bina-
ries formed in the late Universe [61]. Ref. [40] constrained
the PBH abundance in the mass range ⇠ 10�300M� by
requiring that the merger rate of PBHs does not exceed
the upper limit on the merger rate from the O1 LIGO ob-
serving run [62]. Meanwhile, Ref. [41] derived constraints
on the PBH abundance from the non-observation of a
stochastic gravitational wave background.

Dynamical effects. The presence of massive com-
pact objects can disrupt astrophysical systems through

gravitational interactions. If PBHs are present in ultra-
faint dwarf (UFD) galaxies, they would dynamically heat
the stellar population. Ref. [42] used the stellar distri-
bution of UFD galaxies to constrain PBHs with 1034g <⇠
MPBH

<⇠ 1037g.
Cosmic Microwave background. PBHs from the

primordial plasma could accrete during recombination.
The produced radiation would then affect the CMB tem-
perature and polarization spectrum. The most conser-
vative constraints from Planck 2015 [63] CMB data were
presented in Ref. [43] (see also Refs. [64–66], and Ref. [21]
for constraints from the Lyman-alpha forest).

FIG. 1. Observational (shaded) and forecasted (un-shaded)
constraints to the fraction of PBHs to dark matter. These
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A region will collapse to form a PBH if its density con-
trast at horizon re-entry is above a certain threshold �c.
Assuming Gaussian initial perturbations, the probability
density of the smoothed density contrast �(R) is given by

P (�(R)) =
1p

2⇡�(R)
exp

✓
� �

2(R)

2�2(R)

◆
, (8)

where R = (aH)�1, and the mass variance is given by

Hawking  
evaporation 



Status of limits

Figure from Sato-Polito, Kovetz & Kamionkowski 2019, 
adapted with results from Montero-Camacho et al. 2019

3

strongly lensed by PBHs would produce two images of
the burst. Although the angular separation between the
images might not be resolved, the time delay between
them can be, since lenses with masses above ⇠ 10M�
will generate a time delay larger than the pulse width.
The dashed green line in Fig. 1 shows the forecast of
one year of observations for an experiment like CHIME
[58]. The constraint shown corresponds to the smallest
fraction fPBH that would produce at least one lensing
event with a time delay longer than 1 ms, the typical
intrinsic width of an FRB [59]. Ref. [37] investigated
using gamma-ray-burst (GRB) light curves to search for
echoes induced by compact dark matter, but concluded
that current experiments cannot achieve the necessary
signal-to-noise for the echo to be detectable.

Caustic perturbations. Distant galaxies can be
lensed by galaxy clusters. In a smooth lens model, clus-
ters have critical curves where the magnification is for-
mally infinite. As a star that belongs to the lensed galaxy
moves outward and crosses the caustic curve, its two im-
ages move closer together and merge. The presence of
compact objects such as intracluster stars or compact
dark matter can disturb the smooth caustic and produce
a network of corrugated microcaustics. Ref. [38] stud-
ied the lensing properties of a cluster with a granular
mass density and proposed using the peak magnification
and frequency of caustic-crossing events to probe dark
matter. In the vicinity of the smooth critical curve pro-
duced by the cluster, the microcritical curves of the point
masses will merge and form a band of width 2rw. The
constraint shown in Fig. 1 corresponds to the smallest
fraction of PBHs such that they dominate the width of
the microcaustic network rw over the intracuster stars.
For an abundance greater than the green dash-dotted
line, rw is larger than what would be expected from intr-
acluster stars. We emphasize, however, that this forecast
is for idealized observations, rather than any specific ob-
servational program.

Pulsar timing array experiments. The passage of
a PBH near the line of sight between the Earth and a
pulsar would shift the pulse arrival times. Pulsar tim-
ing can be used to constrain the PBH abundance via the
non-detection of third-order Shapiro time delay in the
mass range ⇠ 1 � 103M� [39]. Fig. 1 includes the pro-
jected constraints from known pulsars and from future
SKA pulsars.

LIGO merger rates. If PBHs can form binaries in
the early Universe [60] that remain bound to the present
day, their merger rate would dominate that of PBH bina-
ries formed in the late Universe [61]. Ref. [40] constrained
the PBH abundance in the mass range ⇠ 10�300M� by
requiring that the merger rate of PBHs does not exceed
the upper limit on the merger rate from the O1 LIGO ob-
serving run [62]. Meanwhile, Ref. [41] derived constraints
on the PBH abundance from the non-observation of a
stochastic gravitational wave background.

Dynamical effects. The presence of massive com-
pact objects can disrupt astrophysical systems through

gravitational interactions. If PBHs are present in ultra-
faint dwarf (UFD) galaxies, they would dynamically heat
the stellar population. Ref. [42] used the stellar distri-
bution of UFD galaxies to constrain PBHs with 1034g <⇠
MPBH

<⇠ 1037g.
Cosmic Microwave background. PBHs from the

primordial plasma could accrete during recombination.
The produced radiation would then affect the CMB tem-
perature and polarization spectrum. The most conser-
vative constraints from Planck 2015 [63] CMB data were
presented in Ref. [43] (see also Refs. [64–66], and Ref. [21]
for constraints from the Lyman-alpha forest).

FIG. 1. Observational (shaded) and forecasted (un-shaded)
constraints to the fraction of PBHs to dark matter. These
include observations of the extra-galactic gamma ray back-
ground (EG�), constraints from white dwarves (WD), lensing
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ing (known pulsars and SKA pulsars), the LIGO merger rate,
and the stochastic gravitational wave background. We leave
out additional constraints that are weaker than the observa-
tional limits presented here.

IV. CONSTRAINTS ON THE PRIMORDIAL
CURVATURE POWER SPECTRUM

A region will collapse to form a PBH if its density con-
trast at horizon re-entry is above a certain threshold �c.
Assuming Gaussian initial perturbations, the probability
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FIG. 6. Merger rate of PBH binaries if they make up all of
the dark matter, and provided PBH binaries are not signifi-
cantly perturbed between formation and merger (solid line).
Superimposed are the upper limits from LIGO given in Table
I and described in the main text.

also strongly constrains masses M  10 M�, and defer
this detailed analysis to the LIGO collaboration, updat-
ing that carried out in Ref. [39] with the S2 run. We
summarize our estimated limits in Table I.

We show these limits in Fig. 6, alongside the PBH bi-
nary merger rate if they make all of the dark matter, and
if PBH binaries are not significantly perturbed between
formation and merger. We see that the latter largely
exceeds the estimated upper limits, by 3 to 4 orders of
magnitude, depending on the mass. This indicates that
LIGO could rule out PBHs as the dominant dark mat-
ter component, and set stringent upper limits to their
abundance.

To estimate these potential limits, we solve for the
maximum PBH fraction for which the merger rate is be-
low the LIGO upper limits. Note, that the merger rate is
not linear in f , nor a simple power law through all range
of f , so these limits must be computed numerically. We
show the result in Fig. 7, alongside other existing bounds
in that mass range. We see that LIGO O1 may limit
PBHs to be no more than a percent of the dark mat-
ter for M ⇠ 10 � 300 M�. If confirmed with numerical
computations, these would become the strongest existing
bounds in that mass range.

VI. DISCUSSION AND CONCLUSIONS

NSTT [38] pointed out long ago that PBHs would
form binaries in the early Universe, as a consequence of
the chance proximity of PBH pairs, and estimated their
merger rate at the present time. Following the first de-
tection of a binary-black-hole merger [5], Sasaki et al. [9]
updated this calculation to 30 M� PBHs, and general-
ized it to an arbitrary PBH abundance. They focused on
the case where PBHs are a very subdominant fraction of
the dark matter, as was implied by the stringent CMB
spectral distortions bounds at the time [23], since then

micro-lensing wide binaries
ultra-faint dwarfs

potential limits  
from LIGO O1 run

� � �� �� ��� ��� ����

�����

�����

�����
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����/�⊙

�
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(�
��
�)

CM
B anisotropies

CM
B anisotropies

FIG. 7. Potential upper bounds on the fraction of dark matter
in PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These
bounds need to be confirmed by numerical simulations. For
comparison we also show the microlensing limits from the
EROS [21] (purple) and MACHO [20] (blue) collaborations
(see Ref. [74] for caveats and Ref. [32] for a discussion of
uncertainties), limits from wide Galactic binaries [22], ultra-
faint dwarf galaxies [25], and CMB anisotropies [24].

revised and significantly alleviated [24] (see also [33]).

In this paper, we have, first of all, made several im-
provements to the calculation of NSST, and accurately
computed the distribution of orbital parameters of PBH
binaries forming in the early Universe. Specifically,
we have computed the exact probability distribution of
initial angular momentum for a close pair torqued by
all other PBHs, and have accounted for the tidal field
of standard adiabatic density perturbations, dominant
when PBHs make a small fraction of the dark matter.

Our second and most important addition was to check
thoroughly whether the highly eccentric orbits of PBH
binaries merging today can get significantly disturbed
between formation and merger. To do so, we have esti-
mated the characteristic properties of the first non-linear
structures, and as a consequence their e↵ects on the or-
bital parameters of PBH binaries. We found that PBH
binaries merging today are essentially unscathed by tidal
torques and encounters with other PBHs. This robust-
ness stems from the fact that these binaries typically form
deep inside the radiation era and are very tight. We have
also estimated the e↵ect of baryon accretion to be much
weaker than previous estimates [43], but potentially im-
portant if unknown numerical prefactors happen to be
large.

Thirdly, we have revisited the calculation of Ref. [8]
for the merger rate of PBH binaries forming in present-
day halos through gravitational recombination. We have
explicitly accounted for the previously neglected Pois-
son fluctuations resulting from the granularity of PBH
dark matter. This shot noise greatly enhances the vari-
ance of density perturbations on small scales, and has
pronounced e↵ects on the properties of low-mass halos.

LIGO is likely the most sensitive probe of 
PBHs of ~1-500 Msun

Ali-Haïmoud, Kovetz 
& Kamionkowski ‘17

Ali-Haïmoud & 
Kamionkowski ‘17
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and density fields are

T̂ (x) ⇡ ⌧

x
, (29)

u(x) ⇡ �
r

2 � 5⌧

x
, (30)

⇢̂(x) ⇡ �p
2 � 5⌧

x
�3/2

. (31)

5. Solution for 1 . � ⌧ �

When Compton drag is significant (� & 1), there is
no longer any conserved quantity, even in the quasi-
isothermal case. We can simply determine the asymp-
totic value of � for � � 1 by considering the momen-
tum equation at x ⌧ 1, where the pressure force is
negligible with respect to gravity. In this regime we
find u ⇡ �1/(�x

2), implying that � ! �
�1 for large

�. Physically, the drag force balances the gravitational
force, i.e. the velocity reaches the terminal velocity. Once
x . �

�2/3 � �
�2/3, the advection term u(du/dx) be-

comes dominant over the drag term ��u and the velocity
reaches the free-fall solution u ⇡ �

p
2/x. Since this oc-

curs at a radius much larger than �
�2/3, the asymptotic

behavior or T̂ , is still given by Eqs. (29) and (28). The
e↵ect of Compton drag is therefore only to change the
accretion rate.

