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Dark matter everywhere

50 orders of magnitude in mass!

⇢coherent-field bosonic 
(axions, dark photons, …)

fermions

10�22 eV 1019 GeV1 eV 1 keV 1 GeV 100 TeV

⇢

canonical 
WIMP

Non-gravitational interactions not guaranteed (e.g. gravitino) 
but terrestrial detection strategies needed for all masses

WIMPZilla, 
gravitino, 

???
unitarity

Virialized DM has vDM ⇠ 10�3c

=) KEDM ⇠ 10�6mDM



But what is it?
10�22 eV 1019 GeV

⇢coherent-field bosonic 
(axions, dark photons, …)

1 eV 1 keV 1 GeV 100 TeV

keV-TeV: energy deposits from single-particle scattering

fermions

⇢

canonical 
WIMP

WIMPZilla,
gravitino, 

???
unitarity

and many others: 
DAMIC 
SENSEI 
CRESST 

… 

[Goodman, Witten PRD 1985; Drukier, Freese, Spergel PRD 1986]



Freeze-in through dark photon
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Figure 1: Log-Log plot of the evolution of the relic yields for conventional freeze-
out (solid coloured) and freeze-in via a Yukawa interaction (dashed coloured) as a
function of x = m/T . The black solid line indicates the yield assuming equilibrium is
maintained, while the arrows indicate the e↵ect of increasing coupling strength for the
two processes. Note that the freeze-in yield is dominated by the epoch x ⇠ 2 � 5, in
contrast to freeze-out which only departs from equilibrium for x ⇠ 20� 30.

of the freeze-out mechanism is that for renormalisable couplings the yield is dominated by low
temperatures with freeze-out typically occurring at a temperature a factor of 20 � 25 below the
DM mass, and so is independent of the uncertain early thermal history of the universe and possible
new interactions at high scales.

Are there other possibilities, apart from freeze-out, where a relic abundance reflects a com-
bination of initial thermal distributions together with particle masses and couplings that can be
measured in the laboratory or astrophysically? In particular we seek cases, like the most attractive
form of freeze-out, where production is IR dominated by low temperatures of order the DM mass,
m, and is independent of unknown UV quantities, such as the reheat temperature after inflation.

In this paper we show that there is an alternate mechanism, “freeze-in”, with these features.
Suppose that at temperature T there is a set of bath particles that are in thermal equilibrium and
some other long-lived particle X, having interactions with the bath that are so feeble that X is
thermally decoupled from the plasma. We make the crucial assumption that the earlier history
of the universe makes the abundance of X negligibly small, whether by inflation or some other
mechanism. Although feeble, the interactions with the bath do lead to some X production and,
for renormalisable interactions, the dominant production of X occurs as T drops below the mass
of X (providing X is heavier than the bath particles with which it interacts). The abundance of
X “freezes-in” with a yield that increases with the interaction strength of X with the bath.

Freeze-in can be viewed as the opposite process to freeze-out. As the temperature drops below
the mass of the relevant particle, the DM is either heading away from (freeze-out) or towards
(freeze-in) thermal equilibrium. Freeze-out begins with a full T 3 thermal number density of DM
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[Hall et al., JHEP 2010]

mA0 ⌧ keV

↵D"2 ⇠ 10�28

Parameter space for keV DM is wide open!  
Including lower limit of particle DM

[U.S. Cosmic Visions Commun. Rept. 2017]
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Nuclear recoil:  
tough for light DM!
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2
m�v

2 ⇠ 1 eV
⇣ m�

MeV

⌘

Need MeV targets (electron) and eV thresholds for MeV DM; 
even smaller (meV) thresholds for keV DM

�
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�
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“Ping pong ball on bowling ball” kinematics:

Only available for                 , m� ⇠ mN

q ⇠ 2m�v, ENR =
q2

2mN
⇠ 10�4 eV

⇣ m�

MeV

⌘2
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10 GeV
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◆

still far below typical thresholds



Electron recoil: 
DM-induced ionization

Two key features:
1. Initial state not a  
momentum eigenstate: 
     and     independent

2. Wavefunction 
suppression at large q:

kf

An Overview of Tight-binding Method for Two-dimensional Carbon Structures 9

pair of carbon atoms make use of sp
2 hybrid orbitals. The remaining p orbitals of carbon 

atoms overlap to form a π bond. 
π  bonds result from the overlap of atomic orbitals that are in contact through two areas 

of overlap. π  bonds are more diffuse bonds than the σ  bonds. Electrons in π bonds are 
sometimes referred to as π electrons. 

In the case of sp
2 hybridization, the carbon atom is a special case. Because the only 

orbital bonded to the nucleus is 1s, the size of atoms is small and the resultant band is 
considerably strong. Other elements of group IVnormally appear in sp

3 hybridization. Going 
down the table of periodic element of this group, and with the physical size of the elements 
increasing, the bond energy is reduced,and eventually the last element of this group, that is 
Pb, becomes a metal rather than being a semiconductor. Since the π  bonds are much weaker 
than σ bonds, forming of π bonds in the other elements of this group would be highly 
unstable. While the bonding energy of π orbitals in Si is only about 25Kcalmol−1, this value 
is about 60Kcalmol−1 for carbon. 

 
II.2.3. sp3 Hybrid Orbitals 

Carbon atoms in diamond provide a simple example of  sp
3 hybrid orbitals. Mixing one s 

and all three p atomic orbitals produces a set of four equivalent sp
3 hybrid atomic orbitals. 

When carbon atoms make use of sp
3 hybrid orbitals, the four bonds around each carbon atom 

point toward the vertices of a regular tetrahedron and make angles of 109.5°. 
 

 

Figure II.2.3. sp
3 hybridization. 

