

Searching for keV freeze-in dark matter with Dirac materials

Yoni Kahn, Princeton University KITP workshop "HEP at the Sensitivity Frontier" 5/17/2018

Dark matter everywhere

50 orders of magnitude in mass!

Non-gravitational interactions not guaranteed (e.g. gravitino) but terrestrial detection strategies needed for all masses

Virialized DM has
$$v_{\rm DM} \sim 10^{-3} c$$

$$\Longrightarrow \boxed{\rm KE_{\rm DM} \sim 10^{-6} m_{\rm DM}}$$

But what is it?

keV-TeV: energy deposits from single-particle scattering

[Goodman, Witten PRD 1985; Drukier, Freese, Spergel PRD 1986]

and many others:
DAMIC
SENSEI
CRESST

. . .

Freeze-in through dark photon

Parameter space for keV DM is wide open! Including lower limit of particle DM

[Hall et al., JHEP 2010]

Nuclear recoil: tough for light DM!

$$\frac{1}{2}m_{\chi}v^2 \sim 1 \text{ eV}\left(\frac{m_{\chi}}{\text{MeV}}\right)$$

Only available for $m_\chi \sim m_N$, still far below typical thresholds

"Ping pong ball on bowling ball" kinematics:

$$q \sim 2m_{\chi}v, \ E_{\rm NR} = \frac{q^2}{2m_N} \sim 10^{-4} \ {\rm eV} \left(\frac{m_{\chi}}{{\rm MeV}}\right)^2 \left(\frac{10 \ {\rm GeV}}{m_N}\right)$$

Need MeV targets (electron) and eV thresholds for MeV DM; even smaller (meV) thresholds for keV DM

Electron recoil: DM-induced ionization

[Essig, Mardon, Volansky PRD 2012]

$$\Delta E_e \equiv E_b + \frac{k_f^2}{2m_e} = \vec{q} \cdot \vec{v} - \frac{q^2}{2m_\chi}$$

Two key features:

- 1. Initial state not a momentum eigenstate: k_f and q independent
- 2. Wavefunction suppression at large q:

$$q_{\rm typ} \sim \frac{1}{a_0} \sim 4 {\rm \ keV}$$

$$v \sim 10^{-3} \implies$$
 rate maximized for $\Delta E_e \lesssim 4 \text{ eV}$

Atoms and semiconductors

Noble liquids - Xe, Ar, ...

Signal: S2 only

[Essig et al, PRD 2017;
DarkSide collab. 2018]

Atomic ionization energies are ~10's of eV

⇒ 10 MeV threshold

Semiconductors - Si, Ge, ... [Essig et al, JHEP 2016; Lee et al. PRD 2015]

Band gap as small as 0.5 eV

 \Longrightarrow 0.5 MeV threshold

keV DM needs meV sensitivity

Superfluids (long-lived quasiparticles, surface amplification)

Superconductors (meV gap to break Cooper pair, detect with TES)

[Hochberg, Pyle, Zhao, Zurek JHEP 2016]

Common issue: poor response to dark photon mediator freeze-in target not accessible

Dirac materials for DM

[Hochberg, **YK**, Lisanti, Zurek, Grushin, Ilan, Liu, Weber, Griffin, Neaton, Phys. Rev. D 2018, 1708.08929]

3D Dirac semimetal (ZrTe₅)

- meV excitation energies
- Anisotropic (bands and crystal)
- No in-medium screening

New class of materials for DM detection! Capable of directional detection at meV-eV energies

Dirac semimetals ~ ultra-low-gap semiconductors

[Castro Neto et al., Rev. Mod. Phys. 2009]

Dirac dispersion:
$$\Delta \lesssim \mathcal{O}(\text{meV})$$

$$E_{\mathbf{k}}^{\pm} = \pm \sqrt{v_F^2 \mathbf{k}^2 + \Delta^2}$$

Electrons behave "relativistically" with $c \to v_F, \alpha \to \frac{\alpha}{\kappa v_F}$

Pointlike Fermi surface but high conductivity

2D Graphene for keV DM?