Ref. [26] find the following analytic approximation for
�(�), valid for all values of � (but for � � 1 only, as they
consider isothermal accretion):

�(� � 1; �) ⇡ exp


9/2

3 + �3/4

�
1

(
p

1 + � + 1)2
. (32)

For general � and � we may use the following approxi-
mation for the dimensionless accretion rate:

�(�, �) =
�(�; � ⌧ 1)�(� � 1; �)

�iso

. (33)

This approximation is well justified since � ⌧ �. As a
consequence, either � ⌧ 1 or � � 1.

The dimensionless accretion rate � is the first main re-
sult of this Section. We show its evolution as a function
of redshift for several PBH masses in Fig. 4. While ROM
do account for Compton drag following the analysis of
Ref. [26], they implicitly assume that � � 1 at all times.
In other words, they do not account for the factor of ⇠ 10
decrease of � at low redshift when Compton cooling be-
comes negligible and the accretion becomes mostly adia-
batic. Figure 4 also shows the evolution of the accretion
rate normalized to the Eddington rate, ṁ ⌘ Ṁc

2
/LEdd.

C. Collisional ionization region

If the emerging radiation field is too weak to photoion-
ize the gas, it eventually gets collisionally ionized as it is

10 2
M

�

1
M

�

10
4 M

�

�iso

�ad

�� ��� ��� ���� ���� ���
����
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�

λ

102
M�

1 M�
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FIG. 4. Characteristic dimensionless accretion rate � (upper
panel) and accretion rate normalized to the Eddington value
ṁ ⌘ Ṁc2/LEdd (lower panel) as a function of redshift, for
PBH masses 1, 102 and 104 M�. These quantities are evalu-
ated with substitution vB ! ve↵ as described in Section II F.

compressed and heated up. We assume that this proceeds
roughly at constant temperature T ⇡ Tion ⇡ 1.5 ⇥ 104.
Indeed, if ionization proceeds through collisional ioniza-
tions balanced by radiative recombinations, the equilib-
rium ionization fraction only depends on temperature,
with a sharp transition at T ⇡ 1.5 ⇥ 104 K (for instance,
using Eq. (2) or Ref. [30], we get xe = (0.01, 0.5, 0.99) at
T = (1.1, 1.5, 2.5) ⇥ 104 K, respectively).

Getting back to dimensionful variables, we found in
the previous section that at small radii,

T (r) ⇡ ⌧T1
rB

r
, (34)

where ⌧ is a dimensionless constant at most equal to 3/10,
and smaller when Compton cooling is important. The
e↵ect of the ionization region is only relevant once the
global free-electron fraction xe falls significantly below
unity, i.e. for T1 . 3000 K ⌧ Tion. Therefore we expect
the ionization region to be reached deep inside the Bondi
radius, where the asymptotic behavior (34) is accurate.
The ionization region therefore starts at radius

r
start

ion
⇡ ⌧

T1
Tion

rB, (35)

accretion model: Bondi-Hoyle-Lyttleton 
 + Compton drag and cooling

Ali-Haïmoud & Kamionkowski 2017, Ricotti et al. 2008, Poulin et al. 2017
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FIG. 7. Characteristic velocities in the problem at hand: the
isothermal sound speed vB (dotted), rms BH-baryon relative
velocity hv2Li1/2 (dashed) and e↵ective velocity ve↵ defined in
Eq. (61) (solid), used in Figures 2, 4, 5 and 6 to illustrate
characteristic values of intermediate quantities.

collisional ionization
photoionization

102
M�

1 M�

104
M�

��� ���� ��� ���
��-��

��-��

��-��

��-�

��-�

�

<
�>

/�
��
�

FIG. 8. Luminosity of accreting PBHs as a function of red-
shift, averaged over the Gaussian distribution of large-scale
relative velocities.

III. LOCAL RADIATION FEEDBACK

Before estimating the e↵ect of the PBH radiation on
the global thermal and ionization history, let us first ex-
amine whether it can a↵ect the local accretion flow itself.

A. Local thermal feedback

Throughout the calculation we have neglected local
Compton heating by the radiation produced by the ac-
creting PBH. Here we discuss the validity of this assump-
tion. The rate of energy injection per electron by Comp-
ton scattering with the PBH radiation is

Z
dE

1

4⇡r2

1

E

dL

dE
h��Ei ⇡ 0.1

�TL

4⇡r2
, (62)

10
2 M�

1 M
�

10 4

M
�

��� ���� ���� ���

��-�

��-�

�����

�����

�

�
��
(��
��
�
��
/�
)�

collisional ionization
photoionization

FIG. 9. Estimated maximum fractional importance of local
thermal feedback from Compton heating by the PBH radia-
tion.

where we used the approximation (81) for h��Ei. Hence
the rate of Compton heating by the PBH radiation is

ṪCompt,L ⇡ 2

3

xe

1 + xe
0.1

�TL

4⇡r2
. (63)

We need to compare this rate to the largest of the Comp-
ton cooling rate by CMB photons and the rate of adia-
batic heating:

ṪCompt,cmb ⌘ 8

3

xe

1 + xe
�T

⇢cmbTcmb

mec
, (64)

Ṫad ⇡ T
|v|
r

. (65)

If � � 1 the latter two rates are approximately equal
at r⇤ ⇡ �

�2/3
rB, adiabatic heating being dominant

for r . r⇤ and Compton cooling by CMB photons for
r & r⇤ (see Section II B 3). For r < r⇤, T / 1/r

and |v| / 1/r
1/2 so ṪCompt,L/Ṫad / r

1/2. For r > r⇤,
ṪCompt,L/ṪCompt,cmb / r

�2. Therefore the impact of
thermal feedback is maximized at r ⇡ r⇤. If � ⌧ 1,
then we only need to compare the Compton heating rate
to adiabatic cooling, at the Bondi radius where this ratio
is maximized. We see that for arbitrary � the relevant
radius at which to compare Compton heating to adia-
batic cooling is r ⇡ rB/(1 + �

2/3), where T ⇡ Tcmb in
both cases. After some algebra we arrive at

max

"
ṪCompt,L

Ṫ

#
⇡ 0.07

xe

1 + xe

L

LEdd

vB

c

mpc
2

Tcmb

p
1 + �2/3.

(66)
We show this ratio in Fig. 9, where we see that it is
always less than unity for M  104

M�. We can therefore
safely neglect local thermal feedback for the mass range
we consider.

luminosity model: free-free,  
à la Shapiro ’73 + Compton cooling

Ali-Haïmoud & Kamionkowski 2017, Ricotti et al. 2008, Poulin et al. 2017
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FIG. 10. Ratio of the cross-section-averaged energy loss per
Compton scattering event to �TE, as a function of photon
energy.
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FIG. 11. Ratio of the energy deposition rate to the instanta-
neous energy injection rate (equivalent of the dimensionless
e�ciency f(z) usually computed in the context of dark-matter
annihilation), as a function of redshift. We only show the case
M = 102 M� as other cases are very similar.

tional rates of change of gas temperature, direct ioniza-
tions and excitations:

�Ṫgas =
2

3ntot

1 + 2xe

3
⇢̇dep, (85)

�ẋ
direct

e =
1 � xe

3

⇢̇dep

EInH

, (86)

�ẋ2 =
1 � xe

3

⇢̇dep

E2nH

, (87)

where ntot is the total number density of free particles,
x2 is the fraction of excited hydrogen and E2 ⌘ 10.2 eV
is the first excitation energy (we assume that all excita-
tions are to the first excited state for simplicity). Note
that in our previous notation xe ⌘ xe is the background
ionization fraction and similarly Tgas ⌘ T1.

We implement these modifications in the recombina-
tion code hyrec [41, 42]. We self-consistently account
for the heating of the gas into the PBH luminosity, i.e.

104
M�, fpbh = 10�4

�� ��� ��� ����
��-�

��-�

��-�

��-�

�

Δ
� �

103
M�, fpbh = 10�2

102
M�, fpbh = 1

FIG. 12. Upper panel : global free electron fraction xe(z)
in the standard scenario (lower black curve), and ac-
counting for PBHs with parameters (Mpbh/M�, fpbh) =
(102, 1), (103, 10�2), (104, 10�4), in that order from bottom to
top at low redshift. Lower panel : change in the ionization
history due to accreting PBHs for the same parameters. We
only show the collisional ionization case here.

account for the global feedback of PBHs. We show the
resulting changes in the ionization history in Fig. 12.
Comparing with Fig. 3 of ROM, we see that we obtain a
significantly smaller e↵ect on the ionization history.

V. EFFECT ON THE COSMIC MICROWAVE
BACKGROUND

A. CMB spectral distortions

1. E↵ect of global heating

Energy deposited in the photon-baryon plasma at red-
shift z . 2 ⇥ 106 does not get fully thermalized, and re-
sults in distortions to the CMB spectrum. Depending on
when the energy is deposited, the distortion generated
is either a chemical potential (µ-type) or a Compton-y
distortion. Their amplitudes are approximately given by

free-electron fraction: modified HyRec  
[Ali-Haïmoud & Hirata 2010, 2011]

Ali-Haïmoud & Kamionkowski 2017, Ricotti et al. 2008, Poulin et al. 2017
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Formation of PBH binaries in the late Universe
Bird et al. 2016, Clesse & Garcia-Bellido 2017

Quinlan & Shapiro 1989

GW-equivalent of radiative recombination 

�capture ⇡ 45 M2 v�18/7
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Merger rate per Gpc3 = n <σ v>|halo x NBH/halo x dNhalo/dV

Merger rate ~ 0.1 - 1 per Gpc3 per year if PBHs make all the DM 

see also Ali-Haïmoud, Kovetz & Kamionkowski 2017
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On small enough scales, PBHs 
are randomly distributed

Pairs born close enough they decouple from 
Hubble flow deep in the radiation era

Torqued by other PBHs. Form eccentric orbits

Inspiral through GW radiation, merge throughout 
cosmic history, including today

Formation of PBH binaries in the early Universe
Nakamura et al. 1997, Sasaki et al. 2016, 

Ali-Haïmoud, Kovetz & Kamionkowski 2017
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Effectively random (Poisson) on the scales of interest 

• Get distribution of initial semi-major axis  
Follow a nearest-neighbor pair through 
decoupling from Hubble flow

