High Energy Radiation from GRBs

KITP, February 9, 2006

Recipe for GRB emissions	
E_0/n_0 Γ_0	10 ⁵² ergs-cm ³ 300
Δ_0	$<< 3 x 10^{10} cm$
ϵ_{e} ϵ_{B} p ϵ_{max} θ_{jet}	1/3 >10 ⁻⁴ (10 ⁻⁴ ,10 ⁻² 2.3 0.1 0.1

 Prompt γ -ray pulses:

 n_{cl} 10^6 cm^{-3}
 x_0 10^{15} cm
 x_1 $1.02x10^{15} \text{ cm}$

High Energy Radiation from GRBs 2006 Swift Impact **Chuck Dermer** US Naval Research Laboratory Armen Atoyan U. de Montreal Markus Böttcher *Ohio University* X-ray flares: 10^{2} cm^{-3} n_{cl} $10^{17} \,\mathrm{cm}$ X₀ $1.02 \times 10^{17} \text{ cm}$ \mathbf{X}_1

Swift Observations of Rapid X-Ray Temporal Decay

Swift Observations of X-Ray Flares and Light-Curve Structure

Generic GRB X-ray Behavior

 $\nu F_{\nu} = f_{\varepsilon}(t) \propto \varepsilon^{a} t^{\chi}$

Curvature "High-Latitude" Effect

 $f_{\varepsilon}(t) \propto \varepsilon^{1-\alpha} t^{-2-\alpha} \propto \varepsilon^{a} t^{-3+a}$

Kumar and Panaitescu (2000), Dermer (2004)

How to turn emission off?

Curvature "High-Latitude" Effect with

Colliding shells Colliding shells

Fenimore et al. (1996)

Decaying spectral flash: a model-independent study

Rising phase of light curve always shorter than declining phase

Conclusions: Colliding Shells are

- 1. Candidate X-ray flare mechanism, but
- 2. Inconsistent with Swift Observations of rapid X-ray decays

Curvature "High-Latitude" Effect with

External

Shocks

 $n_0 = 1 \text{ cm}^{-3}$

turns GRB emissions off

(gives curvature relation)

Density (or $\varepsilon_{\rm B}$) jump

GRB jet

 $x_0 = 5 - 10 \times 10^{16} \text{ cm}$

 $x \approx \frac{{\Gamma_0}^2 ct}{1+z} \approx \frac{10^{17}}{(1+z)/2} \left(\frac{{\Gamma_0}}{300}\right)^2 \frac{t}{100 \ s} \ cm$

 $n_0 = 100 \text{ cm}^{-3}$

Jetted flow with $\psi \sim 1^{\circ}$

 Γ_1

System Evolution

Jim Chiang's code Chiang and Dermer (1998)

Full treatment of Forward Shock Physics, (special) relativity, dynamical evolution of blast wave, synchrotron, SSC, and adiabatic losses on electrons (injected as a power law)

Gives evolving Nonthermal synchrotron and SSC spectrum

Hi-B
$$\varepsilon_{\rm B} = 10^{-2}$$

GRB Blast Wave Geometry in accord with Swift observations

Structured Jet

Gamma jet: makes GRB

X-opt-rad jet: makes afterglow, jet break

 $\frac{\partial E}{\partial \Omega} \approx const for \, \theta < \psi$

Lo B

 $\varepsilon_{\rm B} = 10^{-4}$

Strong SSC component

Quantitative solution to rapidly declining X-ray light curves in GRBs

What causes change in system parameters at 10^{16} $- 10^{17}$ cm?

Making the GRB Prompt Emission and X-ray Flares

Require Strong Forward Shock to make Bright, **Rapidly Variable GRB Emission**

Shell width: $\Delta(x) \approx \Delta_0, x < \Gamma_0^2 \Delta_0 = X_{spr}$ $\Delta(\mathbf{x}) \approx \eta \mathbf{x} / \Gamma_0^2, \, \mathbf{x} > \mathbf{X}_{spr}$ n_{cl} Need thin shell, i.e., $\eta < < 1$ \overleftrightarrow -Shell density: $n(x) = \frac{E_0}{4\pi x^2 m_p c^2 \Gamma_0^2 \Delta(x)}$ 1. Nonrelativistic reverse shock: $n(x_0) >> \Gamma_0^2 n_{cl}$ $\Delta_{cl} > \frac{\Delta(x_0)n(x_0)}{1}$ 2. Thick Column: 3. STV: $\Delta_{c1} \ll x/\Gamma_0$ 1. + 2. $\Rightarrow \Delta_{cl} > \Gamma_0^2 \Delta(x_0)$ With 3. and shell-width relation $\Rightarrow \rightarrow \leftarrow$ unless $\eta \ll 1$