Monolayer

[Castro Neto et al., Rev. Mod. Phys. 2009]

Bilayer

Gap Δ is continuously tunable 0-250 meV

Newton vs. Fermi

$$v_{\rm DM} \sim 10^{-3} c$$

$$v_F = 3 \times 10^{-3} c$$

kinematically forbidden for $v_{\rm DM} < v_F$

Unfortunate coincidence for DM direct detection! (Also 2D targets not ideal when electron is not ejected)

Dirac semimetals = "3D Graphene"

Advantages over graphene:

- Many candidate materials, range of Fermi velocities
- Bulk material: more exposure
- Anisotropic crystal: directionality for excitations

Scattering rate

$$R_{-,\mathbf{k}\to+,\mathbf{k}'} = \frac{\rho_{\chi}}{m_{\chi}} \frac{\overline{\sigma}_e}{8\pi\mu_{\chi e}^2} \int d^3\mathbf{q} \, \frac{1}{|\mathbf{q}|} \eta \left(v_{\min}(|\mathbf{q}|, \omega_{\mathbf{k}\mathbf{k}'}) \right) |F_{\mathrm{DM}}(q)|^2 |\mathcal{F}_{\mathrm{med}}(q)|^2 |f_{-,\mathbf{k}\to+,\mathbf{k}'}(\mathbf{q})|^2$$

 $F_{\mathrm{DM}}(q)$: DM model. Const. for heavy mediator, ~1/q² for light med.

 $\mathcal{F}_{\mathrm{med}}(q)$: Effects of target medium. Can have strong q² dependence!

 $f_{-,{f k} o +,{f k}'}({f q})$: Wavefunction overlap btw. initial and final electron states

Transition form factor

Wavefunctions near Dirac point are simple! Just borrow results from Peskin & Schroeder...

$$H_{\ell} = \begin{pmatrix} 0 & v_F \ell \cdot \boldsymbol{\sigma} - i\Delta \\ v_F \ell \cdot \boldsymbol{\sigma} + i\Delta & 0 \end{pmatrix}, \qquad E_{\ell}^{\pm} = \pm \sqrt{v_F^2 \ell^2 + \Delta^2}.$$

$$f_{-,\mathbf{k}\to+,\mathbf{k}'}(\mathbf{q}) \equiv \int d^3\mathbf{x} \, \Psi^*_{+,\mathbf{k}'}(\mathbf{x}) \Psi_{-,\mathbf{k}}(\mathbf{x}) \, e^{i\mathbf{q}\cdot\mathbf{x}}$$

Wavefunctions are just plane-wave eigenspinors:

$$|f_{-,\mathbf{k}\to+,\mathbf{k}'}(\mathbf{q})|^2 = \frac{1}{2} \frac{(2\pi)^3}{V} \left(1 - \frac{\boldsymbol{\ell} \cdot \boldsymbol{\ell}'}{|\boldsymbol{\ell}||\boldsymbol{\ell}'|}\right) \delta(\mathbf{q} - (\boldsymbol{\ell}' - \boldsymbol{\ell}))$$

Compare to semiconductors:

$$|f_{i\vec{k}\to i'\vec{k}'}(\vec{q})|^2 = \Big|\sum_{\vec{G}\vec{G}'} \frac{(2\pi)^3 \delta^3(\vec{k}+\vec{q}-\vec{k}'-\vec{G}')}{V} \underbrace{u_{i'}^*(\vec{k}'+\vec{G}+\vec{G}')u_i(\vec{k}+\vec{G})}^2_{\text{unifically}}^2 \text{ numerically}$$
 [Essig et al., JHEP 2016]

must be

In-medium effects

$$\mathcal{L} \supset -\frac{\varepsilon}{2} F_{\mu\nu} F'^{\mu\nu} \implies \mathcal{L} \supset \varepsilon e \frac{q^2}{q^2 - \Pi_{T,L}} \tilde{A'}_{\mu}^{T,L} J_{\mathrm{EM}}^{\mu}$$

[An, Pospelov, Pradler, 1302.3884 and 1304.3461; Hochberg, Pyle, Zhao, Zurek, 1512.04533]

Dark photon coupling to charged matter depends on dielectric properties of medium

scales as q^2 : charge renormalization

complicated behavior: keV-scale effective mass

In-medium form factor

$$\Pi(\mathbf{q},\omega) = q^2(1 - \epsilon_r(\mathbf{q},\omega))$$

Dirac materials are carbon-copy of 3+1 QED!

Back to Peskin & Schroeder...

$$(\epsilon_r)_{\text{semimetal}} = 1 + \frac{e^2 g}{24\pi^2 \kappa v_F} \ln\left(\frac{4\Lambda^2}{\omega^2/v_F^2 - \mathbf{q}^2}\right)$$

$$\mathcal{F}_{\text{med}}(q) = \frac{1}{\epsilon_r(q)} " = " \frac{e(q)}{e_0}$$

Ward identity to the rescue: dark photon does not acquire an in-medium mass in Dirac materials!

Freeze-in DM direct detection

Freeze-in DM direct detection

Freeze-in DM direct detection

Dirac materials win because light mediator stays light

Readout??

- Charge (graphene FET?)
- Photons (single-IR photon detector?)
- Phonons (TES/MKID? Phonon production not well understood in Dirac materials)
- Something clever with semiclassical electron orbits (Fermi arcs in Weyl semimetals?)