3

separation is much smaller than the Hubble scale, we
may use a Newtonian approximation. If no perturber is
present, the motion is one-dimensional. We denote by
r 2 R the proper separation projected along the axis of
motion; it evolves according to

r̈ � (Ḣ + H
2)r +

2M

r2

r

|r|
= 0, (5)

where overdots denote di↵erentiation with respect to the
proper time. We define � ⌘ r/x and rewrite Eq. (5) in
terms of the scale factor s:
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where primes denote di↵erentiation with respect to s, and
the dimensionless parameter � is
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3M
=
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f
. (7)

At s ! 0, the binary follows the Hubble flow �(s) = s,
so the initial conditions are

�(0) = 0, �
0(0) = 1. (8)

We see that the solution is entirely characterized by �.
In the limit � ⌧ 1, the PBH pair e↵ectively decouples

from the expansion deep in the radiation-domination era,
s ⌧ 1. In that limit, h(s) ⇡ s

�2, and the equation of
motion is
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One can show that the solution to this equation is self-
similar:

�(s; �) = � �(s/�; 1). (10)

We compute this function numerically by solving Eq. (9)
and show it in Fig. 1: we find that the binary e↵ectively
decouples from the Hubble flow at s ⇡ �/3, and that the
proper separation then oscillates with amplitude |�| ⇡

0.2 � = 2a/x, where a is the semi-major axis of the newly
formed binary. We therefore find, for � ⌧ 1,

a ⇡ 0.1 � x =
0.1
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x
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x
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This agrees with the result of Ref. [41] given that they de-
fine the mean separation without the factor of (4⇡/3)1/3.
Solving the full equation (6), we find that this result re-
mains reasonably accurate even for � ⇠ 1 (see Fig. 1).
In what follows we will see that for the PBH masses con-
sidered, the bulk of binaries merging at the present time
have � . 1, so we use Eq. (11) throughout.
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FIG. 1. Dimensionless separation � = r/x of two point
masses, rescaled by the parameter � = 1

f (x/x)
3, as a function

of the rescaled scale factor s/�, in the limit � ⌧ 1 (solid) and
for � = 1 (dashed).

C. Initial angular momentum

We now account for the fact that the binary is im-
mersed in a local tidal field Tij = �@i@j�, which exerts
a perturbative force per unit mass F = T · r, in matrix
notation. This tidal field arises from the other PBHs,
as well as from matter density perturbations, as pointed
out in Ref. [44] (see also [45]). Provided the initial co-
moving separation of the binary is small relative to the
mean separation, this tidal field does not significantly
a↵ect the binary’s energy (hence semi-major axis). How-
ever, it produces a torque ˙̀ = r ⇥ [T · r], resulting in a
non-vanishing angular momentum

` =

Z
dt r ⇥ [T · r], (12)

and preventing a head-on collision. If the torque orig-
inates from other PBHs whose comoving separation is
approximately constant (which is accurate provided their
separation is much larger than x), then T / 1/s

3. If the
torque originates from linear matter density perturba-
tions, then Tij ⇠ ⇢m�m / s

�3
�m. If the binary decouples

deep in the radiation era, then �m ⇡ constant (neglecting
the slow logarithmic growth). Therefore in either case,
we have T ⇡ s

�3Teq. We hence get

` =
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sh(s)

�
2(s; �)

s3
x ⇥ [Teq · x]. (13)

The integral only depends on �. In the limit � ⌧ 1, using
the self-similarity relation (10), it simplifies to

Z
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2(s̃; 1) ⇡ 0.3 �, (14)
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• Get distribution of initial angular momentum /eccentricity 
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• Get stochastic GWB Raidal et al. 2017

• Get merger rate at present time (more constraining)
Nakamura et al. 1997, Sasaki et al. 2016, 

Ali-Haïmoud, Kovetz & Kamionkowski 2017
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M/M� R90% [Gpc�3 yr�1]

10 330

20 77

40 15

100 2

200 5

300 20

TABLE I. Estimated 90% upper limits on the merger rate of
equal-mass binary black holes from the LIGO O1 run. The
limits for M/M� = 10, 20 and 40 are inferred from Refs. [75,
76], and those for M/M� = 100, 200 and 300 are taken from
Ref. [74] for non-spinning black holes.

V. POTENTIAL LIMITS FROM EXISTING
LIGO OBSERVATIONS

We now estimate upper limits on the volumetric
merger rate of binary black holes set by LIGO O1, and
how such limits would translate on the PBH abundance
provided the merger rate is that computed in Section II.

In Ref. [74], the LIGO collaboration provides 90% up-
per limits to the merger rate of intermediate-mass black
holes, with individual masses up to 300 M�. These limits
depend on the spins of the black holes, in particular on
their projection along the orbital angular momentum: in
the case of 100� 100 M� binary, the upper bound varies
by a factor ⇠ 4 between the nearly aligned and nearly
anti-aligned cases. Since Ref. [74] does not provide up-
per limits for non-zero spins for M/M� = 200 and 300,
we shall use their zero-spin bounds for all cases, keeping
in mind that they are only accurate up to a factor of a
few.

For M = 10, 20, 40 M�, we estimate the 90 % upper
limit on the merger rate from R90% = � ln(0.1)/hV T i

[74], where hV T i is the average space-time volume to
which the LIGO search is sensitive, and is obtained from
integrating Fig. 7 of Ref. [75]. We anticipate that LIGO
also strongly constrains masses M  10 M�, and defer
this detailed analysis to the LIGO collaboration, updat-
ing that carried out in Ref. [40] with the S2 run. We
summarize our estimated limits in Table I.

We show these limits in Fig. 6, alongside the PBH bi-
nary merger rate if they make all of the dark matter, and
if PBH binaries are not significantly perturbed between
formation and merger. We see that the latter largely
exceeds the estimated upper limits, by 3 to 4 orders of
magnitude, depending on the mass. This indicates that
LIGO could rule out PBHs as the dominant dark mat-
ter component, and set stringent upper limits to their
abundance.

To estimate these potential limits, we solve for the
maximum PBH fraction for which the merger rate is be-
low the LIGO upper limits. Note, that the merger rate is
not linear in f , nor a simple power law through all range
of f , so these limits must be computed numerically. We
show the result in Fig. 7, alongside other existing bounds
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FIG. 6. Merger rate of PBH binaries if they make up all of
the dark matter, and provided PBH binaries are not signifi-
cantly perturbed between formation and merger (solid line).
Superimposed are the upper limits from LIGO given in Table
I and described in the main text.
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FIG. 7. Potential upper bounds on the fraction of dark matter
in PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These
bounds need to be confirmed by numerical simulations. For
comparison we also show the microlensing limits from the
EROS [21] (purple) and MACHO [20] (blue) collaborations
(see Ref. [77] for caveats and Ref. [32] for a discussion of
uncertainties), limits from wide Galactic binaries [22], ultra-
faint dwarf galaxies [25], and CMB anisotropies [24].

in that mass range. We see that LIGO O1 may limit
PBHs to be no more than a percent of the dark mat-
ter for M ⇠ 10 � 300 M�. If confirmed with numerical
computations, these would become the strongest existing
bounds in that mass range.

VI. DISCUSSION AND CONCLUSIONS

NSTT [39] pointed out long ago that PBHs would
form binaries in the early Universe, as a consequence of
the chance proximity of PBH pairs, and estimated their
merger rate at the present time. Following the first de-
tection of a binary-black-hole merger [5], Sasaki et al. [9]

merger rate for 100% of DM in PBHs
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FIG. 7. Potential upper bounds on the fraction of dark matter
in PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These
bounds need to be confirmed by numerical simulations. For
comparison we also show the microlensing limits from the
EROS [21] (purple) and MACHO [20] (blue) collaborations
(see Ref. [77] for caveats and Ref. [32] for a discussion of
uncertainties), limits from wide Galactic binaries [22], ultra-
faint dwarf galaxies [25], and CMB anisotropies [24].
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PBHs to be no more than a percent of the dark mat-
ter for M ⇠ 10 � 300 M�. If confirmed with numerical
computations, these would become the strongest existing
bounds in that mass range.
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if PBH binaries are not significantly perturbed between
formation and merger. We see that the latter largely
exceeds the estimated upper limits, by 3 to 4 orders of
magnitude, depending on the mass. This indicates that
LIGO could rule out PBHs as the dominant dark mat-
ter component, and set stringent upper limits to their
abundance.

To estimate these potential limits, we solve for the
maximum PBH fraction for which the merger rate is be-
low the LIGO upper limits. Note, that the merger rate is
not linear in f , nor a simple power law through all range
of f , so these limits must be computed numerically. We
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the dark matter, and provided PBH binaries are not signifi-
cantly perturbed between formation and merger (solid line).
Superimposed are the upper limits from LIGO given in Table
I and described in the main text.
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FIG. 7. Potential upper bounds on the fraction of dark matter
in PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These
bounds need to be confirmed by numerical simulations. For
comparison we also show the microlensing limits from the
EROS [21] (purple) and MACHO [20] (blue) collaborations
(see Ref. [77] for caveats and Ref. [32] for a discussion of
uncertainties), limits from wide Galactic binaries [22], ultra-
faint dwarf galaxies [25], and CMB anisotropies [24].

in that mass range. We see that LIGO O1 may limit
PBHs to be no more than a percent of the dark mat-
ter for M ⇠ 10 � 300 M�. If confirmed with numerical
computations, these would become the strongest existing
bounds in that mass range.

VI. DISCUSSION AND CONCLUSIONS

NSTT [39] pointed out long ago that PBHs would
form binaries in the early Universe, as a consequence of
the chance proximity of PBH pairs, and estimated their
merger rate at the present time. Following the first de-
tection of a binary-black-hole merger [5], Sasaki et al. [9]
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Uncertainties and checks

Ali-Haïmoud 2018, confirmed by Ballesteros et al. 2018, Desjacques & 
Riotto 2018 in the case of a narrow spike in the primordial power spectrum

• Poisson initial spatial distribution of PBHs 

• Initial distribution of orbital parameters

x0
y

Surrounding matter

Poissonian PBH population

PBH pair

Figure 1. Schematic description of the initial configuration for the simulation. The exterior region
(blue) contains surrounding matter that has a uniform density and evolves only due to the expansion of
the universe. A spherical region (white) contains a randomly distributed PBH population. The interior
region (red) contains only the binary that is inserted so that, by using Eq. (2.17), its coalescence time
matches the current age of the universe. A similar set-up applies for the analytic estimate for binary
formation in Sec. 2.1, but in that case the white region extends to infinity and all PBH in this region
within the timescale of formation of the binary are assumed to evolve only due to cosmic expansion.

conditions which will eventually determine the distribution of j and the merger rate of the
PBH binaries.

