

Constraints on the Progenitor of Cassiopeia A

KITP Supernova/GRB Connection February 10, 2006

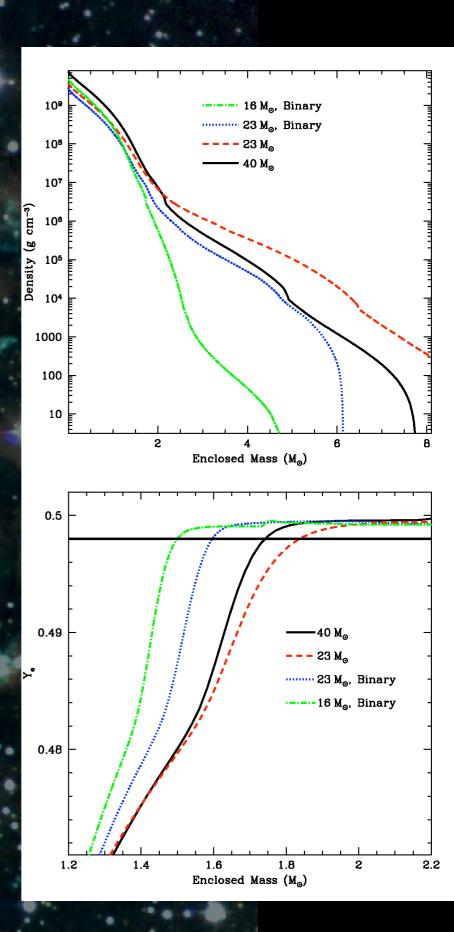
Patrick Young (LANL/Steward)

Chris Fryer, Aimee Hungerford, Gabe Rockefeller, Frank Timmes, Benedict Voit (LANL)

Casey Meakin, David Arnett, Kris Eriksen (U of AZ)

