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FORMATION OF A GAMMA-RAY BURST could begin
either with the merger of two neutron stars or
with the collapse of a massive star. Both these
events create a black hole with a disk of material
NEUTRON STARS around it. The hole-disk system, in turn, pumps
out a jet of material at close to the speed of light.
Shock waves within this material give off radiation. | JET COLLIDES WITH
AMBIENT MEDIUM
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Compton Gamma-Ray Observatory
1991-2000

Deployment of CGRO from Space Shuttle




Spectral Character: GRB990123
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GRB Prompt Emission: evidence
for relativistic electrons

CGRO Compoelte Spectrum for GRB910503
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Bulk motion is
relativistic: pair
creation
transparency
arguments;

Synchrotron fits
work for most
bursts.
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High Energy Emission in EGRET Bursts

Baring {2008)

A Selection of EGRET Bursts
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Synchrotron model: Tavani ‘96

GRB 910601
(x 30)

GREB 910814
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GRB Prompt Emission
Continuum fitting

Baring and Braby (2004)

~ Barlng and CGRO Composite Spectrum for GRB910503

Braby (2004) ShIAAL BEAAE Laiig siias aa

m Synchrotron
fits work for
most bursts;

s Underlying
electron
distribution is
unlike shock
acceleration
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Parent electron distribution

Normalized Electron Distributions
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Low Energy BATSE Indices

BATSE o Index Distribution m About 1/3 of BATSE
| burstsiare incompatible
4776 spectral fits .
with ~8 < o< 1 with symchrotron;
“LLine of Death” issue
Synchrotron (Preece el al, 1998),
compatible
Inverse Compton, small
angle synclhrotron and
jitter radiation may:be
Inverse (Compton .
cgmpatible viable for all bursts;

Symchruotron self-

abserpion can in

principal’accommaodate
Low Energy Power-Law Index, a most burStS (but )




SSC Spectral Fit’

CGRO Composite Spectrum for GRB910503
m Synchrotron self- 2 e O O

Compton too broad - @ L EGRET

to explain typical o

BATSE spectra;
m (Baring & Braby

2004);

m Self-absorption can
help to flatten hard
X-ray band.
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Synchrotron Self-Absorption:
Too Steep below Peak.

Selt-absorbed synchrotron Baring end ¥yatt (2008, in prep.)
faills for bursts; needs high 1, CGRO Composite Spectrum for GRB910503

and B

Acting in concert witly
upscattering mey: Work
(Panaitescu & Meszaroes 2000;
[Liang;, Boettchen & Kocevski
20055 discussed in Baning &
Braby 2004);

Other attractive mechanismis:

smalllangle synchrotion
(Epstein 1973))

jitter radiation (Viedvedev
20)0]0)720[0/))-

Fitting BATSIE databaseisia
priority: (current RIVIFIT work
with Wiyatt and Preece).
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Baring, Ogilvie, Ellison
& Forsyth 1997

@pn1 = 77°, N/1,=3.7

Non-relativistic,
low Mach number

interplanetary
shocks;

SWICS data fit to
shock of (April 7,

Mg = 4.2
My =41
r=2.9

‘01) at 2.7AU;
Shock-heated

thermal ions
dominate;

Strong cross-field TTi-
diffusion again ' S R
needed: same for j | II_THI"I"I—-
H and alphas. 1000 1500

v,/km sec

Logig[ Count Rate/(v,” dv,) ]
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Ellison, Jones & Reynolds (1990):
Large Angle Scattering

m Monte Carlo results
for parallel shocks;

m Spectrum flattens
and becomes more
structured as u,->c.




3D PIC (Particle-in-cell)
Plasma Shock Simulation

Nishikawa et al. (ApJ 2006): e-p (left panels) and pair shocks have great difficulty
accelerating particles from thermal pool (green is Lorentz-boosted relativistic
Maxwellian), dominated by electromagnetic thermal dissipation.