 
Using calculations similar to previous sections, four sp

3 hybrid orbitals are given by 

� �

e�

p = m�v p� q

qtyp ⇠ 1

a0
⇠ 4 keV

v ⇠ 10�3 =) rate maximized for

�Eb

�Ee ⌘ Eb +
k2f
2me

= ~q · ~v � q2

2m�

kf q

�Ee . 4 eV

[Essig, Mardon, Volansky PRD 2012]
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amplified phonon signals 

Ephonon 

Ephonon 

energy threshold 
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iZIP 

- Phonon signals amplified with Neganov-Luke effect 
  → Eventually very low energy threshold achieved 
  → Ideal for low Er from low-mass DM 

- No capability of ER/NR discrimination 

CDMSlite: HV Detector 
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Atoms and semiconductors

Noble liquids - Xe, Ar, … 
Signal: S2 only 

[Essig et al, PRD 2017; 
DarkSide collab. 2018]

Atomic ionization energies 
are ~10’s of eV

=)

When calculating rates, we assume a Maxwell-Boltzmann distribution with a sharp cutoff (we
describe this in more detail, and give analytic formulas for ⌘(v

min

), in Appendix B). The requirement
of energy conservation is captured by v

min

(q, E
e

), the minimum speed a DM particle requires in order
for the electron to gain an energy E

e

with momentum transfer q (note that E
e

was also denoted as
�E

e

in §3.1). This is given by

v
min
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e

) =

E
e

q
+

q

2m
�

. (3.12)

Figure 4. Scissor corrected band structure for silicon (left) and germanium (right) as calculated with Quantum

ESPRESSO [69] with a very fine k-point mesh. The horizontal dashed line indicates the top of the highest valence band. The
four bands below the horizontal dashed line are the valence bands while the bands above the dashed line are the conduction
bands. We also show the density-of-states (DOS) as a function of the energy for a very fine k-point mesh (blue) and for our
243 k-point mesh (red). A Gaussian smearing of 0.15 eV was used to generate a smooth function.

Differential rate. As we show in Appendix A.4, the differential electron scattering rate in a semi-
conductor target (with the approximation of a spherically symmetric DM velocity distribution) can be
written as

dR
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e
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where ⇢
�

' 0.4 GeV/cm3 is the local DM density, E
e

is the total energy deposited, and N
cell

=

M
target

/M
cell

is the number of unit cells in the crystal target. (M
cell

= 2 ⇥ m
Ge

= 145.28 amu =

135.33 GeV for germanium, and M
cell

= 2 ⇥ m
Si

= 56.18 amu = 52.33 GeV for silicon.)
We have written this in such a way that the first line gives a rough estimate of the rate, about
29 (11) events/kg/day for silicon (germanium) for ⇢

�

= 0.4 GeV/cm3, m
�

= 100 MeV, and �
e

'

– 13 –

Semiconductors - Si, Ge, … 
[Essig et al, JHEP 2016; Lee et al. PRD 2015]

Band gap as small as 0.5 eV10 MeV threshold
=) 0.5 MeV threshold



keV DM needs meV sensitivity

Superfluids 
(long-lived quasiparticles, 

surface amplification)

Superconductors 
(meV gap to break Cooper pair, 

detect with TES)

Common issue: poor response to dark photon mediator 
 freeze-in target not accessible

quantum evaporation: binding energy gain factor

http://iopscience.iop.org/article/10.1088/0953-8984/25/44/443001/meta

reference for helium on graphene-fluoride:

Eo
-0.62 meV

large number
of meV

Ef

quasiparticle free atom bound atom

Typical helium-solid binding energy:  
~10meV  (>10x gain!)

Highest I’ve found with the google:
42.9meV  (~50x gain!)

Of course, it’s a pain to keep the 
calorimeter ‘dry’, but it’s doable.
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[Hertel, McKinsey, 2016]

[Hochberg, Pyle, Zhao, Zurek JHEP 2016]

Superconducting Substrate (Al)

Insulating layer

 TES and QP collection antennas (W) 

SuperConducting Bias Rails (Al)

Superconducting Substrate (Ta)

Insulating layer

 TES and QP collection antennas (W) 

Athermal Phonon Collection Fins (Al)

Figure 1. Schematic designs for superconducting detectors that are sensitive to DM-electron scattering.
Left: Quasiparticles produced by a recoiling e� in a large aluminum arbsorber are collected by tungsten
quasiparticle collection fins and then their energy is sensed by a TES.Right: Athermal phonons produced
by a recoil e� in a large tantalum absorber are collected by aluminum collection fins and then their energy
is sensed by a TES.

superconducting gap is not important for the scattering process itself, its existence means that

athermal phonons and quasiparticles have very long lifetimes, and as such can potentially be

collected before they thermalize. Thus in the systems we consider, detection of DM operates via

the breaking of Cooper pairs in a superconducting target. We consider this idea in more detail

next.

2.2 Detector design with milli-eV sensitivity

Our detector concept is based on collecting and concentrating long lived athermal excitations

from DM interactions in a superconducting target absorber onto a small volume (and thus highly

sensitive) sensor. The collection and concentration of long lived excitations is a general concept

that has been a core principle of detector physics, from ionization in semiconductor CCDs to

athermal phonon collection in CDMS. Here we propose that this general detection philosophy be

applied in large volume (very pure, single crystal) superconductors to search for DM with mass

as low as the warm DM limit of a keV using standard superconducting sensor technology that

has been pushed to its ultimate theoretical sensitivity. A schematic of two proposed detector

concepts for light dark matter, that we describe in greater detail through the remainder of this

section, is shown in Fig. 1.

Detection of dark matter in such detectors is comprised of a three part process:

• Dark Matter Scattering on Target Absorber and Subsequent Excitation Production. A DM

particle scatters o↵ an e� in the target metal or superconducting absorber. In subse-

quent interactions, the recoil energy is converted into long lived athermal phonons and

quasiparticles.