Consider a PBH pair with masses m1, m2 at a comoving separation x0 so that they are
the only PBHs in spherical volume of comoving radius y. This set-up is shown in the interior
region of Fig. 1. The reason for forbidding surrounding PBHs closer than y is to exclude initial
configurations where the binary gets disrupted by surrounding PBHs shortly after formation.
In such cases the perturbative estimate of the coalescence time will inevitably fail. For the
sake of generality, we will not fix the value of y in the general discussion. The aim of the
following is to estimate the density of viable initial conditions and, from it, the distribution
of coalescence times and the merger rate. The spatial PBH distribution is assumed to be
Poisson throughout the paper.2 In this case the comoving number density of configurations
producing a binary is

dnb =
1

2
e
�N̄(y)dn(m1)dn(m2)dV (x0) , (2.18)

where dn(m) is the comoving number density of PBH in the mass range (m,m+ dm), ⇢DM

denotes the present DM energy density, N̄(y) ⌘ nV (y) is the expected number of PBH in a

2Based on general arguments, the spatial distribution at small scales has been shown to be well approx-
imated by the Poisson distribution [41]. It has been argued, however, that accounting for the two-point
function of PBHs, ⇠PBH, may a↵ect the merger rate for wider mass functions [13, 52, 53]. In Ref. [53] this
e↵ect was estimated to be irrelevant for PBHs in the LIGO mass range. In addition, a rough estimate yields
that for ⇠PBH 6 1 the contribution of the PBH two-point function to the merger rate is generally subleading
to the direct contribution of the width of the mass function [13]. Only the latter will thus be considered in
this paper. Formation of initially clustered PBH distributions, enabled by some more exotic PBH formation
mechanisms, and the evolution of such clusters has been considered in Ref. [54].
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Figure 1. Schematic description of the initial configuration for the simulation. The exterior region
(blue) contains surrounding matter that has a uniform density and evolves only due to the expansion of
the universe. A spherical region (white) contains a randomly distributed PBH population. The interior
region (red) contains only the binary that is inserted so that, by using Eq. (2.17), its coalescence time
matches the current age of the universe. A similar set-up applies for the analytic estimate for binary
formation in Sec. 2.1, but in that case the white region extends to infinity and all PBH in this region
within the timescale of formation of the binary are assumed to evolve only due to cosmic expansion.

conditions which will eventually determine the distribution of j and the merger rate of the
PBH binaries.

Consider a PBH pair with masses m1, m2 at a comoving separation x0 so that they are
the only PBHs in spherical volume of comoving radius y. This set-up is shown in the interior
region of Fig. 1. The reason for forbidding surrounding PBHs closer than y is to exclude initial
configurations where the binary gets disrupted by surrounding PBHs shortly after formation.
In such cases the perturbative estimate of the coalescence time will inevitably fail. For the
sake of generality, we will not fix the value of y in the general discussion. The aim of the
following is to estimate the density of viable initial conditions and, from it, the distribution
of coalescence times and the merger rate. The spatial PBH distribution is assumed to be
Poisson throughout the paper.2 In this case the comoving number density of configurations
producing a binary is

dnb =
1

2
e
�N̄(y)dn(m1)dn(m2)dV (x0) , (2.18)

where dn(m) is the comoving number density of PBH in the mass range (m,m+ dm), ⇢DM

denotes the present DM energy density, N̄(y) ⌘ nV (y) is the expected number of PBH in a

2Based on general arguments, the spatial distribution at small scales has been shown to be well approx-
imated by the Poisson distribution [41]. It has been argued, however, that accounting for the two-point
function of PBHs, ⇠PBH, may a↵ect the merger rate for wider mass functions [13, 52, 53]. In Ref. [53] this
e↵ect was estimated to be irrelevant for PBHs in the LIGO mass range. In addition, a rough estimate yields
that for ⇠PBH 6 1 the contribution of the PBH two-point function to the merger rate is generally subleading
to the direct contribution of the width of the mass function [13]. Only the latter will thus be considered in
this paper. Formation of initially clustered PBH distributions, enabled by some more exotic PBH formation
mechanisms, and the evolution of such clusters has been considered in Ref. [54].
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From Bayes’ theorem, we obtain the probability distri-
bution of X for binaries merging after a time t0:

dP

dX

���
t0

/
d
2
P

dXdt

���
t0

/ e�X
P (�X) , t = t0. (27)

We now seek the value X⇤ for which this probability is
maximized. We will see that X⇤ ⌧ 1, so we approximate
e�X

⇡ 1. We then need to solve

0 =
@

@X


dP

dX

���
t0

�

X⇤

/ P
0(�X⇤)

@�X

@X
. (28)

Since �X is strictly monotonic, this implies P
0(�X⇤) = 0,

which is achieved for �X⇤ =
p

2, i.e.

j(t0; X⇤) =
p

2jX⇤ . (29)

Solving for X⇤, we obtain that the most probable value
of X for binaries merging today is

X⇤ ⇡ 0.032 f m
5/37(f2 + �

2
eq)

�21/74
. (30)

We show X⇤ in Fig. 2. We see that for all PBH masses
and fractions of interest, X⇤ ⌧ 1, indicating that PBH
binaries merging today are rare pairs with initial sepa-
ration much smaller than the characteristic inter-PBH
separation. This justifies our approximation to treat the
e↵ect of other PBHs as a perturbation on the nearly iso-
lated binary.

From our results in Sec. II B, the characteristic redshift
at which PBH binaries decouple from the Hubble flow is
z⇤ ⇡ 3zeq/(X⇤/f), which we show in Fig. 3. We find that
all binaries merging today typically form prior to matter-
radiation equality, and increasingly early for f & �eq.
The characteristic semi-major axis a⇤ is then obtained
from Eq. (11), and the characteristic angular momentum
j⇤ is simply j(t0, X⇤) =

p
2jX⇤, i.e., using Eq. (22),

j⇤ ⇡
1

p
2
(�2

eq + f
2)1/2(X⇤/f)

⇡ 0.023 m
5/37(�2

eq + f
2)8/37. (31)

We show the characteristic initial orbital parameters in
Fig. 4.

E. Merger rate

We now have all the required ingredients to compute
the merger rate. First of all, since the typical formation
time is prior to matter radiation equality, the time of
merger (i.e. the value of coordinate time since the Big
Bang) is approximately the time it takes to merge, for
binaries merging today. The probability distribution of
the time of merger is therefore

dP

dt
=

Z
dX

d
2
P

dXdt
=

1

7t

Z
dXe�X

P(�X). (32)
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FIG. 2. Characteristic rescaled initial comoving separation
X ⌘ (x/x)3 for PBH binaries that merge at the present time,
as a function of the fraction of dark matter in PBHs. The
curves are labeled by the PBH mass in units of M�. We see
that X⇤ ⌧ 1, indicating that PBH binaries merging today
are rare pairs with initial separation much smaller than the
characteristic inter-PBH separation. Here and in subsequent
figures, the change of slope at f ⇡ �eq ⇡ 0.005 is due to the
change in the dominant tidal torque, from large-scale density
perturbations at f . �eq to other PBHs at f & �eq.
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FIG. 3. Characteristic decoupling redshift of PBH binaries
merging at the present time, as a function of the fraction of
dark matter in PBHs. We see that PBH binaries typically
form around matter-radiation equality for fpbh . 0.01, and
much earlier for larger PBH fractions.

Since the integrand peaks at X⇤ ⌧ 1, we may set e�X =
1, and compute the integral analytically. Using �X /

X
�37/21, and �X⇤ =

p
2, we find

Z
dXP(�X) =

21

37

X⇤
p

2

Z
d�(�/

p
2)�58/37

P(�)

⇡ 0.59 X⇤. (33)

The merger rate per unit volume at the present time t0

is then obtained from

dNmerge

dtdV
=

1

2
f

⇢
0
m

M

dP

dt

���
t0

⇡ 0.042 X⇤
f⇢

0
m

Mt0
, (34)
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which is achieved for �X⇤ =
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2, i.e.

j(t0; X⇤) =
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of X for binaries merging today is

X⇤ ⇡ 0.032 f m
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. (30)

We show X⇤ in Fig. 2. We see that for all PBH masses
and fractions of interest, X⇤ ⌧ 1, indicating that PBH
binaries merging today are rare pairs with initial sepa-
ration much smaller than the characteristic inter-PBH
separation. This justifies our approximation to treat the
e↵ect of other PBHs as a perturbation on the nearly iso-
lated binary.

From our results in Sec. II B, the characteristic redshift
at which PBH binaries decouple from the Hubble flow is
z⇤ ⇡ 3zeq/(X⇤/f), which we show in Fig. 3. We find that
all binaries merging today typically form prior to matter-
radiation equality, and increasingly early for f & �eq.
The characteristic semi-major axis a⇤ is then obtained
from Eq. (11), and the characteristic angular momentum
j⇤ is simply j(t0, X⇤) =
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2jX⇤, i.e., using Eq. (22),

j⇤ ⇡
1

p
2
(�2

eq + f
2)1/2(X⇤/f)

⇡ 0.023 m
5/37(�2
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We show the characteristic initial orbital parameters in
Fig. 4.

E. Merger rate

We now have all the required ingredients to compute
the merger rate. First of all, since the typical formation
time is prior to matter radiation equality, the time of
merger (i.e. the value of coordinate time since the Big
Bang) is approximately the time it takes to merge, for
binaries merging today. The probability distribution of
the time of merger is therefore

dP

dt
=

Z
dX

d
2
P

dXdt
=

1

7t

Z
dXe�X

P(�X). (32)

��-� ����� ����� ����� �

��-�

�����

�����

�����

����

�*

m = 1000 30 1

FIG. 2. Characteristic rescaled initial comoving separation
X ⌘ (x/x)3 for PBH binaries that merge at the present time,
as a function of the fraction of dark matter in PBHs. The
curves are labeled by the PBH mass in units of M�. We see
that X⇤ ⌧ 1, indicating that PBH binaries merging today
are rare pairs with initial separation much smaller than the
characteristic inter-PBH separation. Here and in subsequent
figures, the change of slope at f ⇡ �eq ⇡ 0.005 is due to the
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perturbations at f . �eq to other PBHs at f & �eq.
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FIG. 3. Characteristic decoupling redshift of PBH binaries
merging at the present time, as a function of the fraction of
dark matter in PBHs. We see that PBH binaries typically
form around matter-radiation equality for fpbh . 0.01, and
much earlier for larger PBH fractions.

Since the integrand peaks at X⇤ ⌧ 1, we may set e�X =
1, and compute the integral analytically. Using �X /

X
�37/21, and �X⇤ =

p
2, we find

Z
dXP(�X) =

21

37

X⇤
p

2

Z
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2)�58/37
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⇡ 0.59 X⇤. (33)

The merger rate per unit volume at the present time t0

is then obtained from
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FIG. 4. Characteristic initial orbital elements (semi-major
axis a and reduced angular momentum j =

p
1� e2) of PBH

binaries merging at the present time.

where ⇢
0
m is the matter density at the present time, and

the factor 1/2 avoids double-counting of pairs .
We show the merger rate as a function of f in Fig. 5.