Graphene FET details

[Hochberg, YK, Lisanti, Tully, Zurek, PLB 2016]

[Kiarii et al., Chem Phys. Lett 2017]

[Foxe et al., IEEE Nano 2012]

Large resistance drop with change in local electric field

Bonus: absorption

$$R_{
m abs} = rac{1}{
ho_T} rac{
ho_\chi}{m_\chi} \langle n_T \sigma_{
m abs} v_{
m rel}
angle_{
m DM} \longrightarrow rac{1}{
ho_T}
ho_\chi arepsilon_{
m eff}^2 {
m Im} \, \epsilon_r$$

Semimetals still beat superconductors!

Semimetal absorption reach: axion-like particles

Not really competitive...

Towards directional detection with semimetals

$$(\epsilon_r)_{ii} = 1 - \frac{1}{\mathbf{q}^2} \frac{e^2 g}{24\pi^2 \kappa_{ii} v_{F,x} v_{F,y} v_{F,z}} \left\{ -\widetilde{\mathbf{q}}^2 \ln \left| \frac{4\widetilde{\Lambda}^2}{\omega^2 - \widetilde{\mathbf{q}}^2} \right| - i\pi \widetilde{\mathbf{q}}^2 \Theta(\omega - |\widetilde{\mathbf{q}}|) \right\}$$

$$\widetilde{\mathbf{q}} = (v_{F,x}q_x, v_{F,y}q_y, v_{F,z}q_z)$$

Realistic materials can be highly anisotropic in both background dielectric tensor and Fermi velocities

E.g. ZrTe₅:

Parameter	value (th.)	Parameter	value (th.)
$\overline{v_{F,1}}$	$2.9 \times 10^{-3} c \ (v_{F,x})$	κ_{xx}	187.5
$v_{F,2}$	$5.0 \times 10^{-4} c \ (v_{F,y})$	κ_{yy}	9.8
$v_{F,3}$	$2.1 \times 10^{-3} c \ (v_{F,z})$	κ_{zz}	90.9

Outlook

[..., YK, ..., U.S. Cosmic Visions community report, 2017]

Outlook

semimetals!

[..., YK, ..., U.S. Cosmic Visions community report, 2017]

ABRACADABRA:

a sneak peak at the current prototype

«ABRACADABRA»

Janet Conrad, Joe Formaggio, Joshua Foster, Sarah Heine, Reyco Henning, **YK**, Joe Minervini, Jonathan Ouellet, Kerstin Perez, Alexey Radovinsky, Nick Rodd, Ben Safdi, Chiara Salemi, Jesse Thaler, Daniel Winklehner, Lindley Winslow

ABRA-10cm

1 T superconducting toroid, diameter 12 cm

wrapped in aluminum shielding

inside dilution fridge (T = 0.1 K)

SQUID broadband readout

Data analysis

[Foster, Safdi, Rodd, arXiv:1711.10489]

$$a(t) = \frac{\sqrt{\rho_{\rm DM}}}{m_a} \sum_j \alpha_j \sqrt{f(v_j) \Delta v} \cos \left[m_a \left(1 + \frac{v_j^2}{2} \right) t + \phi_j \right]$$
 velocity bins

700 Axion Signal + White Noise
$$\stackrel{\circ}{\sim} 1.5$$
 $\stackrel{\circ}{\sim} 1.5$ $\stackrel{\circ}{\sim} 1.0$ Monte Carlo $\stackrel{\circ}{\sim} 1.0$ $\stackrel{\circ}{\sim} 1.0$

$$\Phi_n \propto \sqrt{g_{a\gamma\gamma}^2 B_{\text{max}}^2 V_B^2 \rho_{\text{DM}}} \sum_j \alpha_j \sqrt{f(v_j) \Delta v}$$

$$\times \cos \left[m_a \left(1 + \frac{v_j^2}{2} \right) n \Delta t + \phi_j \right]$$

$$S_{\Phi\Phi}(\omega) = A \left. \frac{\pi f(v)}{2m_a v} \alpha^2 \right|_{v=\sqrt{2\omega/m_a-2}}$$

$$P\left[S_{\Phi\Phi}(\omega)\right] = \frac{1}{\lambda(\omega)} e^{-S_{\Phi\Phi}(\omega)/\lambda(\omega)}$$

Vibrational isolation

Proto-data

Proto-data

Frequency [Hz]

Vibrations dominate

Goal of ABRA-10cm is to identify as many sources of noise as possible which will scale up in a larger-scale (~1m) experiment

First data-taking starts next week - stay tuned!

Backup slides

Semimetal scattering reach: heavy dark photon

(Severe constraints from BBN)

Semimetal scattering reach: light and heavy scalar med.

(Severe constraints from BBN, stellar emission)