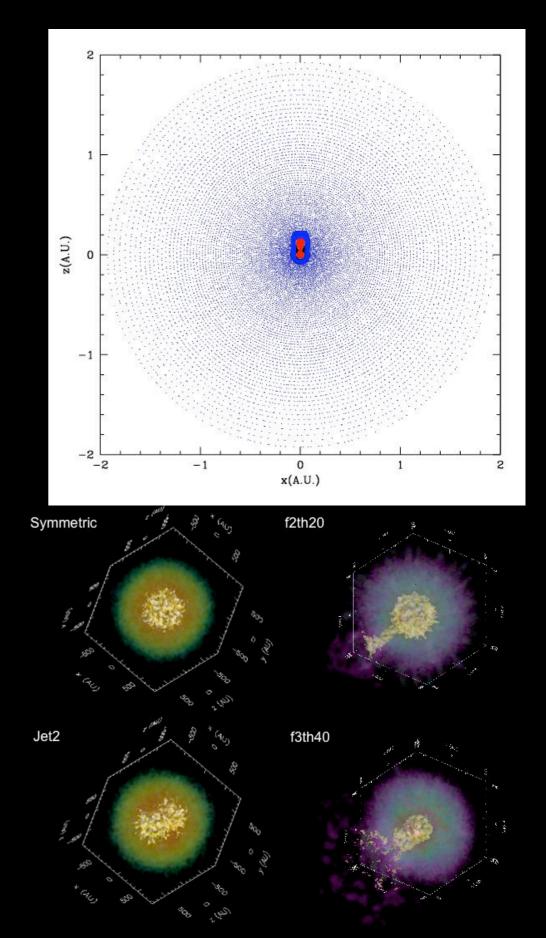
LA-UR-05-4652

Cassiopeia A

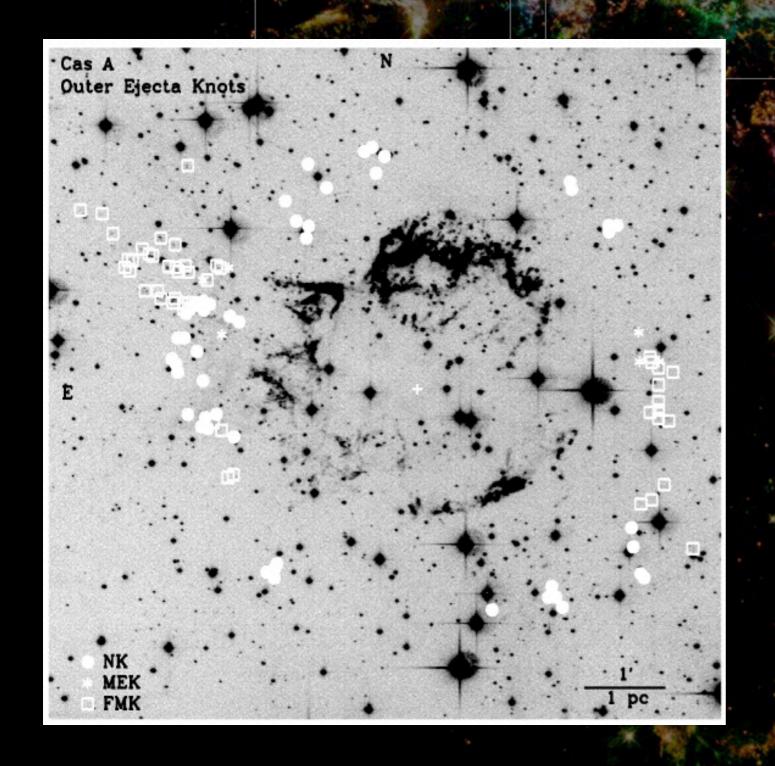

- Young (325yr), nearby (3.4 kpc)
- •High spatial resolution data from radio γ-ray, including abundances and secular evolution
- •Estimates range from 16 to 60 M_☉ single stars and binary scenarios
- Several independent observational constraints
- •1D/3D neutrino-driven collapse/explosion calculations + advanced progenitor models
- What parameter space for the progenitor is allowed by each constraint?

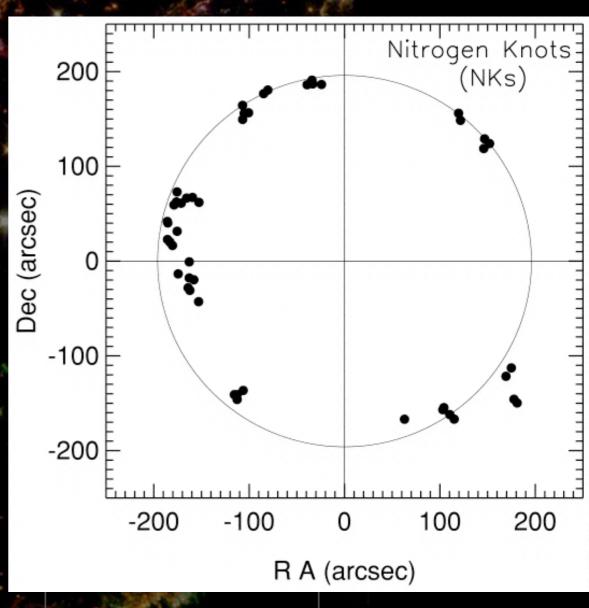
Step 0: What do we mean by "progenitor"?