It scales as m
�32/37

⇡ m
�0.86. For f � �eq, it scales as

f
53/37

⇡ f
1.41, and for f ⌧ �eq it scales as f

2. Note that
this contrasts with the results of Ref. [9], which did not
account for torques by adiabatic density perturbations
(i.e. assumed �eq = 0). In their case, the merger rate
changes from / f

53/37 to / f
3 at f . 10�3, as PBH

binaries typically form after matter-radiation equality in
that case.

The next section is dedicated to check the most impor-
tant assumption underlying this rate estimate, namely
that between formation and merger, PBH binaries are
mostly una↵ected by their environment.

III. BINARY EVOLUTION BETWEEN
FORMATION AND MERGER

The goal of this section is to estimate the e↵ect of
interactions with the overall tidal field, other PBHs and
baryons after the binary has formed, once it is part of
non-linear structures.
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FIG. 5. PBH binary merger rate, as a function of PBH frac-
tion fpbh and mass m = M/M�.

A. Purely gravitational interactions

We begin by considering purely gravitational inter-
actions of PBH binaries with dark matter, whether in
the form of PBHs or otherwise. Before we start, let
us point out that if PBHs do not make all of the dark
matter, one must make assumptions about the rest of
it. Given that the scales currently probed by CMB
anisotropy and large-scale-structure measurements are
significantly larger than the scales of interest here, all
bets are open regarding the appropriate model. For in-
stance, the dark matter could be cold enough that its free
streaming length is below current limts from Ly-↵ forest
data [47], yet be e↵ectively warm on a scale containing a
few PBHs. Similarly, the dark matter could be an ultra-
light axion-like particle, massive enough to evade existing
constraints [1], yet light enough to have strong wavelike
e↵ects on the scales of interest. For definiteness, we shall
assume that the rest of the dark matter is made of cold,
collisionless particles with masses ⌧ M . In addition to
being the simplest scenario, it is also that where the dark
matter is expected to cluster the most, hence have the
largest gravitational e↵ects on PBH binaries. Making
this assumption is therefore conservative.

1. Characteristic properties of early halos

Consider a spherical region enclosing on average a total
mass Mh. The number N of PBHs it contains is Pois-
son distributed with mean hNi = fMh/M and variance
h(�N)2i = hNi. For hNi � 1, the distribution of per-
turbations on that mass scale is nearly Gaussian, with
variance at equality

�
2(Mh; eq) ⇡ �

2
eq +

f
2

hNi
= �

2
eq + f

M

Mh
. (35)

Let us remark that the scales relevant to this section
are typically larger than those relevant to the calculation

j =
p
1� e2
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From Bayes’ theorem, we obtain the probability distri-
bution of X for binaries merging after a time t0:
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We now seek the value X⇤ for which this probability is
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Since �X is strictly monotonic, this implies P
0(�X⇤) = 0,

which is achieved for �X⇤ =
p

2, i.e.

j(t0; X⇤) =
p

2jX⇤ . (29)

Solving for X⇤, we obtain that the most probable value
of X for binaries merging today is

X⇤ ⇡ 0.032 f m
5/37(f2 + �

2
eq)

�21/74
. (30)

We show X⇤ in Fig. 2. We see that for all PBH masses
and fractions of interest, X⇤ ⌧ 1, indicating that PBH
binaries merging today are rare pairs with initial sepa-
ration much smaller than the characteristic inter-PBH
separation. This justifies our approximation to treat the
e↵ect of other PBHs as a perturbation on the nearly iso-
lated binary.

From our results in Sec. II B, the characteristic redshift
at which PBH binaries decouple from the Hubble flow is
z⇤ ⇡ 3zeq/(X⇤/f), which we show in Fig. 3. We find that
all binaries merging today typically form prior to matter-
radiation equality, and increasingly early for f & �eq.
The characteristic semi-major axis a⇤ is then obtained
from Eq. (11), and the characteristic angular momentum
j⇤ is simply j(t0, X⇤) =

p
2jX⇤, i.e., using Eq. (22),

j⇤ ⇡
1

p
2
(�2

eq + f
2)1/2(X⇤/f)

⇡ 0.023 m
5/37(�2

eq + f
2)8/37. (31)

We show the characteristic initial orbital parameters in
Fig. 4.

E. Merger rate

We now have all the required ingredients to compute
the merger rate. First of all, since the typical formation
time is prior to matter radiation equality, the time of
merger (i.e. the value of coordinate time since the Big
Bang) is approximately the time it takes to merge, for
binaries merging today. The probability distribution of
the time of merger is therefore

dP
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=
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=
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P(�X). (32)
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figures, the change of slope at f ⇡ �eq ⇡ 0.005 is due to the
change in the dominant tidal torque, from large-scale density
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merging at the present time, as a function of the fraction of
dark matter in PBHs. We see that PBH binaries typically
form around matter-radiation equality for fpbh . 0.01, and
much earlier for larger PBH fractions.

Since the integrand peaks at X⇤ ⌧ 1, we may set e�X =
1, and compute the integral analytically. Using �X /

X
�37/21, and �X⇤ =

p
2, we find

Z
dXP(�X) =

21

37
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⇡ 0.59 X⇤. (33)

The merger rate per unit volume at the present time t0

is then obtained from
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FIG. 4. Characteristic initial orbital elements (semi-major
axis a and reduced angular momentum j =

p
1� e2) of PBH

binaries merging at the present time.

where ⇢
0
m is the matter density at the present time, and

the factor 1/2 avoids double-counting of pairs .
We show the merger rate as a function of f in Fig. 5.

It scales as m
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⇡ m
�0.86. For f � �eq, it scales as

f
53/37
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1.41, and for f ⌧ �eq it scales as f

2. Note that
this contrasts with the results of Ref. [9], which did not
account for torques by adiabatic density perturbations
(i.e. assumed �eq = 0). In their case, the merger rate
changes from / f

53/37 to / f
3 at f . 10�3, as PBH

binaries typically form after matter-radiation equality in
that case.

The next section is dedicated to check the most impor-
tant assumption underlying this rate estimate, namely
that between formation and merger, PBH binaries are
mostly una↵ected by their environment.

III. BINARY EVOLUTION BETWEEN
FORMATION AND MERGER

The goal of this section is to estimate the e↵ect of
interactions with the overall tidal field, other PBHs and
baryons after the binary has formed, once it is part of
non-linear structures.
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FIG. 5. PBH binary merger rate, as a function of PBH frac-
tion fpbh and mass m = M/M�.

A. Purely gravitational interactions

We begin by considering purely gravitational inter-
actions of PBH binaries with dark matter, whether in
the form of PBHs or otherwise. Before we start, let
us point out that if PBHs do not make all of the dark
matter, one must make assumptions about the rest of
it. Given that the scales currently probed by CMB
anisotropy and large-scale-structure measurements are
significantly larger than the scales of interest here, all
bets are open regarding the appropriate model. For in-
stance, the dark matter could be cold enough that its free
streaming length is below current limts from Ly-↵ forest
data [47], yet be e↵ectively warm on a scale containing a
few PBHs. Similarly, the dark matter could be an ultra-
light axion-like particle, massive enough to evade existing
constraints [1], yet light enough to have strong wavelike
e↵ects on the scales of interest. For definiteness, we shall
assume that the rest of the dark matter is made of cold,
collisionless particles with masses ⌧ M . In addition to
being the simplest scenario, it is also that where the dark
matter is expected to cluster the most, hence have the
largest gravitational e↵ects on PBH binaries. Making
this assumption is therefore conservative.

1. Characteristic properties of early halos

Consider a spherical region enclosing on average a total
mass Mh. The number N of PBHs it contains is Pois-
son distributed with mean hNi = fMh/M and variance
h(�N)2i = hNi. For hNi � 1, the distribution of per-
turbations on that mass scale is nearly Gaussian, with
variance at equality

�
2(Mh; eq) ⇡ �

2
eq +

f
2

hNi
= �

2
eq + f

M

Mh
. (35)

Let us remark that the scales relevant to this section
are typically larger than those relevant to the calculation

j =
p
1� e2
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1. Estimate of the work and torque on the binary

Let us first consider a quasi-spherical accretion flow
onto the binary. Assuming the binary separation is less
than the Bondi radius, the characteristic velocity of the
gas at the orbital separation is of order the free fall
velocity, which is of the order of the orbital velocity
v ⇠

p
M/a. The drag force on each black hole is of the

order Ṁv, i.e., if we assume the Bondi-Hoyle-Lyttleton
accretion rate locally onto each black hole, [57–59],

Mv̇ ⇠ �4⇡⇢
(a)
gas

M
2

v3
v ⇠ �4⇡⇢

(a)
gasMa, (80)

where ⇢
(a)
gas is the local gas density. Now, the total accre-

tion rate on the binary is such that Ṁ = 4⇡⇢gasr
2
vr =

constant, so the gas density at the binary’s orbit is of

order 4⇡⇢
(a)
gas ⇠ Ṁ/(a2

p
M/a). Hence we get

Mv̇ ⇠ �Ṁ

p
M/a. (81)

The binary loses energy at a rate Ė ⇠ Mv̇v and angular
momentum at a rate L̇ ⇠ Mv̇a, i.e., denoting the binary’s
total mass by Mbin = 2M , we get

Ė = �A Ṁ
Mbin

a
, (82)

L̇ = �B Ṁ

p
Mbina, (83)

where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density ⌃ and e↵ective shear vis-
cosity ⌫. The disk is truncated at an inner edge rin, where
viscous torques balance gravitational torques [60]. This
inner edge is typically around one of the lowest Lindblad
resonances [61], i.e. rin ⇠ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-
cosity parameters. The torque L̇ on the binary is the op-
posite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e. [60]

L̇ ⇠ �3⇡⌫⌃
p

Mbinrin. (84)

The e↵ective viscosity also determines the radial inflow,
hence the accretion rate [63]:

Ṁ ⇠ 3⇡⌫⌃. (85)

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
the form � / �ml(r)ei(m✓�l⌦bt), where ✓ is the polar
angle and ⌦b ⌘

p
Mbin/a3, the combination E �

l
m⌦bL

is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
to Eq. (82). Here again, the parameter A depends on
eccentricity and the details of the accretion disks, but
should be of order unity.

Therefore, we expect the simple relations (82) and (83)
to hold under rather general circumstances. From these

relations, and using E = �
1
8M

2
bin/a and L = 1

4M
3/2
bin a

1/2
j

for an equal-mass binary, it is straightforward to show
that

ȧ

a
⇠

dj

dt
⇠ �

Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little di↵erence
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, hṀi ⇡ ṀB. Since the total change in orbital
parameters is proportional to

R
dtṀ/M , it is this long-

timescale accretion rate that is relevant, rather than the
possibly large short-time fluctuations. We denote by
ṁ ⌘ Ṁ/ṀEdd, where3 ṀEddc

2
⌘ LEdd ⇡ 2 Mc

2 Gyr�1

is the Eddington luminosity. We therefore have
Z

dt
Ṁ

M
⇠ 2

Z
ṁ dt

Gyr
. (87)

2 We thank Geo↵rey Ryan for pointing this out.
3 Our convention follows that of Refs. [23, 24] but di↵ers from
the accretion-disk litterature where ṀEdd is often defined with
a factor of 10 larger.

