Building the algorithmic foundations for interfacing, understanding and exploiting neural systems

Christopher J. Rozell
Georgia Institute of Technology
Acknowledgments

- Aurele Balavoine
- Nick Bertrand
- **Michael Bolus**
- Greg Canal
- Adam Charles
- Marissa Connor
- Allison Del Giorno
- Pavel Dunn
- Magnus Egerstedt
- Stefano Fenu
- **Abbie Kressner**
- John Lee
- Matt O'Shaughnessy
- Garrett Stanley
- Clarissa Whitmire
- **Adam Willats**
- Han Lun Yap
- Mengchen Zhu

"I not only use all the brains I have, but all I can borrow."
- Woodrow Wilson
Today

- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)
- Later on request:

Real time computer vision for automated patch clamping in slices

EEG BMIs for controlling complex behavior in robot swarms
Today

- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)
Observing dynamical systems: neural systems

(Scholvin et al. 2015; Emiliani et al. 2015)

(Churchland et al. 2012; Kao et al. 2015; Pandarinath et al. 2015)
Setup

- Hidden state $x(t)$ exists in N dimensional space
- Deterministic dynamics observable at interval T_s
- Evolution captured according to invertible flow:

$$\phi_T(x(t)) = x(t + T) \implies \phi_T^{-1}(x(t)) = x(t - T)$$

- Contained within a low-dimensional attractor that we (for now) assume to be smooth submanifold:

$$x(t) \in \mathcal{M} \subset \mathbb{R}^N \text{ with } \dim(\mathcal{M}) \ll N$$

- State is only observed through scalar function $h(x(t))$
- Past M time-series observations: delay coordinate map

$$F(x(t)) = \begin{bmatrix}
h(x(t)) \\
h(\phi_T^{-1}(x(t))) \\
\vdots \\
h(\phi_T^{-(M-1)}(x(t)))
\end{bmatrix}$$
Embedology: Takens' Embedding Theorem

State Space

\[\mathbb{R}^N \]

\[\mathcal{M} \]

\[\phi_T(x(t)) = x(t + T) \]

Delay coordinate map (DCM)

\[F(x(t_0 - T_s)) \]

\[F(x(t_0)) \]
Reconstruction problems

- Widely used: time-series prediction, dimensionality estimation

- Practical problems:
 - Concern about embedding sensitivity to noise, etc.
 - Heuristic methods for choosing parameters (e.g., h, T, M)
 - Effect of parameters on embedding quality unclear

![Diagram showing original state, measurement, and reconstruction](image.png)
One-to-one vs. Stable Embedding

One-to-one => topology preservation

\[x_1 \neq x_2 \implies F(x_1) \neq F(x_2) \]

Stable embedding => geometry preservation

\[\| F(x_1) - F(x_2) \|_2 \propto \| x_1 - x_2 \|_2 \]
Theorem (Eftekhar, Yap, Wakin, R., 2017):

Under some regularity assumptions, if

\[R(\mathcal{M}_{H,T,M}) > \dim(\mathcal{M}) \cdot \log \left(\frac{\frac{1}{\text{vol}(\mathcal{M})} \cdot \frac{\dim(\mathcal{M})}{\text{rch}(\mathcal{M})}}{M} \right) \]

then with high probability over measurement functions,

\[\epsilon_l(M) \leq \frac{\|F(x_1) - F(x_2)\|_2^2}{M\|x_1 - x_2\|_2^2} \leq \epsilon_u(M) \]

for all \(x_1, x_2 \in \mathcal{M} \).

Stable rank: May scale like \(M \)?

Linear in dimension

Geometric regularity

Depends on regularity of flow, attractor curvature and measurement operator.

Monotonic functions of \(M \) that may plateau.
Irrelevancy vs. Redundancy

• This result helps justify design rules that are commonly employed in constructing DCMs.
 – (e.g., Casdagli et al., 1991; Kugiumtzis, 1996; Uzal et al., 2011)

• Irrelevancy
 – If T is too large the rows of the stable rank matrix may have widely differing lengths, especially for chaotic systems.