- Define Progenitor Mass to be mass of the star at H ignition or the Zero Age Main Sequernce (ZAMS)
- Mass at explosion is generally very different for massive stars
- •16 to 60 M_☉ refers to progenitor mass
- Estimates of mass at explosion also vary greatly
 - •12 M_☉ (from nucleosynthesis, Willingale et al. 2002)
 - •3.7 M_☉ (from x-ray spectral fits, Willingale et al. 2003)


Progenitor models

- •Progenitors produced with TYCHO including convective boundary hydrodynamics and wave-driven mixing
- •Evolved in 1D until collapse velocities > 500 km s⁻¹
- •40 M_☉ with LBV and Wolf-Rayet mass loss
 •final 7.75 M_☉ WC/O
- •23 M_{\odot} with normal red supergiant mass loss •final 14.4 M_{\odot} RSG
- •23 M_{\odot} "binary" H envelope ejected on 1st ascent RGB •final 6.2 M_{\odot} WN
- •16 M_☉ "binary"
 •final 5.0 M_☉ WN



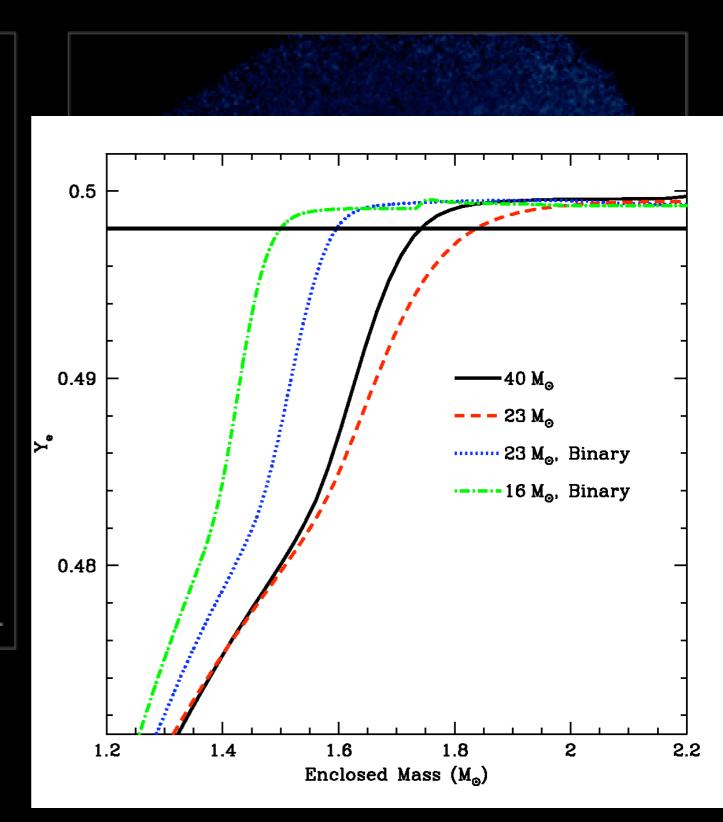

Explosion Calculations

- •Collapse & launch of explosion in 1D (Fryer '99)
- •Propagation of shock through star in 3D (SNSPH, Fryer et al. '05)
- •14 element inline nuclear network with 500 element network post-processing
- Varied explosion energies (final kinetic energy of ejecta)
- Symmetric & asymmetric explosions
 - •factor of 2 variation in *v* from pole to equator imposed on 3D mapping

•Nitrogen knots (NKs) - Nitrogen rich, hydrogen poor, v ~ 8000 km s⁻¹

- •Nitrogen knots (NKs) Nitrogen rich, hydrogen poor, v ~ 8000 km s⁻¹
 - •Star must have had primarily CNO ash at surface at explosion (N/H ~ 30x solar implies >90% of H exhausted)
 - •Massive Wolf-Rayet models lose CNO ash as wind, have He burning products at surface
 - •Very low mass WRs (~25 M_☉ if such things exist) lose H envelope as red supergiant CNO ash mixed with H envelope by dredge-up
 - Low mass single stars don't lose H envelope
- •Two possibilities available:
 - •Low mass WR (~28-30 M_☉?)
 - •Low mass (<25 M_☉) loses envelope in binary