• Collection of Excitations. The resulting excitations must be collected and concentrated

onto a small volume (and thus very sensitive) sensor; this is typically done via ‘collection

– 6 –



Dirac materials for DM

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

Nb d-states

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

(a) (b) (c)

• meV excitation energies 
• Anisotropic (bands and crystal) 
• No in-medium screening

3D Dirac semimetal (ZrTe5)

New class of materials for DM detection! 
Capable of directional detection at meV-eV energies

[Hochberg, YK, Lisanti, Zurek, Grushin, Ilan, Liu, Weber, Griffin, Neaton,  
Phys. Rev. D 2018, 1708.08929]



Dirac semimetals ~  
ultra-low-gap semiconductors

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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[Castro Neto et al., Rev. Mod. Phys. 2009] 

Dirac dispersion:

Electrons behave “relativistically” with  

slope of cone = vF  

                       for graphene

c ! vF ,↵ ! ↵

vF

Pointlike Fermi surface but high conductivity

E±
k = ±

q
v2Fk

2 +�2

3⇥ 10�3c

� . O(meV)



2D Graphene for keV DM?

bandgap is generally less affected by defects or doping than electrical
transport measurements2. Figure 2b shows the gate-induced bilayer
absorption spectra at CNPs (dD 5 0) with !DD 5 1.0 V nm21,
1.4 V nm21, 1.9 V nm21 and 3.0 V nm21. The absorption spectrum of
the sample at the zero-bandgap CNP (!DD 5 0) has been subtracted as a
background reference to eliminate contributions to the absorption

from the substrate and gate materials. Two distinct features are present
in the spectra, a gate-dependent peak below 300 meV and a dip centred
around 400 meV. These arise from different optical transitions between
the bilayer electronic bands, as illustrated in Fig. 2a. Transition I is the
tunable bandgap transition that accounts for the gate-induced spectral
response at energies lower than 300 meV. Transitions II, III, IV and V
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Figure 1 | Dual-gated bilayer graphene. a, Optical microscopy image of the
bilayer device (top view). b, Illustration of a cross-sectional side view of the
gated device. c, Sketch showing how gating of the bilayer induces top (Dt)
and bottom (Db) electrical displacement fields. d, Left, the electronic
structure of a pristine bilayer has zero bandgap. (k denotes the wavevector.)
Right, upon gating, the displacement fields induces a non-zero bandgap D

and a shift of the Fermi energy EF. e, Graphene electrical resistance as a
function of top gate voltage Vt at different fixed bottom gate voltages Vb. The
traces are taken with 20 V steps in Vb from 60 V to 2100 V and at
Vb 5 2130 V. The resistance peak in each curve corresponds to the CNP
(dD 5 0) for a given Vb. f, The linear relation between top and bottom gate
voltages that results in bilayer CNPs.
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Figure 2 | Bilayer energy gap opening at strong electrical gating. a, Allowed
optical transitions between different sub-bands of a graphene bilayer.
Curves are offset from zero for clarity. b, Gate-induced absorption spectra at
CNP for different applied displacement fields !DD (with the spectrum for zero-
bandgap CNP subtracted as reference). For clarity the upper traces were
displaced by 2%, 4% and 8%, respectively. Absorption peaks due to
transition I at gate-induced bandgaps are apparent (dashed black lines are
guides to the eye). At the same time, a reduction of absorption below the
bandgap is expected. This reduction is clearly observed in the trace with the

largest bandgap (D 5 250 meV) in our experimental spectral range. The
sharp asymmetric resonance observed near 200 meV is due to Fano
resonance of the zone-centre G-mode phonon with the continuum
electronic transitions. The broad feature around 400 meV is due to
electronic transitions II, III, IV and V. c, Theoretical prediction of the gate-
induced absorption spectra based on a tight-binding model where the
bandgap value is taken as an adjustable parameter. The fit provides an
accurate determination of the gate-tunable bandgap at strong electrical
gating.
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Gap      is continuously tunable 0-250 meV

[Zhang et al, Nature Lett. 2009] 

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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Monolayer Bilayer

�

[Castro Neto et al., Rev. Mod. Phys. 2009] 



Newton vs. Fermi
vDM ⇠ 10�3c vF = 3⇥ 10�3c

Unfortunate coincidence for DM direct detection! 
(Also 2D targets not ideal when electron is not ejected)

22

upon increasing the magnetic field, and tend to satura-
tion. Since the electronic density in the central panel of
Fig. 13 is few times larger than that in the left one, it
seems that the effect of short-range scatterers is more ef-
fective at higher densities (Tikhonenko et al., 2009); at
lower densities long-range scatterers dominate. Indeed,
in the right panel of Fig. 13, we clearly see a crossover
from weak anti-localization to weak localization as the
electronic density increases from I to III, at a tempera-
ture of 27 K; considering important screening effects of
charged impurities at large electronic densities, such a re-
sult sounds reasonable. It is a remarkable experimental
fact that quantum interference effects just discussed can
be observed in graphene at temperatures as high as ⇠200
K (Tikhonenko et al., 2009).

As stated, we expect that in graphene the presence
of different kinds of defects (in different concentrations)
will control whether weak localization or weak anti-
localization is observed. This depends on the relative
value of the different elastic times introduced above and
on the electron density. A detailed analysis of this point
is essential for a correct interpretation of the data, and
has been done in great detail (McCann et al., 2006; Mor-
purgo and Guinea, 2006). The numerical values for the
different scattering times can be obtained from the ex-
perimental data (Tikhonenko et al., 2008).

Finally, we note that the observation of quantum cor-
rections to the conductivity in graphene seems to de-
pend on the details of the fabrication process, which
determines the amount of rippling introduced in the
system (Morozov et al., 2006). Routes for suppression
of weak (anti-)localization effects have been considered
(Khveshchenko, 2006) and this effect was experimentally
observed as well (Morozov et al., 2006; Tikhonenko et al.,
2008). As in the case of strain discussed in Sec. IV.D,
ripples are equivalent to effective gauge fields which break
time reversal, leading to the suppression of weak localiza-
tion effects, within each valley. In the system as a whole
(both valleys considered) the full time reversal symmetry
is preserved.

VI. THE OPTICAL CONDUCTIVITY OF GRAPHENE IN
THE INFRARED TO VISIBLE RANGE OF THE SPECTRUM

In the ensuing sections we discuss the calculation of
the percentage of light transmitted by a graphene mem-
brane, when light shines from behind. This property is
controlled by the optical conductivity �(!) of the mate-
rial. We analyze how and why the experimental behavior
of �(!) deviates from the predictions of the independent
electron model.

