
Coalescing White Dwarfs:

Rates, Precursors, EM signatures and Aftermaths

TU 2006, UCSB: 13 Mar 2006

Relation of this talk to the next two

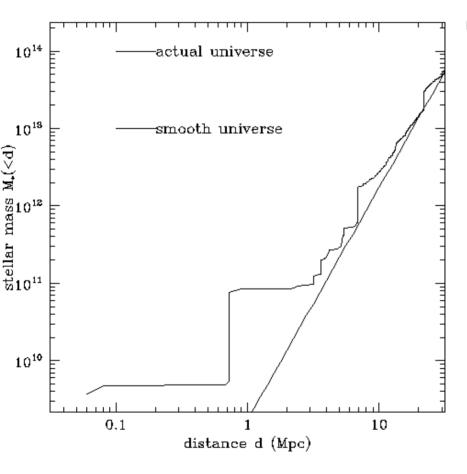
Rates of WD-WD merger

- fairly well determined (factor of few) by both
 - theory: created by common envelope inspiral of initially wide binaries. Depends on
 - binary fraction & mass ratio distribution as function of M₁
 - common envelope ejection efficiency α_{CE} (weakly sensitive). $\alpha_{CE} |\Delta E_{orbit}| > |E_{b,envelope}|$ for CE ejection.
 - angular momentum transport (e.g. by tides) and mass loss
 ⇒ mass transfer stability
 - observation: we see many WD-WD pairs that will merge (esp. recent SPY survey), plus likely aftermaths. Observational rates agree roughly with theoretical ones.

WD-WD merger rates in the Milky Way

Conventional wisdom for merger rates in Milky Way, predicted from single star evolution:

He+He WD (
$$\sim 0.6 \,\mathrm{M}_{\odot}$$
): R=0.006/y
He+CO WD ($\sim 1 \,\mathrm{M}_{\odot}$): R=0.02/y
CO+CO WD ($\sim 1.5 \,\mathrm{M}_{\odot}$): R=0.006/y


of which ~50% have $M_1+M_2>1.4M_{\odot}$ (SNIa or AIC candidates)

Comparable numbers of long (3Gyr) and short (0.3Gyr) delay cases, consistent with large variation of SNIa rates with galaxy type: Mannucci et al astro-ph/0411450, 2005 ASPC 342, 140.

Han 1998 MNRAS 296, 1019 Nelemans et al 2001 astro-ph/0010457 Webbink 1984 ApJ 277, 355

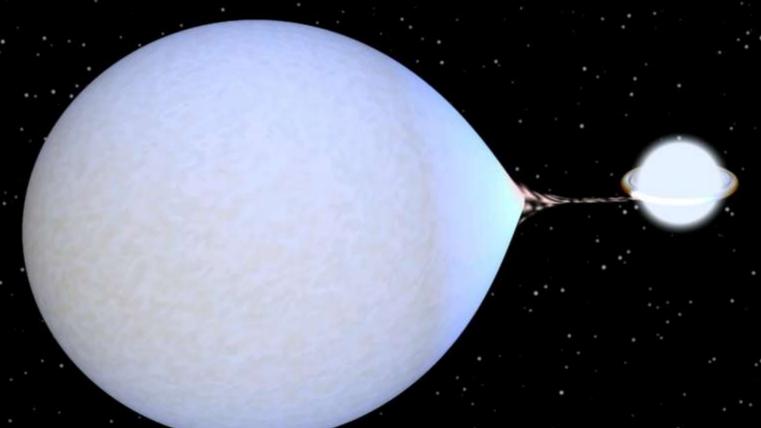
But note Shara & Hurley astro-ph/0202179: open star clusters can produce 15x more CO+CO via exchanges and hardening than single star evolution!