- Mass at explosion remnant + ejecta
- Ejecta mass
 - •similarity solutions for forward & reverse shock positions 1D, require assumptions about circumstellar medium and explosion energy (Chevalier & Oishi '03, Laming & Hwang '04)
 - •x-ray spectral line fitting: T_e , T_{ion} , composition, emissivity, & emission models give estimate of total mass -sensitive to filling factor, T_e/T_{ion} , presence of material at non-emitting temperatures (Willingale '02)
 - 2-4 M_☉ from both methods
- •Ejecta mass implies either small star or weak explosion w/ much fallback


 3-color

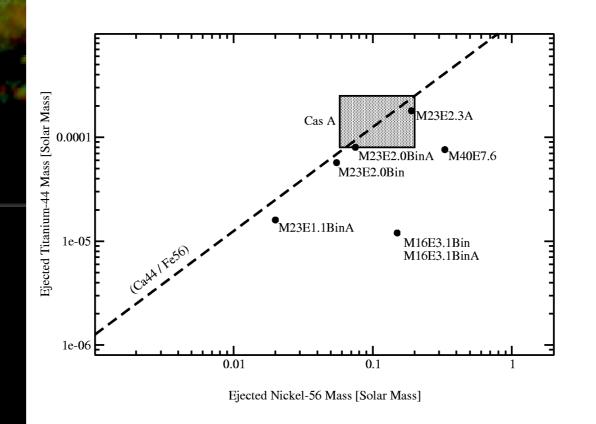
 *Enhanced Silicon**
- An asymmetric explosion will result in more fallback for a given energy

- Mass at explosion remnant + ejecta
 - no convincing periodicity not a pulsar
 - •L_x/L_{opt} inconsistent with LMXB
 - •ADAF or coronal accretion must be very fine tuned (Chakrabarty et al. '01)
 - Cooling models require extreme conditions (Pavlov et al. '00)
 - •Remnant most consistent with AXP/SGR neutron star light echoes (Krause et al. '05)
- •Max NS mass ~ 2.5 M_☉ (depends on NS EOS)
- •Remnant mass implies small star or very strong explosion Enhanced Silicon

- Mass at explosion remnant + ejecta
- •Min NS mass *IF* we assume ejecta can't be more neutron rich than solar
- Y_e of material reset by neutrinos only very close to the neutron star subject to fallback
- •1.5-1.75 M_⊙, depending on progenitor

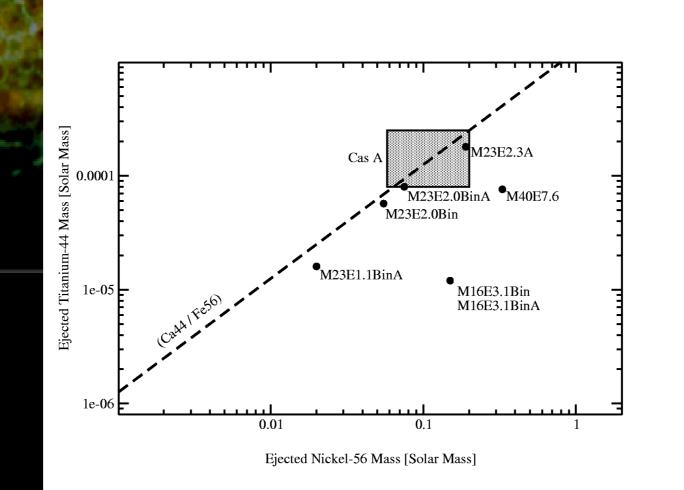
3-color

- Mass at explosion remnant + ejecta
 - •Ejecta mass from similarity solutions for forward & reverse shock positions, x-ray spectral line fitting 2-4 M_☉


Enhanced Silicon

- Remnant most consistent with AXP/SGR neutron star
- •Max NS mass ~ 2.5 M_☉
- •Ejecta mass implies either small star or weak explosion w/ much fallback
- Remnant mass implies small star or very strong explosion
- Total ~ 4-6 M_☉ requires small mass at explosion
 - Massive WR with extensive mass loss OR