 $\eta < < 1$: a requirement on the external shock model

 $\Delta(\mathbf{x})$

 Γ_0

 $\mathbf{X}_{\mathbf{0}}$

Blast Wave Shell/Cloud Physics: The Elementary Interaction

- **Cloud** = SN Remnant/Circumburst Material
- Blast Wave/Jet Shell

Analysis of the Interaction

Penetration Phase 2

$$f_{\varepsilon}(t) = (2\pi d_{L}^{2})^{-1} \int_{\theta_{i}-\theta_{cl}}^{\theta_{i}+\theta_{cl}} d\theta |\sin \theta| \int_{0}^{\infty} dx \; x^{2} \varepsilon' j'(\varepsilon', \vec{x}; t')$$

Use Sari, Piran and Narayan (1998) formalism for some fluid phases

Expansion Phase 3 Synchrotron and adiabatic cooling Conservation of magnetic flux \Rightarrow B $B_{\parallel}R_{\parallel}^2 \propto const$ $-\frac{d\gamma}{d\tau} = \frac{\gamma}{\tau} + b\frac{\gamma^2}{\tau^4}$ $\tau = 1 + \frac{vt'}{R'_{\scriptscriptstyle \parallel}}, b = \frac{R'_{\scriptscriptstyle \parallel}}{v} \frac{\sigma_T B_{\scriptscriptstyle 0}^2}{6\pi m_e c}$ $=\frac{4\tau^{3}}{b(\tau^{4}-1)+(4\tau^{4}/\gamma_{i})}$ $\gamma(au)$.

Gupta, Böttcher, and Dermer (2005)

Standard Parameters

fluid in penetration/deceleration phase

Blast-wave/Cloud SED: Standard parameters

Curvature pulse

Solution to Swift Observations of Rapid Decays and X-ray Flares

Transition in medium properties at $\approx 10^{16} - 10^{17}$ cm

Narrow high- Γ_0 jet in cases of steepest light curves

γ-ray pulses and X-ray flares: Very clumpy medium

External shock model with impulsive injection event

Thermal Neutral Beams in Jets $x_{n \, decay} \approx 900 \ s \times 300 \ (\frac{\Gamma}{300})c$ $\approx 10^{16} (\frac{\Gamma}{300}) \ cm$

Neutron decoupling Derishev et al. 1999, Bahcall and Meszaros (2000)

Neutron decay: preconditioning of the surrounding medium Beloborodov (2003)

Proton heating

Rossi et al. (2006)

Nonthermal Neutral Beams in Jets

Photohadronic processes followed by electromagnetic cascade

Hadron as well as lepton acceleration

Nonthermal gamma-rays ⇒ nonthermal particles + Intense photon fields

$$p + \gamma' \rightarrow n + \pi^+, p + \pi^0 \rightarrow \gamma$$

 $\pi^+ \rightarrow e^+ + v_e + v_\mu + \overline{v}_\mu$

 \Rightarrow Strong photomeson production Large neutrino efficiency , Neutron momentum outflow, Intense γ -ray beam

Gamma-Ray Bursts as Sources of High-Energy Cosmic Rays

Complete Solution to Cosmic Ray Origin

Cosmic Rays below $\approx 10^{14} \text{ eV}$ from SNe that collapse to neutron stars

Cosmic Rays above $\approx 10^{14} \text{ eV}$ from SNe that collapse to black holes

- CRs between knee and second knee from GRBs in Galaxy
- CRs at higher energy from extragalactic/ cosmological origin

Requires large baryon load to explain cosmic ray origin from GRBs ($f_b > \sim 50$) GRBs in the Galaxy

Energetic Hadron-Synchrotron Component in GRB Blast Waves

Proton Injection and Cooling Spectra

γγ Optical Depth

Photon attenuation strongly dependent on δ and t_{var} in collapsar model

High Energy Emission from GRB Colliding Shells

Numerical Simulation Model of GRB Leptonic Radiation

• vF_v spectra shown at observer times 10^i seconds after GRB event • Calculations have $\gamma\gamma$ opacity included