WD-WD merger rates in the universe

Scaling to the rest of the universe gives volume-average z=0 rates

He+He: 4x10⁻⁵Mpc⁻³y⁻¹

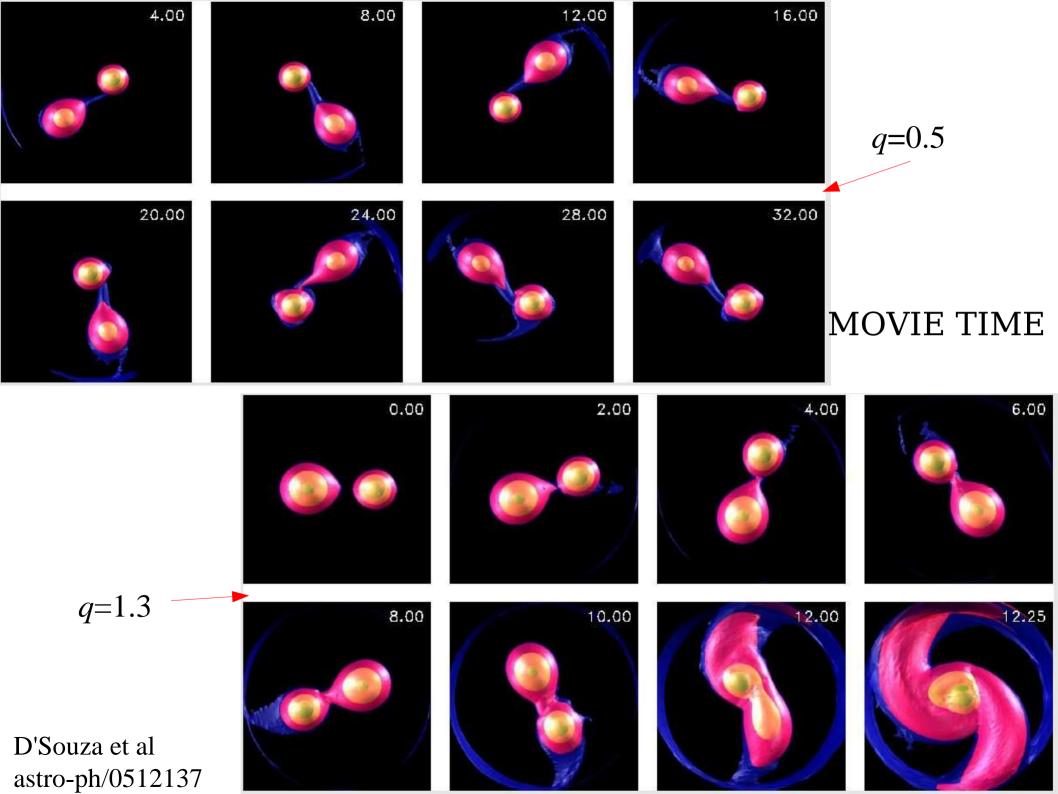
He+CO: 2x10⁻⁴Mpc⁻³y⁻¹


CO+CO: 6x10⁻⁵Mpc⁻³y⁻¹

Given the Virgo enhancement above the mean density, these rates give $D(1/y)\sim7-10Mpc$.

Mergers: theory

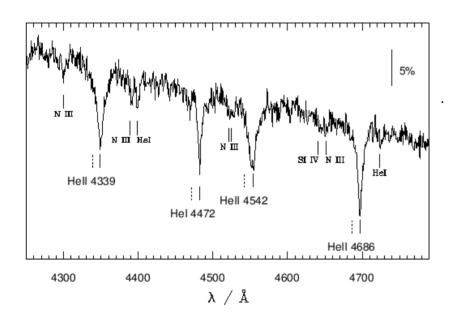
- Degenerate stars: less massive bigger, fills Roche lobe first. $q=M_{loser}/M_{gainer}$. WDs not subject to tidal instability as are stiffer NS's (cf. Lai et al 1993 ApJ 406, L63)
- If angular momentum of accreted material conserved (no mass loss) and transferred back to orbit (by disk tides or stellar tides)
 - When mass transfer starts, if q>0.6 mass loser swells faster than Roche lobe: dynamical instability.
 - If q<0.6, mass loser swells more slowly than growing Roche lobe: dynamically stable.
 - If q<0.22, stable even without tides to transfer angular momentum back to orbit.
 - Limiting understanding: white dwarf tides, mass loss, disk dynamics and direct impact physics. Affects stability (Soberman et al 1997 AA 327, 620) of transfer and dM/dt.


The skeleton in the closet:

RXJ0806.3+1527, P_b =5min, direct impact. dP_b/dt right magnitude, wrong sign for conservative GR-driven evolution. L_x too low by orders of magnitude. Must be below equilibrium transfer rate. Also V407 Vul. Note that tides can dissipate rotation energy ~WD's grav binding energy! Need to understand tides in white dwarfs!

Mergers: simulations

- Smooth Particle Hydro (SPH) simulations seem to make everything disrupt (even q=0.5: Rasio & Shapiro 1995 ApJ 438, 887 and q=0.33: Guerrero et al 2004 A&A 413, 257).
- More accurate Eulerian hydro simulations (D'Souza et al astro-ph/0512137) disrupt q=1.3 as expected, but find q=0.5 to be dynamically stable as expected theoretically and in contrast to the SPH results.
- In no case (SPH or Eulerian) is a significant >2% fraction of the total mass ejected.


