Precision searches for new physics using optically levitated sensors

Precision force sensing

- New forces arise in a variety of proposed BSM models
- Forces can appear at weak couplings or short distance
- "Opto-mechanical" systems can enable precise force sensors
- Allow control and measurement of ~zg to ~kg scale test masses

Aspelmeyer, Kippenberg, and Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

Example opto-mechanical systems:

Levitated microspheres

- Micron-sized dielectric masses can be levitated with ~few mW of laser power
- "Optical tweezers" are common tool in biophysics to measure ~pN forces
- At high vacuum, extremely low dissipation is possible:

$$\sigma_{\rm F} \sim 10^{-21} \, \rm N \ Hz^{-1/2} \ at \ 10^{-10} \ mbar$$
 $(\sigma_{\rm a} \sim 10^{-9} \, g \ Hz^{-1/2})$

Ashkin & Dziedzic, Appl. Phys. Lett. **19**, 283 (1971) Geraci et al., PRL **105**, 101101 (2010)

 Levitated masses are isolated both electrically and thermally

Photograph of trapped microsphere:

Schematic of optical levitation technique:

Outline

Optically levitated microspheres in high vacuum

3. Tests of gravity and non-Newtonian forces

4. Tests of Coulomb's law and dark photons

Experimental setup

- Optical trap capable of levitating spheres with $r \sim 0.5$ -15 μ m
- Microspheres are trapped with ~1-100 mW trapping laser power
- Trapping times longer than one month at pressure ~10⁻⁷ mbar

Simplified optical schematic:

Photo of experimental setup:

Trap loading

- Microspheres are launched from bottom surface of quartz cantilever
- Pull-off forces of ~100 nN require accelerations ~10⁶ m/s²
- Bottom coverslip protects lens and is retracted after trapping

Schematic of microsphere dropper:

Pull-off force vs. microsphere radius: 300 Heim et al., PRL 83, 3328 (1999) SiO₂ microspheres on glass 0,0 0,0 0,5 1,5

Microspheres on quartz surface:

Reduced radius (µm)

Microsphere cooling

- Below ~1 mbar, active feedback cooling is needed for stable trapping
- Monitor position of microsphere and modulate amplitude and pointing of the trapping beam
- Can cool center of mass motion to T_{eff} < 20 mK in all 3 DOF

Microsphere neutralization

- Have demonstrated controlled discharging with single e precision
- Measure microsphere response to oscillating electric field while flashing with UV light
- Charging rates ~1 e/day (~1 yA) or lower, can be eliminated with DC field

Electrode cross-section:

Millicharged particles and the neutrality of matter

Matter neutrality

- Microspheres allow searches for tiny fractional charges in ~ng sized masses
- Sensitive to "millicharged" dark matter bound in matter or a difference in electron/proton charges

Constraints on millicharged particles:

 $\log_{10} \left(m_{\varepsilon} \left[\mathrm{eV} \right] \right)$

Jaeckel and Ringwald, Ann. Rev. Nucl. Part. Sci., 60, 405 (2010)

Searches in matter

Fractional charges

Automated Milliken oil drop experiment (2007):

P. Kim et al., PRL 99, 161804 (2007)

No free quarks in 0.3 g of matter

Matter neutrality

Acoustic resonator (2011):

G. Bressi et al., PRĀ 83, 052101 (2011) H. Dylla et al., PRA 7, 1224 (1973)

$$|q_e + q_p| < 10^{-21} e$$

Neutron beam deflection (1988):

J. Baumann et al., PRD 37, 3107 (1988)

 $|q_n| < 10^{-21} e$

Particle data group constraints (2017):

Initial search (2014)

• Neutralize microspheres (so that $n_e = n_p$) and search for residual charge

Electrode schematic:

Residual charge measurement for a typical microsphere:

- Repeated for 10 microspheres (total mass 0.1 ng)
- Residual response consistent with permanent dipole moments

arXiv:1408:4396

Larger spheres

- Recently demonstrated the trapping of spheres between 0.1 – 30 ng
- 10 ng spheres have best acceleration sensitivity for levitated sensor by >30x
- Larger spheres vaporize, but may be possible with spheres that don't contain water

Images of trapped spheres of several sizes:

