

Electron Heating and Acceleration in Gamma-Ray Bursts.

Matthew G. Baring Rice University

BURSTING OUT

Compton Gamma-Ray Observatory 1991-2000

Spectral Character: GRB990123

GRB Prompt Emission: evidence for relativistic electrons

- Gamma-rays => Relativistic e⁻;
- Bulk motion is relativistic: pair creation transparency arguments;
- Synchrotron fits work for most bursts.

High Energy Emission in EGRET Bursts

Synchrotron model: Tavani '96

GRB Prompt Emission Continuum fitting

- Baring and Braby (2004)
- Synchrotron fits work for most bursts;
- Underlying electron distribution is unlike shock acceleration predictions.

Parent electron distribution

Low Energy BATSE Indices

- About 1/3 of BATSE bursts are incompatible with synchrotron;
 - "Line of Death" issue (Preece et al, 1998);
- Inverse Compton, small angle synchrotron and jitter radiation may be viable for all bursts;
- Synchrotron selfabsorption can in principal accommodate most bursts (but...).

SSC Spectral `Fit'

- Synchrotron self-Compton too broad to explain typical BATSE spectra;
- (Baring & Braby 2004);
- Self-absorption can help to flatten hard X-ray band.

Synchrotron Self-Absorption: Too Steep below Peak.

- Self-absorbed synchrotron fails for bursts; needs high n_e and B;
- Acting in concert with upscattering may work (Panaitescu & Meszaros 2000; Liang, Boettcher & Kocevski 2003; discussed in Baring & Braby 2004);
- Other attractive mechanisms:
 - small angle synchrotron (Epstein 1973),
 - jitter radiation (Medvedev 2000, 2006);
- Fitting BATSE database is a priority (current RMFIT work with Wyatt and Preece).

Baring, Ogilvie, Ellison & Forsyth 1997

- Non-relativistic, low Mach number interplanetary shocks;
- SWICS data fit to shock of (April 7, '91) at 2.7AU;
- Shock-heated thermal ions dominate;
- Strong cross-field diffusion again needed: same for H and alphas.

Ellison, Jones & Reynolds (1990): Large Angle Scattering

- Monte Carlo results for parallel shocks;
- Spectrum flattens and becomes more structured as u₁->c.

3D PIC (Particle-in-cell) Plasma Shock Simulation

 Nishikawa et al. (ApJ 2006): e-p (left panels) and pair shocks have great difficulty accelerating particles from thermal pool (green is Lorentz-boosted relativistic Maxwellian), dominated by electromagnetic thermal dissipation.

Implications of CGRO GRB Spectroscopy

- > GRB source models are strongly constrained by photon emission spectra:
- > suprathermal energy regime not immediately compatible with shock acceleration scenario;
- Strong self-absorption in GRBs may provide reconciliation with predictions of acceleration theory, *if* it is further processed, e.g. by upscattering.

Relativistic Shocks: Spectral Dependence on Scattering

- Deviations from
 ``canonical'' index of
 2.23 (Bednarz &
 Ostrowski 1998;
 Kirk et al. 2000;
 Baring 1999) occur
 for scattering angles
 outside Lorentz cone;
- Large angle scattering yields kinematically structured distributions;
- (e.g., Baring 2005)

Relativistic Shocks: Spectral Dependence on Field Obliquity and Diffusion

Ellison & Double (2004)

Increasing upstream B-field obliquity and/or ratio of mean free path to gyroradius steepens the continuum (e.g. Bednarz & Ostrowski 1998; Ellison & Double 2004; see also Kirk & Heavens 1989).

High Energy Emission in EGRET Bursts

Implications for Gamma-Ray Bursts

- Relativistic shocks can generate a multitude of spectral forms: power-law indices depend on shock parameters and scattering properties;
- => Non-canonical spectral index
- Distinct contrast to non-relativistic case [depends on r only];
- Spectrum is only flat for quasi-parallel shocks and strong turbulence;
- GRB prompt and afterglow emission, and also UHECR generation must be explained by *mildly-relativistic shocks* that are *not quasi-perpendicular* (for diffusive acceleration scenarios).

Addressing a dominance of non-thermal electrons...

Shock Layer Density Profiles - high $M_{ m S}$

- Cold beam density profiles trace particle gyration;
- Density prop. to 1/<v_x>;
- Downstream
 gyrational cusp
 structure degraded
 on diffusive
 lengthscale;
- Charge separation implied by disparate electron-ion inertial scales.

Shock Layer Particle Trajectories - high $M_{ m S}$

Shock Layer Density Profiles - low $M_{\rm S}$

- Heating the beam smooths out the gyrational influence on density profiles;
- Density prop. to
 1/<v_x>; still correlates
 to particle gyration;
- Gyrational clumping structure degraded on diffusive lengthscales;
- Profiles similar for relativistic and nonrelativistic shocks.

Electron Scale Electric Field - low $M_{\rm S}$

- Solving Poisson's
 equation smooths out
 the gyrational
 influence in density;
- E prop. to integral of charge density over x;
- Field is quenched on lengthscales of u_{1x}/w_p for proton plasma frequency w_p;
- Work currently on field profile in quenching zone.

Thermal vs. Non-Thermal

- Without cross-shock potential, power-law blends into dominant thermal population;
- Coherent E field energizes electrons, without broadening thermal "width" beyond diffusive value m_e(u_{1x}-u_{2x});
- Electrostatic instability (e.g. Shimada & Hoshino 2000) can heat e⁻.
- Turbulent contributions can be treated via transport coefficients;
- **Goal**: to explore distribution shape at minimum e⁻ momentum for GRBs (also SNR problem).

2704 BATSE Gamma-Ray Bursts