Implications of CGRO
GRB Spectroscopy

> GRB source models are strongly
constrained by photon emission
SpPEctras:

> suprathermal energy regime not
immediately compatible with shock
acceleration scenario;

> Strong self-absorption in GRBEs may
provide reconciliation with predictions
ot acceleration theory, 7f it is/turther
processed, €.2. by upscattering.




Relativistic Shocks: Spectral
Dependence on Scattering

m Deviations from § —r——Comparison of PAD and LAS
““canonical”” index of : T\, = 10 0. < m (LAS)
2.23 (Bednarz & S 45

Ostrowski 1998;

Kirk et al. 2000;

Baring 1999) occur

for scattering angles

outside Lorentz cone;

Large angle
scattering yields
kinematically
structured
distributions;

- (e-g., Baring 2005) Log,,[Energy/keV]
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Relativistic Shocks: Spectral Dependence
on Field Obliquity and Diffusion
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Increasing upstream B-field obliquity and /or ratio of mean free path to
gyroradius steepens the continuum (e.g. Bednarz & Ostrowski 1998;
Ellison & Double 2004; see also Kirk & Heavens 1989).




High Energy Emission in EGRET Bursts

Baring {2008)

A Selection of EGRET Bursts
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Implications for Gamma-Ray Bursts

Relativistic shocks can generate a multitude of
spectral forms: power-law indices depend on
shock parameters and scattering properties;

m =—> Non-canonical spectral index

m Distinct contrast to non-relativistic case
|depends on 7 only];

Spectrum is only flat for quasi-parallel shocks
and strong turbulence;

GRB prompt and afterglow emission, and also
UHECR generation must be explained by mildly-
relativistic shocks that are not quasi-perpendicular
(for diffusive acceleration scenarios).




Addressing a dominance of
non-thermal electrons...

Normalized Electron Distributions
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Shock Layer Density Profiles - high M

. Non-relativistic shocks
Cold beam density T ——

prOﬁleS trace parth]-e Test Particle Density Profiles
Syrarions | | |

Density prop. to
l/<v._>:
Downstream
gyrational cusp
structure degraded
on diffusive
lengthscale:

P4
Q
(@]

nc,/ u,, — Scaled number density, n
w
o

Charge separation
implied by disparate
electron-ion inertial
scales.

1 1.5 2
x/(m)ulxc/eB) — Distance normal to shock, x




Shock Layer Particle Trajectories - high A1

Baring and Summerlin (2006, in prep.)
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Shock Layer Density Profiles - low M

Heating the beam
smooths out the
gyrational influence
on density profiles:

Density prop. to
l/<v, >3 still correlates
to particle gyration;

Gyrational clumping
structure degraded
on diffusive
lengthscales:

Profiles similar for
relativistic and non-
relativistic shocks.
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Baring and Summerlin (2006, in prep.)

Test Particle Density Profiles

u,, = 0.5¢ |
g =4.0
ATy =5 7
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_
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Electron Scale Electric Field - low Mg

Solving Poisson’s
equation smooths out
the gyrational
influence in density;

Baring and Surmmerlin (2008, in prep.)

Electric Field Profiles — Electron Scale
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E prop. to integral of
charge density overx:
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Without cross-shock potential,
power-law blends into dominant
thermal population;

Coherent E field energizes
electrons, without broadening
thermal “width” beyond diffusive
value m (u,,-U,,);

Electrostatic instability (e.g.

Shimada & Hoshino 2000) can
heat e.

Turbulent contributions can be

treated via transport coefficients;

Goal: to explore distribution
shape at minimum e-
momentum for GRBs (also SNR
problem).
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Thermal vs. Non-Thermal

Baring, Ellison & Jones (1994)

[test particle simulations]

My ™= 2.7, Fw- 283

..IY[7IFI]TIITI.’—"

(b)

_;lLlll

i ° 3
Log,ol Energy/keV]

-



2704 BATSE Gamma-Ray Bursts
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