• Redundancy
 – If T is too small, the rows of the stable rank matrix may not span a diverse set of directions.

• Both situations can cause the stable rank to plateau when M is increased, leading to a poor embedding.
Today

- Delay embeddings for nonlinear dynamics (math)
- **Closed loop optogenetic stimulation** (electrophysiology)
- Denoising and speech intelligibility (psychophysics)
Stimulation for functional dissection

- All-or-nothing inputs with uncertain input-output map

- How do we disentangle neural coding in coupled circuits?
- Proposal: use closed-loop optogenetic control (CLOC) to fix one subsystem output to study another in isolation

(Carter & de Lecea, 2011)
An old problem

- Hodgkin & Huxley investigated action potential generation

- Problem: coupled ionic and capacitive currents

- Solution: use feedback control to clamp membrane potential and decouple current sources
A new light: *loop de-loop*

- Can we disentangle circuits at the systems level?
- Example: active sensing in a somatosensory pathway
 - Combines sensory drive, self-motion, and motor efferents

(Ahissar et al., 2013)
Why not open-loop stimulation?

- Artificial stimulation yields high variance in critical range due to bimodal response

- Single trials unpredictable due to varying system state

(Millard, Whitmire, Gollnick, R., & Stanley, 2015)
CLOC of firing rate

Firing rate target \(\lambda_r \) → \(e \) → Controller \(u \) → Neural System \(y \)

LED input power

Spiking output

Estimated rate \(\hat{\lambda} \)

• Major steps:
 – Design observer → causal exponential filter
 – Model neural system → linear-nonlinear-Poisson model
 – Design controller → proportional-integral controller

(Bolus, Willats, Whitmire, R. & Stanley. in prep)
In vivo experimental preparation

- Somatosensory thalamus of anesthetized rat (fentanyl cocktail)
- Expression of channelrhodopsin in excitatory neurons via viral injection (ChR2-CaMKII)
- Graded optical stimulation of population (200 µm optic fiber)
- Extracellular recording of single units (80 µm tungsten electrode)
- Tucker Davis Technologies (TDT) system for real-time processing

(Newman et al. 2015)
Tracking a simple 1Hz modulation

Closed-loop
- Firing Rate (spikes/s)
- Control Input (mW/mm²)

Open-loop
- Firing Rate (spikes/s)
- Control Input (mW/mm²)

Comparison between Closed-loop and Open-loop performance with a 1Hz modulation.
Disturbance Rejection

- **Closed-loop**
 - Firing Rate (spikes/s)
 - Control Input (mW/mm²)
 - 20 spikes/s
 - 1 mW/mm²

- **Open-loop**
 - Firing Rate (spikes/s)
 - Control Input (mW/mm²)
 - 20 spikes/s
 - 1 mW/mm²
Tracking Complex Desired Trajectories

Firing Rate (spikes/s)

Fano Factor
variance/mean

Time (s)

Closed-loop
Open-loop
Reference

20 spikes/s

1
Reduced Response Variability

Firing Rate (spikes/s)

Fano Factor

Time (s)

Closed-loop
Open-loop
Reference

20 spikes/s

Average Fano Factor

Closed loop
Open loop

cell 1
cell 2
cell 3
cell 4
cell 5

Christopher J. Rozell

Building algorithmic foundations
CLOC with Neural State-switching

- How to maintain control during state changes?
 - NOT pretend it’s one system and design single controller
 - Switch between multiple models inferred with HMMs
 - Design controllers with robustness to multiple models
Today

- Delay embeddings for nonlinear dynamics (math)
- Closed loop optogenetic stimulation (electrophysiology)
- Denoising and speech intelligibility (psychophysics)
My Ulysses contract: auditory research