Neutrino Detection from GRBs only with Large Baryon-Loading

For a fluence of $3x10^{-4}$ ergs/cm², (~2/yr)

N_v predicted by IceCube:

 $N_v \approx 1.3, 0.1, 0.016$ for $\delta = 100, 200$, and 300, respectively in collapsar model for $f_{CR} = 20$

Energy (eV)

Photomeson Cascade Radiation Fluxes

Photon index between -1.5and -2

Fits data for GRB 941017 spectrum during prompt phase

Photomeson Cascade:

 $p\gamma \rightarrow \pi^{\pm} \rightarrow e^{\pm}$

 e^{\pm} emits synchrotron (S1) and Compton (C1) photons

Anomalous High-Energy Emission Components in GRBs

Evidence for Second Component from BATSE/TASC Analysis

(González et al. 2003)

Hyper-relativistic Electron Synchrotron Radiation

Mean energy of synchrotron photons emitted by electrons with $\gamma = \gamma_{hri}$:

GRB 940217

Longest (>90 min) y-ray emission

Gamma Ray Light Curves

SSC bump in XRT light curves?

What does it all mean?

⁵⁶Ni Production

Same distributions (within limited statistics) for GRB SNe and SNe Ib/c (neutron star remnant)

Soderberg et al. 2006

- Failed Supernova (⁵⁶Ni 1. production)
- Emergence of Jet 2.
- 3. Internal Shocks
- 4. Standard Energy Reservoir (Upper limit)
- 5. Blandford-Znajek process to form Jets

- 1. Standard SNIb/c (⁵⁶Ni production)
- 2. Magnetar Wind Evacuates Poles
- 3. GRB in collapse of NS to BH
- 4. Prompt Phase due to External Shocks with Shell/Circumburst Material
- 5. Standard Energy Reservoir (NS collapse to BH)
- 6. Beaming from mechanical/B-field collimation
- 7. Neutron preconditioning of jetway

Delay time ~< 1 day (GRB 030329)

Short (Hard) Gamma-Ray Bursts

Fox et al. Nature, 2005

MacFadyen, Ramirez-Ruiz, and Zhang (2005)

Leading toCollapse of Neutron Star to Black HoleAccretion-InducedWhite DwarfCollapseCoalescence

Dermer & Atoyan, ApJ Letters, submitted (2006)

Summary

Quasi-universal feature of X-ray emission from Swift XRT obs: constant emission followed by steep decay: curvature relation How to turn off spherical shell?

1. Internal shell collision gives rising and decaying pulses, with decay phase longer in time than rising phase, contrary to observations

2. Emergence of jet into medium with different properties on size scales $\sim 10^{16} - 10^{17}$ cm for external shock model provides quantitative explanation of Swift behavior

γ-ray pulses and X-ray flares are due to interactions with clumps of circumburster/stellar wind material

Thermal and nonthermal neutral beams Hadronic and leptonic emission components

- 1. Two-step collapse (short-delay supranova) model for long-duration GRBs
- 2. GRB prompt phase could be due to blast wave shell penetrating SN remnant

Compton-scattered CMBR from Neutron-Decay Electrons formed by GRB associated with W49B

(loka, Kobayashi, & Mészáros 2004)

Nonthermal γ-Ray Emission: γγ Transparency Argument for Bulk Relativistic Motion

In comoving frame, avoiding threshold condition for γγ interactions requires

$$\varepsilon' \varepsilon'_1 < 1$$
; Peak Flux : $10^{-6} f_{-6}$ ergs cm $^{-2} s^{-1}$

Requirement that $\gamma\gamma$ optical depth be less than unity:

$$\begin{aligned} & \tau_{\gamma\gamma} \approx \frac{\sigma_T}{3} \left(\frac{2}{\varepsilon_1}\right) n_{ph}' \left(\frac{2}{\varepsilon_1'}\right) r_b , r_b \leq \frac{ct_v \delta}{(1+z)} \Longrightarrow \\ & \delta > 200 \left[(1+z)d_{28} \right]^{1/3} \left[\frac{f_{-6} E(GeV)}{t_v(s)} \right]^{1/6} \end{aligned}$$

Hi Energy multiwavelength: Swift, GLAST GBM and LAT, IACTs, ...