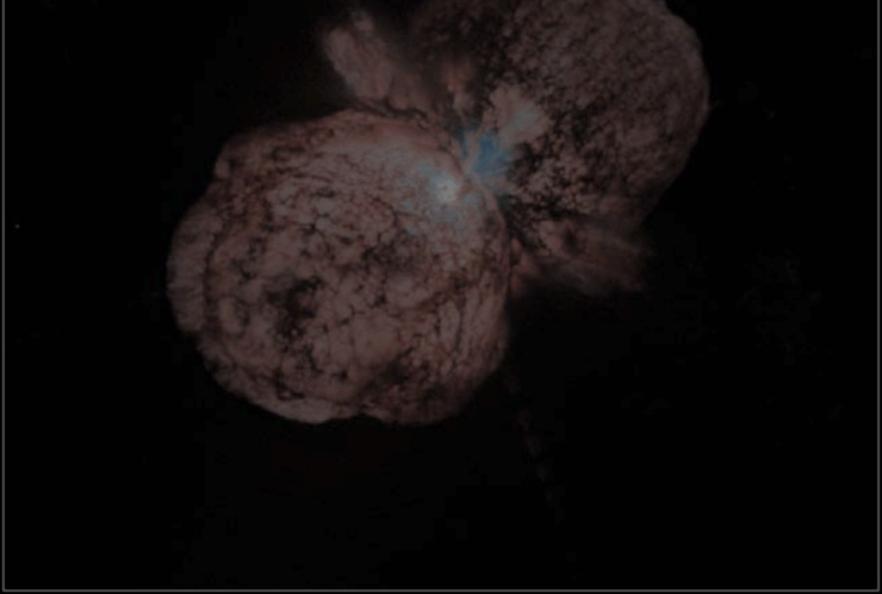
Low mass star with binary envelope ejection


•44Ti and ⁵⁶Ni

- •M_{Ti} ~ 0.8-2.5 x 10⁻⁴ M_{\odot} from γ & x-rays (decay lines of ⁴⁴Ca & ⁴⁴Sr)
- • M_{Ni} ~ 0.05-0.2 M_{\odot}
 - •~ 0.058 M_o Fe visible in x-rays (Willingale) lower limit
 - •Assuming m_{visual} = 3 and 6 based on (lack of) observation in 1680 extinction of A_v =4-8, and Ni decay lightcurve with monte carlo γ -ray transport, $M_{ni} \sim 0.05$ -0.2

Enhanced Silicon

- •44Ti and ⁵⁶Ni
 - •M_{Ti} ~ 0.8-2.5 x 10⁻⁴ M_{\odot} from γ & x-rays (decay lines of ⁴⁴Ca & ⁴⁴Sr)
 - •M_{Ni} ~ 0.05-0.2 M_☉ from brightness of SN
- •BUT yields are uncertain multi-D effects; explosion energy; neutron excess, entropy, temperature, & density evolution can change Fe peak / freezeout yields by very large amounts