We estimated
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The rate of accretion from the background baryon gas
was computed in Ref. [24] accounting for relative motions
of baryons and PBHs and Compton cooling and heating.
At redshifts less than a few hundred, which dominate the
integral, the characteristic dimensionless accretion rate
they find is ṁ ⇠ 10�5(M/M�). Therefore, we get

Z tmax

dt
Ṁ

M
⇠ 2 ⇥ 10�5 tmax

Gyr

M

M�
. (88)

At low enough redshift, once the binaries are part of large
halos, we expect the accretion to be cuto↵ due to the
large non-linear velocities and heating of the gas [23].
Cutting o↵ the integration at z ⇡ 10 corresponds to
tmax ⇠ 0.5 Gyr, so we get

Z
dt

Ṁ

M
⇠ 10�5 M

M�
, (89)

which matches what Ref. [45] estimated from the results
of Ref. [23]. Therefore we conclude that, even if the co-
e�cient in Eq. (86) is ⇠ 10 � 100, the semi-major axis
should not be significantly a↵ected by an accretion disk.
This contrasts with the results of Ref. [45] who found
an orbital decay timescale much shorter than the Hubble
time. The di↵erence can be traced back to their esti-
mate of the characteristic disk mass Mcbd ⌘ ⇡a

2⌃ by
Mcbd ⇠ H

�1
Ṁ , instead of the more appropriate order

of magnitude Mcbd ⇠ tviscṀ . Ref. [45] therefore seem to
have overestimated the e↵ect of the accretion disk by a
factor ⇠ H

�1
/tvisc � 1. Nevertheless, if the coe�cient

in Eq. (86) is large, and for large enough PBH masses,
the change in j, while small in absolute value, could still
exceed the characteristic initial value for PBH binaries
merging today (see Fig. 4).

If this is the case, and accretion e�ciently extracts
angular momentum, binaries that would have otherwise
merged today may merge much earlier on. In the extreme
case where most binaries merge quickly, a high-redshift
gravitational-wave background would result [45]. Con-
versely, if accretion tends to circularize eccentric bina-
ries, they may merge on a much longer timescale. More
generally, if accretion significantly a↵ects orbital param-
eters, the probability distribution of merger times, hence
the merger rate, could be drastically di↵erent from what
we have estimated in Section II. This warrants further
work, most likely numerical simulations, to investigate
this issue in more detail.

IV. PBH BINARY FORMATION IN
PRESENT-DAY HALOS

It was pointed out in Ref. [8] (hereafter, BCM) that
PBH binaries can also form in present-day halos through
gravitational bremsstrahlung: if two PBHs pass close
enough to each other, they may radiate a su�cient
amount of energy in gravitational waves to become
bound. The binaries formed through this pathway are

typically very tight and highly eccentric [10], and co-
alesce within a timescale much shorter than a Hubble
time, so that the merger rate is approximately equal to
the capture rate. BCM found that the merger rate is
dominated by the smallest halos, of a few hundred solar
masses, and is of order ⇠ 1 Gpc�3 yr�1 if PBHs make
all of the dark matter. This is significantly lower than
the merger rate of binaries formed in the early Universe.
However, the calculation of BCM did not account for the
contribution of Poisson fluctuations to density pertur-
bations when estimating the characteristic density and
velocity dispersion of the smallest halos. Given how sen-
sitively these depend on the variance of perturbations,
it is worth revisiting this calculation. Throughout this
section we assume f = 1.

A. General considerations

The cross section for two equal masses to become
bound due to gravitational radiation is [67]

�gw(v) = 4⇡

✓
85⇡

3

◆2/7
M

2

v18/7
⇡ 45

M
2

v18/7
, (90)

where v is the relative velocity of the two PBHs at large
separation. The rate of binary formation in a given halo
is therefore

� =
1

2

Z
d
3
r
⇢(r)2

M2
hv�gwi(r) ⇠ 20 Mh⇢hv

�11/7
h . (91)

Using Eq. (38) for virialized halos, we have vh ⇠

2M
1/3
h ⇢

1/6
h , so that

� ⇠ 10 M
10/21
h ⇢

31/42
h . (92)

A simple prescription for the characteristic halo density
is that it is ⇠ 200 times the mean density at the time
of collapse. Neglecting the e↵ect of dark energy at low
redshift, the characteristic redshift of collapse of pertur-
bations of mass Mh is

zcoll ⇠ �(Mh), (93)

where �(Mh) is the variance of linear perturbations on
the mass scale Mh extrapolated to the present time.
Therefore,

⇢h ⇠ 200 [�(Mh)]3 ⇢
0
m. (94)

Note that this is consistent with the asymptotic be-
havior of the fitting formula of Ref. [68] for the
mass-concentration relation: for NFW profiles, ⇢h ⇠

200 ⇢
0
m c

3, and the concentration c scales nearly linearly
with �(Mh) at large values. This implies

� ⇠ 450
�
⇢
0
m

�31/42
M

10/21
h [�(Mh)]31/14. (95)

and
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1. Estimate of the work and torque on the binary

Let us first consider a quasi-spherical accretion flow
onto the binary. Assuming the binary separation is less
than the Bondi radius, the characteristic velocity of the
gas at the orbital separation is of order the free fall
velocity, which is of the order of the orbital velocity
v ⇠

p
M/a. The drag force on each black hole is of the

order Ṁv, i.e., if we assume the Bondi-Hoyle-Lyttleton
accretion rate locally onto each black hole, [57–59],

Mv̇ ⇠ �4⇡⇢
(a)
gas

M
2

v3
v ⇠ �4⇡⇢

(a)
gasMa, (80)

where ⇢
(a)
gas is the local gas density. Now, the total accre-

tion rate on the binary is such that Ṁ = 4⇡⇢gasr
2
vr =

constant, so the gas density at the binary’s orbit is of

order 4⇡⇢
(a)
gas ⇠ Ṁ/(a2

p
M/a). Hence we get

Mv̇ ⇠ �Ṁ

p
M/a. (81)

The binary loses energy at a rate Ė ⇠ Mv̇v and angular
momentum at a rate L̇ ⇠ Mv̇a, i.e., denoting the binary’s
total mass by Mbin = 2M , we get

Ė = �A Ṁ
Mbin

a
, (82)

L̇ = �B Ṁ

p
Mbina, (83)

where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density ⌃ and e↵ective shear vis-
cosity ⌫. The disk is truncated at an inner edge rin, where
viscous torques balance gravitational torques [60]. This
inner edge is typically around one of the lowest Lindblad
resonances [61], i.e. rin ⇠ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-
cosity parameters. The torque L̇ on the binary is the op-
posite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e. [60]

L̇ ⇠ �3⇡⌫⌃
p

Mbinrin. (84)

The e↵ective viscosity also determines the radial inflow,
hence the accretion rate [63]:

Ṁ ⇠ 3⇡⌫⌃. (85)

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
the form � / �ml(r)ei(m✓�l⌦bt), where ✓ is the polar
angle and ⌦b ⌘

p
Mbin/a3, the combination E �

l
m⌦bL

is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
to Eq. (82). Here again, the parameter A depends on
eccentricity and the details of the accretion disks, but
should be of order unity.

Therefore, we expect the simple relations (82) and (83)
to hold under rather general circumstances. From these

relations, and using E = �
1
8M

2
bin/a and L = 1

4M
3/2
bin a

1/2
j

for an equal-mass binary, it is straightforward to show
that

ȧ

a
⇠

dj

dt
⇠ �

Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little di↵erence
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, hṀi ⇡ ṀB. Since the total change in orbital
parameters is proportional to

R
dtṀ/M , it is this long-

timescale accretion rate that is relevant, rather than the
possibly large short-time fluctuations. We denote by
ṁ ⌘ Ṁ/ṀEdd, where3 ṀEddc

2
⌘ LEdd ⇡ 2 Mc

2 Gyr�1

is the Eddington luminosity. We therefore have
Z

dt
Ṁ

M
⇠ 2

Z
ṁ dt

Gyr
. (87)

2 We thank Geo↵rey Ryan for pointing this out.
3 Our convention follows that of Refs. [23, 24] but di↵ers from
the accretion-disk litterature where ṀEdd is often defined with
a factor of 10 larger.
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The rate of accretion from the background baryon gas
was computed in Ref. [24] accounting for relative motions
of baryons and PBHs and Compton cooling and heating.
At redshifts less than a few hundred, which dominate the
integral, the characteristic dimensionless accretion rate
they find is ṁ ⇠ 10�5(M/M�). Therefore, we get

Z tmax

dt
Ṁ

M
⇠ 2 ⇥ 10�5 tmax

Gyr

M

M�
. (88)

At low enough redshift, once the binaries are part of large
halos, we expect the accretion to be cuto↵ due to the
large non-linear velocities and heating of the gas [23].
Cutting o↵ the integration at z ⇡ 10 corresponds to
tmax ⇠ 0.5 Gyr, so we get

Z
dt

Ṁ

M
⇠ 10�5 M

M�
, (89)

which matches what Ref. [45] estimated from the results
of Ref. [23]. Therefore we conclude that, even if the co-
e�cient in Eq. (86) is ⇠ 10 � 100, the semi-major axis
should not be significantly a↵ected by an accretion disk.
This contrasts with the results of Ref. [45] who found
an orbital decay timescale much shorter than the Hubble
time. The di↵erence can be traced back to their esti-
mate of the characteristic disk mass Mcbd ⌘ ⇡a

2⌃ by
Mcbd ⇠ H

�1
Ṁ , instead of the more appropriate order

of magnitude Mcbd ⇠ tviscṀ . Ref. [45] therefore seem to
have overestimated the e↵ect of the accretion disk by a
factor ⇠ H

�1
/tvisc � 1. Nevertheless, if the coe�cient

in Eq. (86) is large, and for large enough PBH masses,
the change in j, while small in absolute value, could still
exceed the characteristic initial value for PBH binaries
merging today (see Fig. 4).

If this is the case, and accretion e�ciently extracts
angular momentum, binaries that would have otherwise
merged today may merge much earlier on. In the extreme
case where most binaries merge quickly, a high-redshift
gravitational-wave background would result [45]. Con-
versely, if accretion tends to circularize eccentric bina-
ries, they may merge on a much longer timescale. More
generally, if accretion significantly a↵ects orbital param-
eters, the probability distribution of merger times, hence
the merger rate, could be drastically di↵erent from what
we have estimated in Section II. This warrants further
work, most likely numerical simulations, to investigate
this issue in more detail.