A. Graphene as a transparent membrane

The calculation of light absorption by a given mate-
rial is equivalent to the calculation of the optical con-
ductivity. In general, such a calculation proceeds using
Kubo’s formula. In the case of graphene, it is possible
to use Fermi’s golden rule to obtain directly the fraction
of absorbed light, which turns out to be a much simpler
calculation than computing the optical conductivity first
(Kravets et al., 2010). The central quantity to be com-
puted is the transition rate of electrons excited from the
valence band to the conduction one, as shown in Fig. 14.

Figure 14 (Color online) Pictorial description of the optical
excitation of electrons in graphene. The absorption of a pho-
ton can only induce vertical inter-band transitions. From left
to right we have graphene doped with holes, neutral, and
doped with electrons.

In the presence of a vector potential A the Dirac
Hamiltonian has the form

HK = v
F

� · (p+ eA) . (43)

We represent the electric field as E = �@A/@t and
choose the polarization of the field along the x�axis:
A = x̂A

0

(ei!t + e�i!t)/2. The term v
F

� · eA will be
taken as perturbation, and in the spirit of time depen-
dent perturbation theory, only the exponential with neg-
ative exponent is taken. The transitions induced by light
absorption are now controlled by the �

x

matrix. Clearly
the matrix element h 

�

|�
x

| 
�

i cannot contribute to the
conductivity, since light cannot induce transitions within
the same band, among states of equal momentum. The
only non-vanishing contributing matrix element is there-
fore h 

1

|�
x

| �1

i = � i

2

v
F

eA
0

sin ✓(k). The transition
rate is then given by Fermi’s golden rule:

W
1,�1

(k) =
2⇡

4~ v
2

F

e2A2

0

sin2 ✓(k)�(2v
F

k~� !~) . (44)

The Dirac delta function in Eq. (44) enforces the condi-
tion that only electrons with energy !/2 can be excited
to the conduction band. The transitions we are referring
to are shown in Fig. 14. To obtain the contribution from

(
kinematically forbidden for vDM < vF



Dirac semimetals = “3D Graphene”

• Many candidate materials, range of Fermi velocities 
• Bulk material: more exposure 
• Anisotropic crystal: directionality for excitations

Advantages over graphene:

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

Nb d-states

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

(a) (b) (c)

8

|   > + 𝑒 |   > 

BLi 

Graphene 
PbO2 

NiTi3S6 

V3S4 

Cd3As2 

Na3Bi 

HgTe 

Bi2Se3 
(Pb,Sn)Te 

0 

1 

2 

0 30 60 90 �̅� 

v F
 [×

10
 m

/s
] 

β-Ag2Te 

FIG. 6. Fermi velocity of various classes of Dirac materials. Com-
puted Fermi velocity at the Dirac cone (averaged over the two in-
tersecting linear-dispersion) of the four Weyl orbital semimetals pre-
dicted here are compared with various other experimentally verified
Dirac materials. All SOC induced Dirac fermions in heavy-elements
have Fermi velocity almost an order of magnitude lower than that of
the Weyl orbital semimetals, and graphene. The horizontal coordi-
nate gives the average atomic number (Z̄) of the elements contribut-
ing to the Dirac cone. Gray and yellow shadings separate the two
families of Dirac materials without and with SOC, respectively. The
Fermi velocity data are taken for the surface states of the 2D topo-
logical insulator HgTe/CdTe from Ref. [38], for the 3D topological
insulator Bi

2

Se
3

from [39], and for the topological crystalline insu-
lators (Pb,Sn)Te from Ref. 40 and 41, �-Ag

2

Te from Ref. 42. The
Fermi velocity at the 3D Dirac cone of the Weyl semiletals Cd

3

As
2

is taken from Ref. 14 and 15, and for Na
3

Bi from Ref. 17 and 18.
The data for the non-SOC induced Dirac cone in graphene is taken
from Ref. 1. The inset figure schematically shows the possibility of
obtaining orbitally polarized electronic current with an anisotropic
phase difference, �

k

, protecting their quantized currents.

Appendix A: Parameter sets for Fig. 2

We use Dirac matrices of the form �

1,2,3

= �
1

⌦�
1,2,3

, and
�

4

= I ⌦ �
3

, where �
i

are the Pauli matrices and I is 2⇥2
unity matrix.

For the demonstration of the emergence of Dirac or Weyl
ferminons, we take a simple and minimal set of parameters for
tn, µn, and tnm: tn=1,2

j

= ±150 meV, and tn 6=m

jl

= 150 meV
is taken to be same for all orbitals n, m and along any di-
rections j, l. The chemical potential can be chosen in a way
that ⇠�k banishes at the � point (µn

= �6tn) or at any other
discrete momenta (µn

= �6tn± �, where � is a tunable num-
ber). In Fig. 1 of main text, we take µ1,2

= ⌥0.9 eV for
the Dirac point at the �, and µ1,2

= ⌥0.7 eV otherwise. All
tight-binding parameters are kept same for all plots in Fig. 1.

We explicitly write down the combinations of ⇠
a,b,c

chosen
in Fig. 1 of the main text. In the following cases, we assume
Dirac or Weyl cones are present in the k

j

and k
l

plane, and k
n

is the perpendicular axis. For Fig. 1E, the d-vectors are taken
to be d

j

= �i⇠
a

(k
j

), where j = 1, 2, 3 corresponding to k
j

,
k
l

and k
n

direction, or their various combinations. The choice
of d-vector components are

For Fig. 1(f) : d
1

+ id
2

=

1

2

⇠
b

(k
j

, k
l

), d
3

=

1

2

⇠
c

(k
j

, k
l

),

or d
3

= �i⇠
a

(k
n

), or d
3

= � i

2

[⇠
b

(k
j

, k
l

) + ⇠
b

(k
n

, k
l

)] .

For Fig. 1(g) : d
1

+ id
2

= ⇠
a

(k
l

), d
3

=

1

2

⇠
c

(k
j

, k
n

).

