Dense Star Clusters as Binary Black Hole Factories

Dense Star Clusters

Open Clusters
Globular Clusters
Nuclear Star Clusters

M30 (NASA/ACS Survey)

Globular Clusters

- Old (~12 billion years)
- Massive (~100,000 to ~1 million stars)
- Compact

M30 (NASA/ACS Survey)

47 Tuc (NASA/HST)

Globular Clusters

Found in almost all galaxies

Milky Way

M87

Globular Clusters

		*	
*			
*			

Dynamical Friction

Dynamical Friction

Massive particles will "segregate" into center of the cluster

$$t_{
m seg.} \sim \frac{\langle m \rangle}{M} t_{
m relax}$$

~ 100 Million Years

Strader et al., 2012

from Harris, 2014

$$\frac{M_{GC}}{R_h} \propto \frac{\mu_{\rm bin}}{a}$$

$$P(e) de = 2e de$$

$$P(a|M_{GC}, R_h, \mu_{\text{bin}}) da = \frac{1}{a\sigma\sqrt{2\pi}} \times$$

$$\exp \left[-\frac{\left(\log \frac{\mu_{\text{bin}} R_h}{a M_{GC}} - a^* \right)^2}{2\sigma^2} \right]$$

Binary Masses

Mergers	Pessimistic	Realistic	Optimistic
O1 (Detections / 16 Days)	0.05	0.2	0.7
O1 (Detections / 50 Days)	0.2	0.5	2
O2 (Detections / Year)	4	15	60
Design Sensitivity (Detections / Year)	30	100	400

$$5 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$$

Nuclear Star Clusters

- Extremely Massive ($10^7 10^8$ stars)
- Compact
- Continuous star formation
- · Central massive black hele (semetimes)

Nuclear Star Clusters

Antonini and Rasio 2016

Nuclear Star Clusters

Multiple BH Mergers

Spins ~ 0.7

Highest Mass BHs

Antonini and Rasio 2016

 $1.5 \; \mathrm{Gpc^{-3}yr^{-1}}$

Nuclear Star Clusters (with central MBHs)

- Single-Single Capture
 - $0.001 0.01 \,\mathrm{Gpc^{-3}yr^{-1}}$
- AGN disk induced inspiral
 - $3 \text{ Gpc}^{-3} \text{yr}^{-1}$
- Lidov-Kozai driven merger

$$100 \text{ Gpc}^{-3} \text{yr}^{-1} (?!)$$

Gualandris and Merritt 2011

Tsang 2013, Stone 2016, VanLandingham 2016

- Masses
- Mass ratios
- Eccentricity
- Spins

Field vs. Clusters

- Masses
- Mass ratios
- Eccentricity
- Spins

Field vs. Clusters

- Masses
- Mass ratios
- Eccentricity
- Spins

Antonini et al. 2015

What is the field?

Disrupting open clusters? $3.5~{\rm Gpc}^{-3}{\rm yr}^{-1}$ Ziosi et al., 2014