Electromagnetic appearance 1

- Conventional (Nova, SNIa) modellers assume all of disrupted WD disk accretes at Eddington rate
 - $dM_{Edd}/dt = 1.7 \times 10^{-5} (R_{wd}/10^9 cm) M_{\odot}/y$
 - $-L_{\rm Edd} = 5 \times 10^4 L_{\odot}, M_{\rm bol} = -6$
 - Lasts $t \sim 10^3$ -10⁴ years! Hot, high Mdot ⇒ stable He burning.
- Magnetic alternatives:
 - Photon bubble instability (Ruszkowski & Begelman 2003 ApJ 586, 384; Gammie 1998 MN 297, 929) allows L~100L $_{\rm Edd}$. Mass loss also! M $_{\rm bol}$ = -11, t ~ 1 y. Thomson thick wind $\tau_{\rm T}$ ~4x10 3 dotM $_{-3}$ R $_{\rm o}^{-1}$

Proposed aftermaths of WD-WD merger

- Single subdwarf OB (sdB, sdO) stars: He+He
- R Coronae Borealis (R CrB) stars: He+CO
- EUVE J0317-85.5 rapidly rotating 1.35Msun, magnetic white dwarf: CO+CO
- Most single white dwarfs with M>0.7Msun.
- Neutron stars: accretion induced collapse CO+ONeMg, ONeMg+ONeMg
 - single msec pulsars (weakly magnetised WDs)
 - magnetars/AXPs/SGRs (strongly magnetised Wds)
- Type Ia Supernovae.
 - Ib/c ???

Aftermaths: sdB/sdO stars

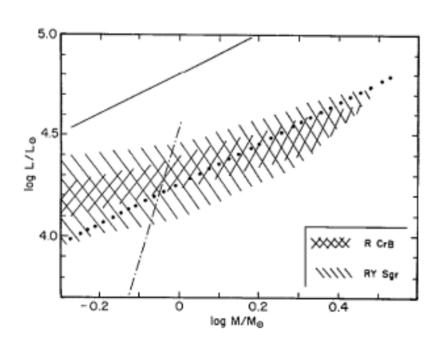


Fig. 1. Section of the spectrum of US 708. Rest-wavelengths of the strongest lines are marked as dashed lines. Note the large redshifts.

- Extreme Horizontal Branch stars ~0.5M_o; core He burning, <10⁻²M_o H envelope too thin to burn. Evolve directly to cooling WDs. Han et al 2003 MNRAS 341, 669
- One interesting new case:

 Usher 708. 14kpc above
 plane, V>750km/s
 hypervelocity star. Orbit
 traces back to GC 32Myr ago.
 Hirsch et al astro-ph/0511323.

Aftermaths: R CrB stars

Saio & Wheeler 1983 ApJ 272 L25 pulsation (P=44d and 39d) constraints on M,L.

Cool (~3500-10,000K)
 helium stars.
 L_v~10⁴L_o, M~1M_o

- [H/He]<-4
- transient fadings due to dust formation in stellar wind.
- Formation models
 - final He shell flash just after planetary nebula.
 - CO+He merger
- Iben et al 1996 ApJ 456, 750.

Aftermaths: EUVE J0317-85.5

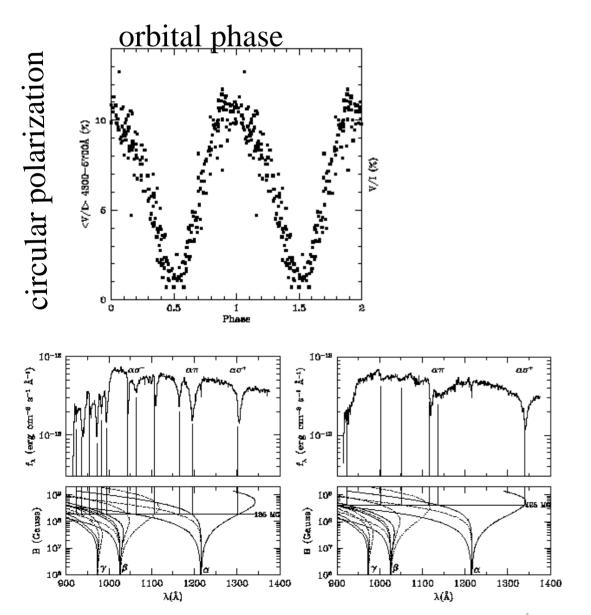
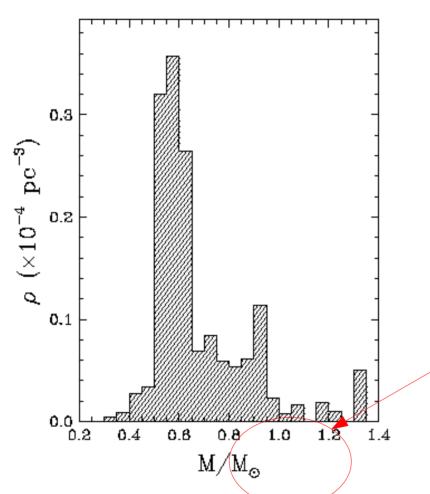