IV. PBH BINARY FORMATION IN
PRESENT-DAY HALOS

It was pointed out in Ref. [8] (hereafter, BCM) that
PBH binaries can also form in present-day halos through
gravitational bremsstrahlung: if two PBHs pass close
enough to each other, they may radiate a su�cient
amount of energy in gravitational waves to become
bound. The binaries formed through this pathway are

typically very tight and highly eccentric [10], and co-
alesce within a timescale much shorter than a Hubble
time, so that the merger rate is approximately equal to
the capture rate. BCM found that the merger rate is
dominated by the smallest halos, of a few hundred solar
masses, and is of order ⇠ 1 Gpc�3 yr�1 if PBHs make
all of the dark matter. This is significantly lower than
the merger rate of binaries formed in the early Universe.
However, the calculation of BCM did not account for the
contribution of Poisson fluctuations to density pertur-
bations when estimating the characteristic density and
velocity dispersion of the smallest halos. Given how sen-
sitively these depend on the variance of perturbations,
it is worth revisiting this calculation. Throughout this
section we assume f = 1.

A. General considerations

The cross section for two equal masses to become
bound due to gravitational radiation is [67]

�gw(v) = 4⇡

✓
85⇡

3

◆2/7
M

2

v18/7
⇡ 45

M
2

v18/7
, (90)

where v is the relative velocity of the two PBHs at large
separation. The rate of binary formation in a given halo
is therefore

� =
1

2

Z
d
3
r
⇢(r)2

M2
hv�gwi(r) ⇠ 20 Mh⇢hv

�11/7
h . (91)

Using Eq. (38) for virialized halos, we have vh ⇠

2M
1/3
h ⇢

1/6
h , so that

� ⇠ 10 M
10/21
h ⇢

31/42
h . (92)

A simple prescription for the characteristic halo density
is that it is ⇠ 200 times the mean density at the time
of collapse. Neglecting the e↵ect of dark energy at low
redshift, the characteristic redshift of collapse of pertur-
bations of mass Mh is

zcoll ⇠ �(Mh), (93)

where �(Mh) is the variance of linear perturbations on
the mass scale Mh extrapolated to the present time.
Therefore,

⇢h ⇠ 200 [�(Mh)]3 ⇢
0
m. (94)

Note that this is consistent with the asymptotic be-
havior of the fitting formula of Ref. [68] for the
mass-concentration relation: for NFW profiles, ⇢h ⇠

200 ⇢
0
m c

3, and the concentration c scales nearly linearly
with �(Mh) at large values. This implies

� ⇠ 450
�
⇢
0
m

�31/42
M

10/21
h [�(Mh)]31/14. (95)

and

Comparing to typical initial j implies that circumbinary accretion 
might significantly torque sufficiently massive PBH binaries
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1. Estimate of the work and torque on the binary

Let us first consider a quasi-spherical accretion flow
onto the binary. Assuming the binary separation is less
than the Bondi radius, the characteristic velocity of the
gas at the orbital separation is of order the free fall
velocity, which is of the order of the orbital velocity
v ⇠

p
M/a. The drag force on each black hole is of the

order Ṁv, i.e., if we assume the Bondi-Hoyle-Lyttleton
accretion rate locally onto each black hole, [57–59],
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where ⇢
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gas is the local gas density. Now, the total accre-

tion rate on the binary is such that Ṁ = 4⇡⇢gasr
2
vr =

constant, so the gas density at the binary’s orbit is of

order 4⇡⇢
(a)
gas ⇠ Ṁ/(a2

p
M/a). Hence we get

Mv̇ ⇠ �Ṁ

p
M/a. (81)

The binary loses energy at a rate Ė ⇠ Mv̇v and angular
momentum at a rate L̇ ⇠ Mv̇a, i.e., denoting the binary’s
total mass by Mbin = 2M , we get

Ė = �A Ṁ
Mbin

a
, (82)

L̇ = �B Ṁ

p
Mbina, (83)

where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density ⌃ and e↵ective shear vis-
cosity ⌫. The disk is truncated at an inner edge rin, where
viscous torques balance gravitational torques [60]. This
inner edge is typically around one of the lowest Lindblad
resonances [61], i.e. rin ⇠ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-
cosity parameters. The torque L̇ on the binary is the op-
posite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e. [60]

L̇ ⇠ �3⇡⌫⌃
p

Mbinrin. (84)

The e↵ective viscosity also determines the radial inflow,
hence the accretion rate [63]:

Ṁ ⇠ 3⇡⌫⌃. (85)

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
the form � / �ml(r)ei(m✓�l⌦bt), where ✓ is the polar
angle and ⌦b ⌘

p
Mbin/a3, the combination E �

l
m⌦bL

is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
to Eq. (82). Here again, the parameter A depends on
eccentricity and the details of the accretion disks, but
should be of order unity.

Therefore, we expect the simple relations (82) and (83)
to hold under rather general circumstances. From these

relations, and using E = �
1
8M

2
bin/a and L = 1

4M
3/2
bin a

1/2
j

for an equal-mass binary, it is straightforward to show
that

ȧ

a
⇠

dj

dt
⇠ �

Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little di↵erence
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, hṀi ⇡ ṀB. Since the total change in orbital
parameters is proportional to

R
dtṀ/M , it is this long-

timescale accretion rate that is relevant, rather than the
possibly large short-time fluctuations. We denote by
ṁ ⌘ Ṁ/ṀEdd, where3 ṀEddc

2
⌘ LEdd ⇡ 2 Mc

2 Gyr�1

is the Eddington luminosity. We therefore have
Z

dt
Ṁ

M
⇠ 2

Z
ṁ dt

Gyr
. (87)

2 We thank Geo↵rey Ryan for pointing this out.
3 Our convention follows that of Refs. [23, 24] but di↵ers from
the accretion-disk litterature where ṀEdd is often defined with
a factor of 10 larger.
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The rate of accretion from the background baryon gas
was computed in Ref. [24] accounting for relative motions
of baryons and PBHs and Compton cooling and heating.
At redshifts less than a few hundred, which dominate the
integral, the characteristic dimensionless accretion rate
they find is ṁ ⇠ 10�5(M/M�). Therefore, we get

Z tmax

dt
Ṁ

M
⇠ 2 ⇥ 10�5 tmax

Gyr

M

M�
. (88)

At low enough redshift, once the binaries are part of large
halos, we expect the accretion to be cuto↵ due to the
large non-linear velocities and heating of the gas [23].
Cutting o↵ the integration at z ⇡ 10 corresponds to
tmax ⇠ 0.5 Gyr, so we get

Z
dt

Ṁ

M
⇠ 10�5 M

M�
, (89)

which matches what Ref. [45] estimated from the results
of Ref. [23]. Therefore we conclude that, even if the co-
e�cient in Eq. (86) is ⇠ 10 � 100, the semi-major axis
should not be significantly a↵ected by an accretion disk.
This contrasts with the results of Ref. [45] who found
an orbital decay timescale much shorter than the Hubble
time. The di↵erence can be traced back to their esti-
mate of the characteristic disk mass Mcbd ⌘ ⇡a

2⌃ by
Mcbd ⇠ H

�1
Ṁ , instead of the more appropriate order

of magnitude Mcbd ⇠ tviscṀ . Ref. [45] therefore seem to
have overestimated the e↵ect of the accretion disk by a
factor ⇠ H

�1
/tvisc � 1. Nevertheless, if the coe�cient

in Eq. (86) is large, and for large enough PBH masses,
the change in j, while small in absolute value, could still
exceed the characteristic initial value for PBH binaries
merging today (see Fig. 4).

If this is the case, and accretion e�ciently extracts
angular momentum, binaries that would have otherwise
merged today may merge much earlier on. In the extreme
case where most binaries merge quickly, a high-redshift
gravitational-wave background would result [45]. Con-
versely, if accretion tends to circularize eccentric bina-
ries, they may merge on a much longer timescale. More
generally, if accretion significantly a↵ects orbital param-
eters, the probability distribution of merger times, hence
the merger rate, could be drastically di↵erent from what
we have estimated in Section II. This warrants further
work, most likely numerical simulations, to investigate
this issue in more detail.

IV. PBH BINARY FORMATION IN
PRESENT-DAY HALOS

It was pointed out in Ref. [8] (hereafter, BCM) that
PBH binaries can also form in present-day halos through
gravitational bremsstrahlung: if two PBHs pass close
enough to each other, they may radiate a su�cient
amount of energy in gravitational waves to become
bound. The binaries formed through this pathway are

typically very tight and highly eccentric [10], and co-
alesce within a timescale much shorter than a Hubble
time, so that the merger rate is approximately equal to
the capture rate. BCM found that the merger rate is
dominated by the smallest halos, of a few hundred solar
masses, and is of order ⇠ 1 Gpc�3 yr�1 if PBHs make
all of the dark matter. This is significantly lower than
the merger rate of binaries formed in the early Universe.
However, the calculation of BCM did not account for the
contribution of Poisson fluctuations to density pertur-
bations when estimating the characteristic density and
velocity dispersion of the smallest halos. Given how sen-
sitively these depend on the variance of perturbations,
it is worth revisiting this calculation. Throughout this
section we assume f = 1.

A. General considerations

The cross section for two equal masses to become
bound due to gravitational radiation is [67]

�gw(v) = 4⇡

✓
85⇡

3

◆2/7
M

2

v18/7
⇡ 45

M
2

v18/7
, (90)

where v is the relative velocity of the two PBHs at large
separation. The rate of binary formation in a given halo
is therefore

� =
1

2

Z
d
3
r
⇢(r)2

M2
hv�gwi(r) ⇠ 20 Mh⇢hv

�11/7
h . (91)

Using Eq. (38) for virialized halos, we have vh ⇠

2M
1/3
h ⇢

1/6
h , so that

� ⇠ 10 M
10/21
h ⇢

31/42
h . (92)

A simple prescription for the characteristic halo density
is that it is ⇠ 200 times the mean density at the time
of collapse. Neglecting the e↵ect of dark energy at low
redshift, the characteristic redshift of collapse of pertur-
bations of mass Mh is

zcoll ⇠ �(Mh), (93)

where �(Mh) is the variance of linear perturbations on
the mass scale Mh extrapolated to the present time.
Therefore,

⇢h ⇠ 200 [�(Mh)]3 ⇢
0
m. (94)

Note that this is consistent with the asymptotic be-
havior of the fitting formula of Ref. [68] for the
mass-concentration relation: for NFW profiles, ⇢h ⇠

200 ⇢
0
m c

3, and the concentration c scales nearly linearly
with �(Mh) at large values. This implies

� ⇠ 450
�
⇢
0
m

�31/42
M

10/21
h [�(Mh)]31/14. (95)

and

=> To be checked with numerical simulations. Any takers?