For Fig. 1(h) : d
1

+ id
2

= ⇠
a

(k
n

), d
3

=

1

2

⇠
c

(k
j

, k
l

),

or d
1

+ id
2

=

i

2

⇠
c

(k
j

, k
l

), d
3

= �i⇠
a

(k
n

). (A1)

The above three cases give Weyl cones along the zone axis.
We also provide two other cases, where Weyl cones appear
along other directions when a point-group symmetry is bro-
ken. In these cases, both inter-basis hoppings between 1 to 3
and 2, 3 are taken to have same sign, violating the symmetry
associated with the �

3

term. Such Weyl cones are probably
not as stable as others.

For Fig. 1(i) : d
1

+ id
2

= [⇠
a

(k
n

) + i⇠
a

(k
j

)] ,

d
3

= ±i⇠
a

(k
l

).

For Fig. 1(j) : d
1

+ id
2

= � i

2

⇠
c

(k
j

, k
l

),

d
3

= ±i [⇠
a

(k
j

)� ⇠
a

(k
l

)] . (A2)

Appendix B: Cohesive energy calculation

Cohesive energy of a composition, M=A
x

B
y

C
z

, is defined
as

E
coh

= E
M

� xE
A

� yE
B

� zE
C

. (B1)

E
M

is the total energy of the primitive cell of bulk M, while
E
A

and E
B

and E
C

are the total energy per atoms of A, B, and
C species, respectively, in their bulk form. x, y, and z are the
numbers of A, B and C atoms, respectively, assembled in the
primitive cell of M. In case of a binary material M=A

x

B
y

the
last term in Eq (B1) is omitted. Cohesive energy of considered
materials are listed in supplementary Table SII.

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
A. K. Geim, The electronic properties of graphene,, Rev. Mod.

Phys. 81, 109 (2009).
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Scattering rate

by the gain from the reduced in-medium response: the scale of the e↵ective dark photon coupling

in metals can be 4–6 orders of magnitude larger. When squared, this leads to a huge suppression

in the rate, which dominates over the phase space suppression of semimetals. We demonstrate this

behavior explicitly in Sections 3 and 4, where we derive the DM scattering and absorption rates in

Dirac materials.

3. Scattering in Dirac Materials

The formalism for DM scattering in Dirac materials is a special case of the more general formalism

for scattering in crystal lattices described in Ref. [87]. We describe the calculation of the DM

scattering rate in Section 3.1 and highlight important issues pertaining to the kinematics in

Section 3.2, including the dependence of the scattering rate on the Fermi velocity v
F

. In Section 3.3,

we discuss the projected sensitivity to DM scattering in a generic Dirac target and for ZrTe
5

in

particular.

3.1 Scattering Rate Formalism

Consider a Dirac cone located at K in the BZ, and a transition from k = K+` in the valence band

to k0 = K + `0 in the conduction band with |`|, |`0| ⌧ |K|. In order to present simplified analytic

results where possible, we assume the gapless, isotropic dispersion relations:

E±
` = ±v

F

|`|. (3.1)

The main e↵ect of a gap is to impose a kinematic threshold 2� on the scattering event, but our

conclusions are otherwise unchanged. A more complete discussion of anisotropic materials with

independent Fermi velocities v
F,x

, v
F,y

, v
F,z

is included in Appendix B.

The rate to scatter from the valence band (labeled by ‘�’) at k to the conduction band (labeled

by ‘+’) at k0 is given by [87]

R�,k!+,k

0 =
⇢
�

m
�

�
e

8⇡µ2

�e

Z
d3q

1

|q|⌘ (vmin

(|q|, !
kk

0)) |F
DM

(q)|2|F
med

(q)|2|f�,k!+,k

0(q)|2, (3.2)

where ⇢
�

' 0.4 GeV/cm3 is the local DM density, µ
�e

is the DM-electron reduced mass, �
e

is a

fiducial spin-averaged DM–free-electron scattering cross section, and !
kk

0 is the energy di↵erence

between the final and initial states. The rate also depends on several form factors, which are

defined explicitly below: F
DM

(q) parameterizes the momentum dependence of the DM–free-electron

interaction, F
med

(q) parameterizes the momentum-dependent in-medium e↵ects, and f�,k!+,k

0(q)

is the transition form factor parameterizing the transition between bands. Because a distribution

11
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Fmed(q) :

f�,k!+,k0(q) :

DM model. Const. for heavy mediator, ~1/q2 for light med.

Effects of target medium. Can have strong q2 dependence!
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Transition form factor
Wavefunctions near Dirac point are simple! 

Just borrow results from Peskin & Schroeder…

Inter-band scattering Absorption
|q| � ! |q| ⌧ !

Figure 1: Cartoon of the two dark matter-initiated processes in Dirac materials that we consider
in this paper: inter-band (valence to conduction) scattering (left) and absorption by valence-band
electrons (right).

mediator for DM-electron scattering processes or as the DM itself which is absorbed. In the case of

superconductors, the dark photon takes on a large e↵ective mass in the medium, suppressing the

DM interaction rate. For helium, the leading interaction is through the polarizability of the atom,

which is small.

In this paper, we propose Dirac materials as a new class of electron targets for DM scattering or

absorption. We define Dirac materials as three-dimensional (3D) bulk substances whose low-energy

electronic excitations are characterized by a Dirac Hamiltonian [60–62],

H` =

 
0 v

F

` ·� � i�

v
F

` ·� + i� 0

!
, E±

` = ±
q

v2
F

`2 +�2. (1.1)

Here, ` is a lattice momentum measured from the location of the point of the Dirac cone (e.g., the

Dirac point) in reciprocal space, � is analogous to the mass term in the Dirac equation giving rise

to a band gap 2�, the Fermi velocity v
F

plays the role of the speed of light c, and the positive and

negative dispersion relations correspond to the conduction and valence bands, respectively.2 The

desired signal is a DM-induced inter-band transition from the valence to the conduction band, where

for DM scattering the momentum transfer |q| is typically much larger than the energy deposit !,

with the opposite being true for absorption of non-relativistic DM. A cartoon of these two processes

is illustrated in Fig. 1. As we will show, the dynamics of the photon interacting with Dirac fermions

mimic those of ordinary relativistic QED: the Ward identity keeps the photon massless in a Dirac

material, leading to excellent detection reach in models of DM involving dark photons.