Fig. 3.—Phase-resolved HST FOS/FUSE spectroscopy at $\phi=0$ (left) and $\phi=0.5$ (right). The FOS and FUSE data are merged at $\lambda=1175$ Å. The spectra t both phases are compared to predicted line positions for permitted (solid lines) and forbidden lines (dashed lines), showing that $\phi=0$ is characterized by a field strength of B=185 MG, while $\phi=0.5$ is characterized by a field strength of B=425 MG.

- M=1.35Msun, $\log g = 9.3$
- $P_{rot} = 725.7s$
- Teff=33,000K, H rich
- B_{dipole}=450MG
- Cooler, less massive nonmagnetic companion at 200AU.
- Vennes et al 2003 ApJ 593, 1040; Ferrario et al 1997 MNRAS 292, 205.

Aftermaths: Massive single WDs??

- Maybe some comets/planets form in the disk? cf. Phinney & Hansen 1993 ASP CS 36, 37; Menou et al 2001 ApJ 559, 1032; vs G29-38 and Hansen et al astro-ph/0511094, Debes & Sigurdsson 2002 ApJ 572, 556
- With some IMFs and initial mass-final mass relations, only ~20% of the white dwarfs in the 0.8Msun peak can be produced by singlestar evolution. cf Liebert et al astro-ph/0406657. Rest due to WD-WD mergers?
- But with other im-fm relations, no problem! cf Ferrario et al 2005 MN 361, 1131. Maybe just rapid rotators like EUVE J0317?

Aftermaths: Neutron stars

- CO+CO, M>1.4M. AIC or Supernova Ia? The controversy continues.
- SN Ia models consistent with observation require that C burning "ignites" (energy generation > conduction losses) as near-central deflagration, which later evolves to detonation.
- Spherical case: $dM/dt>3x10^{-6}M_{\odot}y^{-1}$ causes C ignition in outer layer and conversion of entire WD to ONeMg and subsequent AIC. CO+CO mergers \Rightarrow disks with larger dM/dt (Eddington or greater), so AIC not Ia.
- Piersanti et al 2003 consider spinup of WD -assume accretion rate drops as star reaches mass-shedding limit, find central ignition; SNIa, not AIC.
- Saio & Nomoto astro-ph/0401141: accretion continues across boundary layer of spunup WD (Popham & Narayan 1991), assume constant dM/dt. Get outer ignition due to large dM/dt, so AIC, not SNIa.
- But models are spherical(!), do not actually compute boundary layer/disk dM/dt and torques....

Electromagnetic appearance 2

- More Magnetic alternatives for CO+CO mergers $>1.4 \rm M_{\odot}$ which turn out to be AIC, not SNIa:
 - Winding of magnetic field: jets, magnetars. Very short and bright!
 - Magnetar hypothesis natural given EUVE 0317-85.5: rapidly rotating $1.35 M_{\odot}$ magnetic B=4x10⁸G white dwarf. Slightly more massive merger would have led to accretion-induced collapse to a neutron star, flux conservation $B_{NS} = B_{WD} (R_{WD}/R_{NS})^2 = 10^{14} G$.
 - Proposed by King et al 2001 MNRAS 320, L45 and as source of short GRBs from giant SGR flares by Levan et al astro-ph/0601332. Expect about 10% CO+CO mergers magnetic enough.
 - Usov 1992 Nature 357, 472 proposed as GRB model. Middleditch 2004 ApJ 601, L167 proposes AIC also for long GRBs, and Type Ib, Ic and IIp SNae.
 - Winding of B by differential rotation(disk or accreting WD) could produce even stronger B enabling relativistic jet expulsion: e.g. slight modification of Dai et al 2006 Science 311, 1127 astro-ph/0602525, or Spruit 1999 A&A 341, L1.

Conclusions

- White dwarf mergers ~1/y in Virgo.
- Non-magnetic mergers limited by thermal-time escape of radiation, and Eddington/photon-bubble accretion rates/luminosities. Probably M_{bol}>-11, timescales >year.
- Magnetic mergers potentially much more spectacular, and if they result in AIC could plausibly create magnetars and some GRBs.