Ulysses and the Sirens, JW Waterhouse (1891)
Speech intelligibility in noise

- Speech in noise is difficult to understand, especially for impaired listeners
- Traditional single channel speech denoising can improve quality but do not improve intelligibility
- Ideal binary mask (IBM)
 - Threshold noise-dominated TF bins; keep target-dominated
 - Requires oracle knowledge

(Roman, Wang & Brown 2003)
IBM intelligibility benefits

(Li & Loizou 2008)
Binary mask estimation

Estimated binary mask

<table>
<thead>
<tr>
<th>Classification Problem</th>
<th>ideal mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>estimated mask</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>false negative (FN)</td>
</tr>
<tr>
<td>true negative</td>
<td></td>
</tr>
</tbody>
</table>

True positive
False positive (FP)
False negative (FN)
True negative
How accurate is necessary?

Conclusions:
FP rate < 20% when FN=0
FN rate < 60% when FP=0
Overall rate < 10%

(Li & Loizou, 2008)
Binary mask estimation error structure

- Real algorithms make errors that:
 - Have significant TF structure
 - Have both FP/FN errors simultaneously
- How do these factors affect intelligibility?
- Develop investigation framework to test the impact of structure in IBM estimation errors
- Idea: develop statistical model of estimation errors
Ising graphical model

False positive error rate

Structure
clustering over time and frequency

False negative error rate

Training approach:
1. Generate speech mixtures
2. Estimate IBMs (e.g., GMM)
3. Estimate model parameters (MLE)

Testing approach:
1. Generate speech mixture
2. Calculate IBM
3. Draw a sample from $p(x|y)$
4. Test intelligibility with mask x

(Kressner & R., 2015)
Example sampled masks

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Freq (Hz)</th>
<th>IBM</th>
<th>$\gamma = 1.0$</th>
<th>$\gamma = 2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.7k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.7k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\alpha = 10\%$
$\beta = 10\%$
$\alpha = 10\%$
$\beta = 20\%$
$\alpha = 20\%$
$\beta = 10\%$
Experimental setup

- Determine typical parameters
- Test word errors in 10 NH listeners for speech in babble (-5dB)
- Perform parametric exploration over:
 - FP and structure
 - FN and structure
 - FP, FN and structure
Clustering is detrimental

\[
\text{Words correct (\%)} = \begin{cases}
\gamma = 1.0 \\
\gamma = 1.5 \\
\gamma = 2.0 \\
\gamma = 2.5
\end{cases}
\]

False positive error rate

(Kressner & R., 2015)

[Li and Loizou, 2008]
Also, FN can be as detrimental as FP

Experiment 2 results

\[\text{Words correct (\%)} \]

<table>
<thead>
<tr>
<th>(\beta) (%)</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma = 1.0)</td>
<td>(\gamma = 1.5)</td>
<td>(\gamma = 2.0)</td>
<td>(\gamma = 2.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

False negative error rate

(Kressner & R., 2015)

[Li and Loizou, 2008]
Individual criteria insufficient

- Significant interactions: FN/structure and FP/FN/structure
- FM just as bad as FP even without structure

(Kressner & R., 2015)
Changing criteria

- Effect of clustering not captured by H-FA metric
- Effect of clustering qualitatively captured by STOI metric but with underprediction of error rates

(Kressner & R., 2015; Kressner, May & R., 2016)
Cochlear implant intelligibility

- Test word errors in 8 CI wearers for speech in babble (delivered electrically)

![Image of spectrograms and electrodograms with masks and corresponding stimulation sequences.](image)
Consistent conclusions

FN rate \(\beta \) (%)

FP rate \(\alpha \) (%)

(Clustering)

\(\gamma = 1.0 \)
\(\gamma = 2.0 \)

(Kressner, Westermann, Buchholz & R., 2015)
More stringent criteria

(NORMAL HEARING)

(COCHLEAR IMPLANT)

(FP rate vs. FN rate)

(Kressner, Westermann, Buchholz & R., 2015)
http://siplab.gatech.edu

crozell@gatech.edu