When � = 0, the low-energy degrees of freedom in a Dirac material correspond to two Weyl

fermions of opposite chiralities. Materials with this feature are classified as either Dirac or Weyl

2Real materials typically have anisotropic Fermi velocities, but this complication does not a↵ect the thrust of our
arguments; we treat this case in Appendices A and B.

4

Wavefunctions are just plane-wave eigenspinors:

f�,k!+,k0(q) ⌘
Z

d3x ⇤
+,k0(x) �,k(x) e

iq·x

Compare to semiconductors:With this form for the wavefunctions, the form factor Eq. (3.10) to excite from valence level {i~k}
to conduction level {i0 ~k0} becomes
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We define the term in the absolute square in Eq. (A.25) to be f
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Inserting this into Eq. (A.14), we can use the �-function to eliminate the d3q integral, giving
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(A.27)

The total excitation rate for an electron in level {i~k} is found by summing Eq. (A.27) over all
unfilled final energy levels i0,

R
i

~

k!any

=

X

i

0

Z

BZ

V d3k0

(2⇡)3
R

i

~

k!i

0
~

k

0 . (A.28)

Note that we do not sum over final electron spins here as that sum has already been included in the
definition of �

e

.
The total rate of excitation events in the crystal, R

crystal

, is given by summing Eq. (A.28) over
all filled initial levels i,

R
crystal

= 2

X

i

Z

BZ

V d3k

(2⇡)3
R

i

~

k!any

. (A.29)

Here the extra factor of 2 is the sum over the two degenerate spin states of the filled valence bands.
Putting this together gives the total excitation rate in a crystal,
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(A.30)
where again q = |~k0 + ~G0 � ~k|. Note that this is the total event rate for the whole crystal, and so it is
appropriate that it is proportional to the volume V of the whole crystal. Since the dependence on the
DM velocity distribution and interaction type are entirely encoded in ⌘ and F

DM

, which are functions
only of the momentum transfer q and energy deposited E

e

, it is useful to insert delta-functions into

– 35 –

must be  
computed 

numerically
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[Essig et al., JHEP 2016]



In-medium effects
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In-medium form factor

Ward identity to the rescue:  
dark photon does not acquire 

an in-medium mass in Dirac materials!

⇧(q,!) = q2(1� ✏r(q,!))

Dirac materials are carbon-copy of 3+1 QED! 
Back to Peskin & Schroeder…
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Dirac materials win because light mediator stays light
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Readout??
• Charge (graphene FET?) 

• Photons (single-IR photon detector?)  

• Phonons (TES/MKID? Phonon production  
not well understood in Dirac materials)  

• Something clever with semiclassical electron  
orbits (Fermi arcs in Weyl semimetals?)
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Carbon nanotubes increase the surface area and make mechanical
interlocking possible, creating a stiffening at the fiber-matrix inter-
face thus improving stress transfer. Downs and Baker [20] first
reported an increase of around 4.75 times (in the best case) of
the interfacial shear strength (IFSS) of the composites with carbon
nanofiber-grafted carbon fibres.

Large scale production of graphene compounds can be done
through chemical vapour deposition (CVD) techniques. CVD ispro-
ficient to meet the anticipated characteristics for combined appli-
cations, bulk production, specificity, high purity, acceptable
quality and low cost. Chemical vapour deposition is a common
method used to graft CNTs into fibre surface [24,25]. However,
Qian et al. [26] indicated excellent wettability of carbon nanotubes
by poly (methyl methacrylate) (PMMA). They ascribed the interfa-
cial shear strength was improved by making the hierarchical com-
pounds with CNT-grafting. This contributed to longitudinal
compression, transverse stiffness, inter laminar shear strength
and strength [26].

Nourbakhsh et al. [27] studied the interaction between car-
bon and oxygen atoms on C18O2 configuration which showed

the appearance of a 0.2 eV bandgap when initially oxidized.
Upon further increase in the oxygen density (27.8%, configura-
tion C18O5) they reported an opening of a 1.4 eV direct bandgap.
The bandgap value increased monotonically with the oxygen
density. For an oxygen density as high as 50%, the bandgap cal-
culated is 3.6 eV.

2. Computational Details

2.1. Model structures

Graphene (G) and Epoxy Graphene (Ep G) models were gener-
ated using lattice parameters presented in (Table 1) and built into
models of Cristobalite high, Quartz, Quartz beta, Stishovite, and
Cristobalite low (Fig. 3) obtained from crystallographic information
files (cif). The interface between graphene and SiO2 surfaces was
simulated using a repeated slab model. To prevent the excess ver-
tical coupling effect a vacuum separation was set at 1 Å. In this
study calculations for the bulk as well as the surface of the material
was done. The surface was obtained by cleavage of the bulk at
(111) phase for each polycrystal and built into a single layer with
graphene or epoxy graphene.

2.2. Calculation details

First principles calculations were performed using density
functional theory (DFT) [28]. The geometry optimization, elec-
tronic structure and optical properties were calculated with
the Cambridge Serial Total Energy Package (CASTEP) [29] pro-
gram and employing norm-conserving pseudopotentials as
applied in Material Studio (2016) [30]. The generalized gradient
approximation (GGA) functionals [31] with Perdue Burke Ernz-
erhof (PBE) [32] for electron correlation effects were used.
Other parameters such as the k point 12 ! 12 ! 1 for DOS, cut
off energy 600 eV, energy tolerance 2.0 ! 10"5 eV, force toler-
ance 0.03 eV, displacement tolerance 0.0001 Å and a conver-
gence threshold of 1.0 ! 10"6 eV/atom was also incorporated.
Our calculated epoxy bandgap of 0.517 eV was based on the
mono atomic layer formed with one atom interacting with oxy-
gen atom.

Fig. 1. Use of silica on graphene or epoxy graphene as a support.

