Discrete X-ray Spectral Features in Gamma-ray Bursts Afterglows

Masao Sako (KIPAC/Stanford) Bob Rutledge (McGill) & Fiona Harrison (Caltech)

# Production of discrete X-ray features during GRB afterglows

> X-ray band contains discrete transitions of most abundant metals (C, N, O, ... Fe, Co, Ni)
 > X-ray spectroscopy
 > abundance estimates ⇒ progenitor star
 > dynamics ⇒ burst/circumstellar geometry
 > excitation mechanism, temperature, density ⇒ model constraints

> Many CCD observations with *XMM-Newton* + few high-resolution observations with *Chandra*; some with reported emission line detections

## Observation of GRB991216

> Piro et al. (2000) reported the detection of an Fe line (and possibly an associated recombination continuum) in the X-ray afterglow of GRB991216 observed with the *Chandra*/HETG

> first high-resolution grating observation of a GRB afterglow

> The claimed single-trial significance of the line is 4.7σ (occurs only once in ~380,000 random trials at this particular energy).



### Soft X-ray Lines in GRB011211

> Reeves et al. (2002; 2003) have reported the detection of multiple emission lines from mid-Z elements (Mg, Si, S, Ar, and Ca) during the first ~5 ksec (30 ksec total) of an *XMM-Newton* observation of GRB011211
 > outflow v~0.1c

F-test: 99.7%
~1/300 (3.0σ)

> MC : 99.98%
> ~1/5000 (3.7σ)



 $z_{opt} = 2.14$ 

- > The Monte Carlo method was elaborated in a later article (Reeves et al. 2003)
  - > fit data and record the  $\Delta \chi^2$  that results from adding three gaussian lines to the continuum model
  - > repeat for 10000 simulated spectra
  - > count the number of simulations which result in an equal or larger  $\Delta \chi^2$

#### > Be careful!

> automating the fit results in an underestimate of the  $\Delta \chi^2$ (almost always find a local minimum; not a global minimum)



Reeves et al. (2003)

> Rutledge & Sako (2002): MC simulations to estimate multi-trial significances (i.e., chances of seeing fluctuations at an arbitrary energy - velocity shifts are not known!)

6

> matched-filter

seen in ~20% of the simulations ~1.3 $\sigma$ 





Rutledge & Sako (2002)

Reeves et al. (2002)

- > 21 follow-up X-ray observations with useful spectral data (>100 counts detected) analyzed by Sako, Rutledge, & Harrison (2005)
  - > includes all *ASCA*, *Beppo-SAX*, *XMM-Newton*, and *Chandra* observations up to GRB040106
  - > 16 targets at CCD resolution; 5 with *Chandra* gratings
  - > previously claimed detections are not statistically significant
  - > few other notable cases (e.g., GRB030227, GRB040106), but none are detected in more than one or more instruments/spectral orders

### The Case for GRB991216

 $\sim 2.8\sigma$  single-trial

seen in ~40% of simulations ~0.8σ multi-trial

#### > Re-analysis

- > continuum adopted by Piro et al. (2002) is probably not reliable; the true single-trial probability is ~2.8σ
- > multi-trial? The feature can be identified as Fe XXVI Lyα at z=1.02 (Vreeswijk et al. 1999); the highestredshift optical absorptionline system. ~3.1σ single-trial

seen in ~15% of simulations ~1.4 $\sigma$  multi-trial



8



### GRB030227

> Watson et al. (2003) have detected lines in the last 10.9 ksec of an XMM-Newton observation at a redshift of z=1.4 (no optical redshift measured)

> the authors adopt a model in which "one expects to observe the Hydrogen-like emission lines Mg, Si, S and the Heliumlike lines of Ar and Ca at an arbitrary redshift"

> Claimed significance  $4 \sim 5\sigma$ seen in ~15% of the simulations ~1.5 $\sigma$ 



### GRB030227 (cont'd)

> The total spectrum (all ~35 ksec) shows statistically significant features in the PN

> > this dataset contains the second highest number of counts of all GRBs observed to date

> But not in the MOS...



### GRB040106

> Highest-quality X-ray spectrum of an afterglow.
 > Significant excess at E~0.6 keV in the pn data (3.9σ multi-trial)

> Again, not detected in the MOS...



### At what $\sigma$ should one get excited?

> A  $3\sigma$  feature, by definition, is something that appears randomly on average once in every ~370 trials

> If the spectrum has ~370 resolution elements, and one does not know a priori where to look, each spectrum would on average have one "3σ feature"

"You know, the most amazing thing happened to me tonight. I was coming here, on the way to the lectures, and I came in through the parking lot. And you won't believe what happened. I saw a car with the license plate ARW 357. Can you imagine? Of all the millions of license plates in the state, what was the chance that I would see that particular one tonight? Amazing!"

Feynman Lectures

"If you believe Gaussian statistics, you should be willing to bet your gold fish (4 $\sigma$ ), your house (5 $\sigma$ ), or your dog (6 $\sigma$ )."

Bob Kirshner "The Extravagant Universe"

# Some personal comments on the reported detections...

- > Most previous reports have claimed line detections always at the  $\sim 3 - 4\sigma$  level, irrespective of source brightness, exposure time, etc.

> Some of the features appear to be "transient"; seen in only a selected time interval

> A 3 - 4 $\sigma$  feature has a larger equivalent width and appears more "line-like" in low quality spectra

## Recent Follow-up

Swift/XRT observations of 10 X-ray afterglows (GRB041223, 050126, 050128, 050223, 050315, 050318, 050319, 050326, 050401, 050525) published; no reported detections of any obvious X-ray lines

> XMM-Newton, Chandra, and Suzaku have already followed-up a few Swift GRBs
 > CCDs have >10 times the effective area
 > no reported detections

# Prospects

> High equivalent width metal lines are not present at  $t \le 2$  days from the GRB.

> Presence of weak narrow/broad lines is still possible.

> Approved *Chandra* LETG ToO time (120 ksec) in Cycle 7 to follow-up the brightest afterglow.

> detection of weak broad lines require very high statistics