Enhanced Silicon

Simulations vs. Constraints

White satisfies constraints, red inconsistent with constraints, yellow marginal

Simulation	Explosion Energy (foe)	Nitrogen Knots	Ejecta Mass	Remnant Mass	⁴⁴ Ti Yield	⁵⁶ Ni Yield
40 M _☉	7.6	N	6.0	1.75	7.5x10 ⁻⁵	0.33
23 M _☉	0.8	N	7.5	5.4	<10 ⁻⁵	<10 ⁻⁵
23 M _☉	2.3	N	8.3	4.6	1.2x10 ⁻⁵	2.6x10 ⁻⁴
23 M _☉ asymmetric	2.3	N	7.4	5.5	1.8x10 ⁻⁴	0.019
23 M _☉ binary	1.1	Υ	3.6	2.6	1.2x10 ⁻⁵	2.6x10 ⁻⁴
23 M _☉ bin, asymm	1.1	Υ	3.0	3.2	1.6x10 ⁻⁵	0.02
23 M_{\odot} binary	2.0	Υ	3.9	2.3	5.7x10 ⁻⁵	0.055
23 M _☉ bin, asymm	2.0	Υ	3.6	2.6	8.5x10 ⁻⁵	0.075
16 M _⊙	1.3	Υ	3.2	1.8	<10-5	<10 ⁻⁵
16 M _⊙ asymmetric	1.12	Υ	3.2	1.8	<10 ⁻⁵	<10 ⁻⁵
16 M _☉	3.1	Υ	3.8	1.2	1.2x10 ⁻⁵	0.15
16 M _⊙ asymmetric	3.1	Υ	3.8	1.2	1.2x10 ⁻⁵	0.15

•NKs rule out massive WRs (too much mass loss), low mass single stars (too little)

Eta Carinae

HST · WFPC2

PRC96-23a · ST Scl OPO · June 10, 1996 J. Morse (U. CO), K. Davidson, (U. MN), NASA

- •NKs rule out massive WRs (too much mass loss), low mass single stars (too little)
- Small ejecta mass rules out strong explosion of relatively massive core (low mass WR w/ moderate mass loss)

Eta Carinae

HST · WFPC2

- •NKs rule out massive WRs (too much mass loss), low mass single stars (too little)
- Small ejecta mass rules out strong explosion of relatively massive core (low mass WR w/ moderate mass loss)
- •NS remnant mass rules out weak explosion of massive core (low mass WR w/ moderate mass loss) too much fallback

Eta Carinae

HST · WFPC2

- •NKs rule out massive WRs (too much mass loss), low mass single stars (too little)
- Small ejecta mass rules out strong explosion of relatively massive core - (lower mass WR w/ moderate mass loss)
- •NS remnant mass rules out weak explosion of massive core (low mass WR w/ moderate mass loss) too much fallback
- Total mass at explosion rules out all single stars except massive WRs
- not enough mass loss

- •NKs rule out massive WRs (too much mass loss), low mass single stars (too little)
- Small ejecta mass rules out strong explosion of relatively massive core (lower mass WR w/ moderate mass loss)
- •NS remnant mass rules out weak explosion of massive core (low mass WR w/ moderate mass loss) too much fallback
- Total mass at explosion rules out all single stars except massive WRs
- not enough mass loss
- •Only low mass (15-25 M_☉) binary with envelope ejection satisfies all constraints.

Eta Carinae

HST · WFPC2

- •Only low mass (15-25 M_☉) binary with envelope ejection satisfies all constraints.
- •BUT what about companion?
 - None detected by HST larger than M dwarf
- •Merger effects?
 - •~0.9-3 M_☉ would merge depending on separation
 - •If primary is He burning effects should (??) be minimal
- Asymmetries in circumstellar medium?
 - SNR may not have caught up to envelope or
 - Envelope impacted dense ISM with enough inertia to damp asymmetry
- •Identifies theoretical & observational questions which must be addressed

HST · WFPC2

Conclusions

- Progenitor models with advanced stellar physics
- •3D explosion calculations w/ detailed nucleosynthesis post-processing
- Main observational constraints
 - Fast moving N-rich, H-poor knots CNO ash surface composition
 - •Ejecta mass ~ 2 -4 M_☉
 - •Remnant mass < 2.2 M_{\odot} (AXP most likely compact remnant)
 - •44Ti and ⁵⁶Ni mass
- Accepting all constraints requires 15-25 M_☉ binary progenitor
- Nucleosynthesis is not a good constraint several factors cause Ni/Ti yields to vary by large amounts
- •Observational focuses: refined mass estimates, total and spatially resolved yields, isotopic yields, evidence for/against binary interaction
- Theoretical focuses: mechanism, 3D effects, binary evolution & effect on CSM, pre-SN mass loss