Fig. 2. Graphene with no bandgap (a) and bandgap opening (b) through substrate
induced band opening.
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Fig. 1. Graphene exhibits a sharp peak “Dirac point” in resistance as a function
of the electric field. The curve shown is based on representative experimental
data measured in a GFET (see Fig. 2, with doped Si (1019 carriers/cm3 ) as
substrate and 300-nm-thick SiO2 as buffer layer) at room temperature.

Fig. 2. A GFET consists of a gated undoped absorber (semiconductor), with
an insulating buffer layer which serves as a gate dielectric. VG is the gate voltage
applied to the sample. Current is supplied across the graphene sample, and the
voltage is measured to obtain the resistance of the graphene layer. Dimensions
labeled are those typical of GFET devices commonly fabricated.

II. GRAPHENE FIELD EFFECT TRANSISTORS

Graphene is a monolayer of graphite with unique electronic
properties [1]. Graphene has a high carrier mobility, reaching
10 times or greater than that of Si at room temperature [2].
Graphene is a low-noise electronic material and has a resistance,
which is very sensitive to local change of carrier density when
graphene is near the charge neutrality point (see Fig. 1), or
“Dirac point”. This feature has been exploited to detect the
adsorption/desorption of a single molecule on graphene [6]. It is
proposed that the sensitivity of resistance to small changes in the
electric field can be exploited to sense radiation. The sharpness
of the resistance response of the graphene to the change of the
external electric field suggests the possibility for its use as a
high-gain preamplifier integrated into a GRD.

In our simulation of a prototype GRD based on a GFET, the
graphene is coupled to a 500-µm-thick-gated undoped Si radi-
ation absorber through a 300-nm-thick insulating buffer layer
of SiO2 (see Fig. 2). While one can use four metal electrodes
on the graphene for accurate four-terminal resistance measure-
ments, two-terminal measurements can be employed in many
practical situations. An electric field is produced by applying
a gate voltage between the back side of the absorber and one
of the electrodes on graphene. The source and drain electrodes

Fig. 3. When the undoped absorber acts as an insulator, the gate voltage VG
drops across both the absorber and the buffer layer, resulting in a relatively small
electric field near graphene.

supply the current through the graphene and are used to mea-
sure the resistance of the graphene. The local electric field at
graphene determines its resistance via the field effect, with this
dependence most sensitive when the graphene is near its “Dirac
point” (see Fig. 1) [2], [6].

III. DETECTING THE PRESENCE OF RADIATION

WITHOUT CHARGE DRIFT

A. Principle of Operation: Ionization-Induced Change of the
Electric Field

The most common substrate used in a conventional GFET is
a Si wafer with a thin-SiO2 overlayer, where the Si is doped
and used as the backgate. In the simplest scheme of employing
a GFET to detect radiation, we instead use an undoped, gated
absorber, so the electric field at the graphene can be significantly
altered by the change of the conductivity of the absorber upon
interaction with radiation. In general, using an undoped insu-
lating (at sufficiently low temperature) semiconductor as the
absorber, the gate voltage drops across both the absorber and
the buffer layer (see Fig. 3, where the electric field is generated
by a back-gate voltage).

Radiation interacting with the absorber results in ionization,
which can increase the conductivity of the absorber, resulting
in an electric field increase across the buffer layer (see Fig. 4).
The change in electric field is indirectly sensed by measuring the
resistance of graphene. This transient change in resistance could
be used to detect the presence of radiation interacting with the
absorber, and the magnitude of resistance change is related to
both the total energy (ionized charges) deposited in the absorber
and the location of the ionized charges (see Section III-C).

B. Monte Carlo Modeling for Radiation Interaction

We used the absorber material (Si, except being undoped) and
dimensions of common GFETs (see Fig. 2) for our simulations.
Using MCNP-PoliMi [3], we modeled the irradiation of a GFET
with a 1-MeV γ-ray source located 1 cm from the bottom of the
absorber, and centered on the axis defined by graphene. The
energy deposited and the position of interaction were calculated
in the simulation. From the energy deposited, we modeled the
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ion-clamped dielectric tensor 

ij

was calculated using density functional perturbation theory. The
unit cell is defined as containing 4 formula units, see Fig. 11(a).
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5

by adding a small
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at
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or by chemical substitution of ions with a smaller radius.

We next consider chemical substitution. Since the ZrTe
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bands near the Fermi level consist

primarily of Te-p states, we consider substitution on the Zr site by Nb and Ta. We calculate the

band structure of substitution of one Nb/Ta for eight formula units, resulting in electron doping of

0.25 electrons per formula unit as shown in Fig. 12(b) for the Nb case. While the Fermi level shifts

as expected, Nb contributes d-states near the Fermi level, making the material a metal. The same

also occurs for the case of Ta substitution. Substitution of Te with Br alters the band structure
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FIG. 6: Constraints and projections for the DM-electron scattering cross section �̄e. The left (right)

plots assume a momentum-independent (dependent) interaction, FDM = 1 (FDM = (↵me/q)2). Existing

constraints from XENON10 (XENON100) [90, 91] are shown in the blue (red) shaded regions. Projections

show 3 events for a 1-year exposure [50, 90, 94, 95, 98, 99]; the label includes the threshold (in terms of number

of electrons, photons, or the electron recoil energy) and target mass. Solid/dashed/dotted lines indicate

an estimate of the time to start taking data, corresponding roughly to a short/medium/long timescale,

respectively. A solid line indicates a mature technology: data taking can begin in . 2 years and a zero

background (radioactivity or dark currents) is reasonable for the indicated thresholds. A dashed line indicates

more R&D is required and, if successful, data taking could start in ⇠ 2 � 5 years; the projected sensitivity

assumes that backgrounds can be controlled. A dotted line indicates longer-term R&D e↵orts. Bottom left

plot assumes DM scatters through an A0 with mA0 = 3m�. Five theory targets are shown as explained in

Section IV B. In addition to electron-recoil experiments, we show projections from nuclear-recoil experiments

(from Fig. 8). Gray shaded regions are constraints from LSND, E137, BaBar, and current WIMP nuclear-

recoil searches [50]. Bottom right plot assumes DM scatters through an A0 with mA0 ⌧ keV; a

freeze-in target is shown. Shaded gray regions are bounds from WIMP nuclear-recoil searches, stellar, and