Comparing to typical initial j implies that circumbinary accretion 
might significantly torque sufficiently massive PBH binaries
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strong scaling of the merger time with a and j, the final
merger time will not be changed substantially by the DM
halo. Indeed, substituting Eq. (27) into Eq. (11), we find
that,

tf =
r

ai

af
ti , (28)

where ti and tf are the initial and final merger times of
the binary, before and after the impact of the DM halo
are taken into account. As we see in Fig. 9, the semi-
major axis is typically not reduced by more than a factor
of 10, meaning that the merger time is unlikely to be
reduced by more than a factor of a few.

IV. MERGER RATES AND CONSTRAINTS ON
THE PBH DENSITY

We can now combine the various findings described in
the previous sections in order to compute the impact of
DM mini-halos on the primordial BBH merger rate and
the corresponding LIGO limit on the PBH fraction.

Let us recap in detail the prescription we follow:

• We begin with the distribution of orbital elements
(a, e), or equivalently (a, j), for PBH binaries in the
early Universe, as described in Sec. II C.

• For a PBH binary with a given semi-major axis, we
estimate the redshift zdec at which the pair decou-
ples from the Hubble flow, and calculate the DM
halo mass accreted at that redshift.

• We compute the final semi-major axis and eccen-
tricity of the binary adopting the relations derived
above – summarized by Eqs. (24) and (27) – in
order to calculate the new distribution of orbital
elements (a, e).

• Once this remapping is performed, we calculate
the corresponding distribution of merger times and,
eventually, we obtain: 1) The merger rate today of
PBH binaries formed in the early Universe (to be
compared to the one derived by assuming the orig-
inal distribution of orbital elements derived in [17]
and given by Eq. (5)); 2) The corresponding limit
on the fraction of DM in PBHs.

Let us now present and discuss the details of this pro-
cedure, and the two main results of the calculation.

FIG. 10. Primordial Black Hole merger rate, averaged
between z = 0 and z = 1, as a function of the DM
fraction. Dotted lines: Merger rate for the “naked” PBH
binary distribution derived in [17]. Solid lines: Merger rate
for the “dressed” PBH binary distribution, with the e↵ect
of dynamical friction taken into account, as derived in the
present work. Gray band: Merger rate inferred by the LIGO
and Virgo collaboration, from [13].

A. Merger Rate Today

The merger rate of primordial BBHs at present time6

is given by:

R0 = nPBHP (tmerge = tuniv) , (29)

where nPBH is the comoving number density of PBHs and
tuniv ⇡ 13.7 Gyr is the age of the Universe. However,
since LIGO probes mergers approximately in the range
z 2 [0, 1], we consider the rate averaged over redshift:

hRi = nPBH

Z 1

0
P (t[z]) dz . (30)

We now compute the probability distribution of the
merger time for both the original PDF given by Eq. (5),
and for the remapped one, that takes into account the
impact of DM dresses.
In the former case, the computation can be carried

out analytically by performing a change of variables and
a marginalization over the semi-major axis as follows:

P (t) =

Z amax

amin

P (a, j(a, t))

✓
dj

dt

◆
da , (31)

6 Note that R is the comoving merger rate density in the source
frame.

Shrinks the initial orbit and circularizes it, merger time mostly unaffected. 
But: only consider isolated binaries, until they decouple from Hubble flow.



• Distant encounters with other PBHs 

• Close encounters with other PBHs 

• Dynamical friction by dark matter particles with m << M

Estimated analytically and found to be negligible: 

• Torques by the smooth halo tidal field

➡ What is the effect of the first non-linear structures?



➡ To be checked numerically

Inman & Ali-Haïmoud, 
in preparation

Snapshots of (30 kpc/h)3 simulations, at z = 100, for different PBH fractions



(30 kpc/h)3 simulations by Derek Inman 
[Inman & Ali-Haïmoud, in prep]



(30 kpc/h)3 simulations by Derek Inman 
[Inman & Ali-Haïmoud, in prep]



Conclusions
• Did LIGO detect PBH dark matter?   Not excluded: LIGO is currently the most 

sensitive probe of PBHs of ~1-500 Msun. But if so, most likely a subdominant 
component of dark matter, forming binaries in the early Universe  

• To test the PBH hypothesis with GWs: mass function (Kovetz 17), correlation 
with LSS (Raccanelli++ 16), eccentricity (Cholis++ 16), spin (Mirbabayi et al 2019)

• First things first: merger rate/SGWB needs 
to be robustly confirmed by simulations

• Simulations also needed for EM signatures of PBHs: 
Accretion onto individual and binary PBHs, effect of first 
structures on the formation of the first stars…
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1. Estimate of the work and torque on the binary

Let us first consider a quasi-spherical accretion flow
onto the binary. Assuming the binary separation is less
than the Bondi radius, the characteristic velocity of the
gas at the orbital separation is of order the free fall
velocity, which is of the order of the orbital velocity
v ⇠

p
M/a. The drag force on each black hole is of the

order Ṁv, i.e., if we assume the Bondi-Hoyle-Lyttleton
accretion rate locally onto each black hole, [57–59],

Mv̇ ⇠ �4⇡⇢
(a)
gas

M
2

v3
v ⇠ �4⇡⇢

(a)
gasMa, (80)

where ⇢
(a)
gas is the local gas density. Now, the total accre-

tion rate on the binary is such that Ṁ = 4⇡⇢gasr
2
vr =

constant, so the gas density at the binary’s orbit is of

order 4⇡⇢
(a)
gas ⇠ Ṁ/(a2

p
M/a). Hence we get

Mv̇ ⇠ �Ṁ

p
M/a. (81)

The binary loses energy at a rate Ė ⇠ Mv̇v and angular
momentum at a rate L̇ ⇠ Mv̇a, i.e., denoting the binary’s
total mass by Mbin = 2M , we get

Ė = �A Ṁ
Mbin

a
, (82)

L̇ = �B Ṁ

p
Mbina, (83)

where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density ⌃ and e↵ective shear vis-
cosity ⌫. The disk is truncated at an inner edge rin, where
viscous torques balance gravitational torques [60]. This
inner edge is typically around one of the lowest Lindblad
resonances [61], i.e. rin ⇠ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-
cosity parameters. The torque L̇ on the binary is the op-
posite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e. [60]

L̇ ⇠ �3⇡⌫⌃
p

Mbinrin. (84)

The e↵ective viscosity also determines the radial inflow,
hence the accretion rate [63]:

Ṁ ⇠ 3⇡⌫⌃. (85)

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
the form � / �ml(r)ei(m✓�l⌦bt), where ✓ is the polar
angle and ⌦b ⌘

p
Mbin/a3, the combination E �

l
m⌦bL

is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
to Eq. (82). Here again, the parameter A depends on
eccentricity and the details of the accretion disks, but
should be of order unity.

Therefore, we expect the simple relations (82) and (83)
to hold under rather general circumstances. From these

relations, and using E = �
1
8M

2
bin/a and L = 1

4M
3/2
bin a

1/2
j

for an equal-mass binary, it is straightforward to show
that

ȧ

a
⇠

dj

dt
⇠ �

Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little di↵erence
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, hṀi ⇡ ṀB. Since the total change in orbital
parameters is proportional to

R
dtṀ/M , it is this long-

timescale accretion rate that is relevant, rather than the
possibly large short-time fluctuations. We denote by
ṁ ⌘ Ṁ/ṀEdd, where3 ṀEddc

2
⌘ LEdd ⇡ 2 Mc

2 Gyr�1

is the Eddington luminosity. We therefore have
Z

dt
Ṁ

M
⇠ 2

Z
ṁ dt

Gyr
. (87)

2 We thank Geo↵rey Ryan for pointing this out.
3 Our convention follows that of Refs. [23, 24] but di↵ers from
the accretion-disk litterature where ṀEdd is often defined with
a factor of 10 larger.
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resonances [61], i.e. rin ⇠ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-
cosity parameters. The torque L̇ on the binary is the op-
posite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e. [60]
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The e↵ective viscosity also determines the radial inflow,
hence the accretion rate [63]:
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Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
the form � / �ml(r)ei(m✓�l⌦bt), where ✓ is the polar
angle and ⌦b ⌘
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Mbin/a3, the combination E �
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is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
to Eq. (82). Here again, the parameter A depends on
eccentricity and the details of the accretion disks, but
should be of order unity.

Therefore, we expect the simple relations (82) and (83)
to hold under rather general circumstances. From these
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with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little di↵erence
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, hṀi ⇡ ṀB. Since the total change in orbital
parameters is proportional to

R
dtṀ/M , it is this long-

timescale accretion rate that is relevant, rather than the
possibly large short-time fluctuations. We denote by
ṁ ⌘ Ṁ/ṀEdd, where3 ṀEddc

2
⌘ LEdd ⇡ 2 Mc

2 Gyr�1

is the Eddington luminosity. We therefore have
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dt
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Gyr
. (87)

2 We thank Geo↵rey Ryan for pointing this out.
3 Our convention follows that of Refs. [23, 24] but di↵ers from
the accretion-disk litterature where ṀEdd is often defined with
a factor of 10 larger.
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1. Estimate of the work and torque on the binary

Let us first consider a quasi-spherical accretion flow
onto the binary. Assuming the binary separation is less
than the Bondi radius, the characteristic velocity of the
gas at the orbital separation is of order the free fall
velocity, which is of the order of the orbital velocity
v ⇠

p
M/a. The drag force on each black hole is of the

order Ṁv, i.e., if we assume the Bondi-Hoyle-Lyttleton
accretion rate locally onto each black hole, [57–59],
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Ṁ ⇠ 3⇡⌫⌃. (85)

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
the form � / �ml(r)ei(m✓�l⌦bt), where ✓ is the polar
angle and ⌦b ⌘

p
Mbin/a3, the combination E �

l
m⌦bL

is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
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Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
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where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density ⌃ and e↵ective shear vis-
cosity ⌫. The disk is truncated at an inner edge rin, where
viscous torques balance gravitational torques [60]. This
inner edge is typically around one of the lowest Lindblad
resonances [61], i.e. rin ⇠ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-
cosity parameters. The torque L̇ on the binary is the op-
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Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ⇡ 2.4. While [65] only explicitly resolved the region
r � a, the more recent simulations of Ref. [66] resolves

the interior region r  a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ⇡ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential � of
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order (m, l), we therefore find Ė ⇠ ⌦bL̇, which translates
to Eq. (82). Here again, the parameter A depends on
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should be of order unity.
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Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the e↵ect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little di↵erence
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, hṀi ⇡ ṀB. Since the total change in orbital
parameters is proportional to
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Mbin

a
, (82)

L̇ = �B Ṁ
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ȧ

a
⇠

dj

dt
⇠ �

Ṁ
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=> get the same scalings for dE/dt, dL/dt