F. Monteiro

Vaporization of 30 ng spheres:

Acceleration sensitivity vs mass:

Measured acceleration (no ext. force):

KITP - April 3, 2018 14

Dipole backgrounds

Dipole backgrounds can be eliminated by minimizing electric field gradients

Any residual background can be further canceled by reversing DC field

Background torques

- Even for perfectly uniform field, oscillating field still exerts torque and nonsphericity can produce apparent motion at ω_{AC}
- Developing techniques to rapidly rotate spheres about beam axis

Birefringent (vaterite) microspheres:

Background minimized for large Ω

Circularly polarized light will exert torque on birefringent sphere

> Friese et al., Nature 394, 348 (1998) Donato et al., Sci. Rep. 6, 31977 (2016)

Rotation in high vacuum

- Recently demonstrated rotation up to 6 MHz in high vacuum
- Spheres lost at higher rotation rates due to centrifugal stresses
- Rotation of amorphous SiO₂ spheres also observed

Polarization control and imaging:

Maximum angular acceleration: Vaterite, d=5 μ m: $\alpha > 10^6 \ {\rm rad/s^2} \ (au > 300 \ {\rm fN} \ \mu{\rm m})$

SiO₂, d=10
$$\mu$$
m:
 $\alpha \sim 200 \text{ rad/s}^2 \ (\tau \sim 3 \text{ fN } \mu\text{m})$

Rotation rate vs. polarization (10⁻² mbar):

Rotation in high vacuum

- Measured damping time is ~1 day at 10⁻⁷ mbar
- Sphere rotates 10¹¹ cycles in single damping time
- No dissipation above gas damping observed

Measurement of damping time (rotation rate versus time):

Projected sensitivity

• Current experiment aimed at reaching backgrounds below 10^{-19} N for d=15 µm spheres

Would allow improved searches for millicharged particles as well as tests of the

 $15\,\mu\mathrm{m}$

neutrality of matter $(|q_p + q_e + q_n|)$

Searches for non-Newtonian forces at micron distances

Non-Newtonian forces

- Levitated microspheres can enable tests of gravity at the micron scale
- Theories attempting to account for the hierarchy problem, dark matter, or dark energy predict that there could new forces at << 1 mm

Large extra dimensions:

e.g., Arkani-Hamed et al., Phys. Lett. B 429, 263 (1998) Randall and Sundrum, Phys. Rev. Lett. **83**, 3370 (1999); **83**, 4690 (1999)

Forces from new light scalars (moduli, dilatons, ...):

e.g., Dimopoulos and Giudice, Phys. Lett. B **379** 105 (1996) Kaplan and Wise, JHEP **08** 037 (2000) Mantry et al., Phys. Rev. D **90**, 054016 (2014)

Dark energy (screened scalars, modified gravity, ...):

 Λ ~ 2 meV (~ 80 μ m)

e.g., Sundrum, Phys. Rev. D **69**, 044014 (2004) Khoury and Weltman, Phys. Rev. Lett. **93**, 171104 (2004)

Experimental constraints

 One convenient parameterization for the non-Newtonian potential is the Yukawa form:

 $V(r) = -\frac{Gm_1m_2}{r} \left(1 + \alpha e^{-r/\lambda} \right)$

Current experimental constraints on non-Newtonian forces:

- Constraints weaken substantially at <<1 mm (e.g. $\alpha < 10^7$ for $\lambda = 1~\mu \mathrm{m}$)
- Microspheres may allow improved sensitivity at ~1 μm

Experimental constraints

One convenient parameterization for the non-Newtonian potential is the

Theory regions from PRD 68, 124021 (2003)

Gravitational attractor

- Investigating use of commercial microdroplet systems as attractors
- Density pattern created by dense fluid in carrier fluid (e.g. Ga/In eutectic alloy in oil)
- Au-coated, thin-walled capillary provides fully hermetic, stationary shield (minimizes electromagnetic backgrounds)

Schematic of microfluidic attractor concept:

Monodispersed microdroplets on chip:

dolomite-microfluidics.com

Droplets in 100 µm capillary:

E. van Assendelft 24

Backgrounds

- Primary challenge is to develop an attractor that eliminates electromagnetic backgrounds
- Au-coated capillary should significantly suppress backgrounds from the Casimir force and patch potentials
- Au/Si cantilever attractor also under development (Stanford)

Topography and surface potential for sputtered Au film:

Projected sensitivity

 These techniques could allow substantial amount of unexplored parameter space to be searched for new gravity-like interactions!