BBN constraints [50]. The superconductor projection in bottom plots include in-medium e↵ects for an A0

and assume a dynamic range of 10 meV–10 eV. 50

Outlook

[…, YK, …, U.S. Cosmic Visions community report, 2017]
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Figure 1. (Left) A comparison between the mean of 500 Monte Carlo simulations of a signal only PSD dataset (blue) and
the analytic expectation given in (26) (black). The inset shows the distribution of the 500 simulated S

��

versus the predicted
exponential distribution, as in (24), at the frequency where the signal distribution is maximized, !/ma ⇡ 1.003. This example
was generated assuming the unphysical but illustrative parameters A = 1 Wb2, ma = 2⇡ Hz, and v

0

= v
obs

= 220,000 km/s.
Importantly the simulations were generated by constructing the full axion field starting from (3), and so the agreement between
theory and Monte Carlo is a non-trivial confirmation of the framework. (Right) As on the left, but with Gaussian distributed
white noise added into the time-series data with variance �B/�t, and taking �B = 500 Wb2 Hz�1. Again we see the theory
prediction in good agreement with the average data, whilst at an individual frequency point the simulated data is exponentially
distributed. See text for details.
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Recall that A, which is e↵ectively dictating the strength
of the axion signal, has units of Wb2, so S�� carries units
Wb2

/Hz, or in natural units eV�1.
In any real experiment there will also be background

sources of noise in the dataset. For most sources we can
think of this as mean zero Gaussian distributed noise in
the time domain.7 For example, in ABRACADABRA
the main background sources are expected to be noise

7 If the mean of the background distribution is non-zero, then this

within the SQUID for the broadband configuration or
thermal noise in the resonant circuit [5]. Both of these
are well described by normally-distributed noise sources,
and so they fall under this class of backgrounds. In
ADMX the dominant background is also thermal noise,
and the Gaussian nature of this source has been discussed
in Refs. [79, 80]; indeed, in [80] they noted the power
due to thermal noise in the experiment should be expo-
nentially distributed. It is likely that most other noise
sources will also be normally distributed. However, it
may well be possible that certain axion direct detection
experiments do su↵er from background sources that are
not well described by Gaussian noise. In such a case the
framework we present in this work will not go through
directly, but the same logic can be used to derive a new
likelihood that accounts for the specific background dis-
tribution. Restricting ourselves to the Gaussian approx-
imation, then, as demonstrated in App. A, if we have
a series of Gaussian distributed backgrounds of variance
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the PSD formed from the combinations of all these will
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will only impact the k = 0 mode of the PSD. For reasons dis-
cussed in App. A, we will not include this mode in our likelihood,
and as such we are only sensitive to the variance of the distribu-
tions, and so can choose them to have mean zero without loss of
generality.
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prediction in good agreement with the average data, whilst at an individual frequency point the simulated data is exponentially
distributed. See text for details.

With the above arguments we may perform the velocity
integral in (20), obtaining

S��(!) = A

⇡f(v)

2m

a

v

↵

2

����
v=

p
2!/ma�2

. (23)

Note that ! ⇡ m

a

, up to corrections that are O(v2);
where the distinction is not important, we write m

a

in-
stead of !, as in the denominator above. Further, in (23)
we have dropped the subscript v from ↵, as it is just a
single Rayleigh distributed number as given in (8). Since
↵

2 is exponentially distributed, this then implies that the
PSD is also exponentially distributed:

P [S��(!)] =
1

�(!)
e

�S

��

(!)/�(!)
,

�(!) ⌘ hS��(!)i = A

⇡f(v)

m

a

v

����
v=

p
2!/ma�2

.

(24)

Recall that A, which is e↵ectively dictating the strength
of the axion signal, has units of Wb2, so S�� carries units
Wb2

/Hz, or in natural units eV�1.
In any real experiment there will also be background

sources of noise in the dataset. For most sources we can
think of this as mean zero Gaussian distributed noise in
the time domain.7 For example, in ABRACADABRA
the main background sources are expected to be noise

7 If the mean of the background distribution is non-zero, then this

within the SQUID for the broadband configuration or
thermal noise in the resonant circuit [5]. Both of these
are well described by normally-distributed noise sources,
and so they fall under this class of backgrounds. In
ADMX the dominant background is also thermal noise,
and the Gaussian nature of this source has been discussed
in Refs. [79, 80]; indeed, in [80] they noted the power
due to thermal noise in the experiment should be expo-
nentially distributed. It is likely that most other noise
sources will also be normally distributed. However, it
may well be possible that certain axion direct detection
experiments do su↵er from background sources that are
not well described by Gaussian noise. In such a case the
framework we present in this work will not go through
directly, but the same logic can be used to derive a new
likelihood that accounts for the specific background dis-
tribution. Restricting ourselves to the Gaussian approx-
imation, then, as demonstrated in App. A, if we have
a series of Gaussian distributed backgrounds of variance
�

i

B

/�t, where i indexes the various backgrounds, then
the PSD formed from the combinations of all these will
again be exponentially distributed with mean

hSbkg
�� (!)i = �

B

⌘
X

i

�

i

B

. (25)

will only impact the k = 0 mode of the PSD. For reasons dis-
cussed in App. A, we will not include this mode in our likelihood,
and as such we are only sensitive to the variance of the distribu-
tions, and so can choose them to have mean zero without loss of
generality.

[Foster, Safdi, Rodd, arXiv:1711.10489]
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Vibrational isolation
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thermalization 
tape



Proto-data

magnet 
is noisy



Proto-data

magnet 
is noisy

shielding 
works 
(at low 
freq.)



Vibrations dominate

Goal of ABRA-10cm is to identify as many 
sources of noise as possible which will 

scale up in a larger-scale (~1m) experiment



First data-taking 
starts next week - 

stay tuned!



Backup slides



Semimetal scattering reach: 
heavy dark photon

(Severe constraints from BBN)



Semimetal scattering reach: 
light and heavy scalar med.

(Severe constraints from BBN, stellar emission)