Screened scalar dark energy

In certain screened scalar dark energy models new forces appear at:

$$\Lambda = 2.4 \text{ meV} \Rightarrow \hbar c / \Lambda \sim 80 \mu\text{m}$$

 To search for forces from screened scalars, oscillate mass density near the trap using a Au-plated Si cantilever

Electrostatic calibration

Neutral microspheres contain ~10¹⁴ electric charges and interact primarily as dipoles:

$$\vec{F} = (\vec{p} \cdot \vec{\nabla}) \vec{E} \quad \Rightarrow \quad F_z \approx (p_{0z} + \alpha E_z) \frac{\partial E_z}{\partial z}$$

Permanent dipole

FEM calculation of electric potential:

Force for permanent and induced dipole:

Induced dipole

Electrostatic calibration

- Bias cantilever to from 1 to 5 V and sweep its position
- Fits to distance dependence allow determination of permanent and induced dipole moments

Microsphere response vs. distance:

Fits to dipole response:

Microsphere	$p_{\theta z}$ [e μ m]	α/α_{θ}
#1	151 ± 6	0.21 ± 0.13
#2	89 ± 10	0.00 ± 0.33
#3	192 ± 30	0.25 ± 0.14

Polarizability, α , measured relative to:

$$\alpha_0 = 3\epsilon_0 \left(\frac{\epsilon_r - 1}{\epsilon_r + 2}\right) \left(\frac{4}{3}\pi r^3\right)$$

for $\varepsilon_r \approx 3$, $r = 2.5 \mu m$

Residual response

- After measuring response to non-zero bias, set to nominal potential of 0 V
- Residual response consistent with <30 mV contact potentials

A. Rider, D. Moore, et al., PRL 117, 101101 (2016), arXiv:1604.04908 KITP - April 3, 2018 30

Tests of Coulomb's law at micron distances

Coulomb's law

- Can also search for new forces that couple to charge
- Similar to millicharged particles, new forces could arise from hidden sector dark matter models

$$\begin{array}{ll} \text{Dark} & V(r) = \frac{e^2}{r} \left(1 + \chi^2 e^{-m_\Gamma r}\right) \\ \text{Light} & V(r) \approx \frac{\alpha}{r} \left[1 + \frac{\alpha \epsilon^2}{4\sqrt{\pi}} \frac{\exp(-2mr)}{(mr)^{\frac{3}{2}}}\right] \\ \text{particles:} & \end{array}$$

e.g. Jaeckel and Ringwald, Ann. Rev. Nucl. Part. Sci., 60, 405 (2010)

- Previous laboratory tests searched for non-zero photon mass
- Most sensitive to $\sim \mu eV$ dark photons (~ 10 cm)
- Microspheres can search up to ~1 eV (~ μm)

Laboratory Coulomb's law test (1971):

Williams et al., Phys. Rev. Lett. 26, 721 (1971) Bartlett and Lögl, Phys. Rev. Lett. 61, 2285 (1988)

Dark photons

- Position highly charged (or polarized) microsphere next to shielded electric field
- Most sensitive to meV-eV mass range
- Complementary to "light shining through wall" experiments and DM-Radio

Projected sensitivity, dark photons:

Schematic of electrodes:

Requires: $d \gg 1/m_{\chi}$ $s < 1/m_{\chi}$

Summary

- Levitated microspheres in high vacuum can provide extremely sensitive force sensors
- Have already performed searches for screened scalar dark energy models and millicharged particles bound in matter
- Future work will enable new tests of matter neutrality, Newton's, and Coulomb's law at micron distances
- These and other experiments at the precision frontier could give our first hints of BSM physics!

Yale University:

Cady van Assendelft Alec Emser Adam Fine Sumita Ghosh Fernando Monteiro David Moore

Stanford University:

Charles Blakemore Akio Kawasaki Maxime Louis Marie Lu Alexander Rider Sandip Roy Giorgio Gratta

