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Problematic relations

i) weak scale :

For tan� � 5
� � HuUp type Higgs gives mass to Z :

�m2 = m2
Hu

+ µ2

2� = g2 + g�2

M2
Z = 2m2

ii) Higgs mass :

M2
Z

2
= �m2

Hu
� µ2

m2
phys = M2

Z

Minimal Supersymmetric Standard Model

supersymmetric

susy breaking
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The largest loop correction to the Higgs mass comes from stop
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Large stop mixing

Maximum at

In addition to log correction from stop to top, we have finite 
threshold correction when we integrate out stop.

m2
h = M2

Z +
3GF m4

t⇥
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�
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m2
t̃
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Figure 7.3: Integrating out the top quark and top squarks yields large positive contributions to the
quartic Higgs coupling in the low-energy effective theory, especially from these one-loop diagrams.

An alternative way to understand the size of the radiative correction to the h0 mass is to consider
an effective theory in which the heavy top squarks and top quark have been integrated out. The quartic
Higgs couplings in the low-energy effective theory get large positive contributions from the the one-loop
diagrams of fig. 7.3. This increases the steepness of the Higgs potential, and can be used to obtain the
same result for the enhanced h0 mass.

An interesting case, often referred to as the “decoupling limit”, occurs when mA0 ! mZ . Then
mh0 can saturate the upper bounds just mentioned, with m2

h0 ≈ m2
Z cos2(2β)+ loop corrections. The

particles A0, H0, and H± will be much heavier and nearly degenerate, forming an isospin doublet that
decouples from sufficiently low-energy experiments. The angle α is very nearly β−π/2, and h0 has the
same couplings to quarks and leptons and electroweak gauge bosons as would the physical Higgs boson
of the ordinary Standard Model without supersymmetry. Indeed, model-building experiences have
shown that it is not uncommon for h0 to behave in a way nearly indistinguishable from a Standard
Model-like Higgs boson, even if mA0 is not too huge. However, it should be kept in mind that the
couplings of h0 might turn out to deviate significantly from those of a Standard Model Higgs boson.

Top-squark mixing (to be discussed in section 7.4) can result in a further large positive contribution
to m2

h0 . At one-loop order, and working in the decoupling limit for simplicity, eq. (7.24) generalizes to:
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Here ct̃ and st̃ are the cosine and sine of a top squark mixing angle θt̃, defined more specifically below
following eq. (7.71). For fixed top-squark masses, the maximum possible h0 mass occurs for rather
large top squark mixing, c2
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s2
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It follows that the quantity in square brackets in eq. (7.25) is always less than m2
t [ln(m2

t̃2
/m2

t ) + 3].
The LEP constraints on the MSSM Higgs sector make the case of large top-squark mixing noteworthy.

Including these and other important corrections [168]-[177], one can obtain only a weaker, but still
very interesting, bound

mh0 <∼ 135 GeV (7.26)

in the MSSM. This assumes that all of the sparticles that can contribute to m2
h0 in loops have masses

that do not exceed 1 TeV. By adding extra supermultiplets to the MSSM, this bound can be made even
weaker. However, assuming that none of the MSSM sparticles have masses exceeding 1 TeV and that
all of the couplings in the theory remain perturbative up to the unification scale, one still has [178]

mh0 <∼ 150 GeV. (7.27)

This bound is also weakened if, for example, the top squarks are heavier than 1 TeV, but the upper
bound rises only logarithmically with the soft masses, as can be seen from eq. (7.24). Thus it is a fairly
robust prediction of supersymmetry at the electroweak scale that at least one of the Higgs scalar bosons
must be light. (However, if one is willing to extend the MSSM in a completely general way above the
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S. Martin, A Supersymmetry Primer6

FIG. 1. Higgs mass with respect to Xt for tan β = 10, stop mass Mt̃ ∼ 2TeV.

condition [21] which is explicitly realised in gauge messenger model [22]. However, this option

is not available in minimal gauge mediation. The other possibility is to couple messengers

directly to the visible sector fields such that large negative A term can be generated at the

messenger scale. If A term is positive, the gluino contribution from the running cancels the

A term at the messenger scale. Matter-messenger mixing [15–19] also has been considered

recently. Messenger-matter-matter Yukawa coupling would generate the needed At term

at the messenger scale. However, the full Yukawa couplings are written as 3 × 3 matrices

and why all other dangerous Yukawa couplings between matters and messengers are absent

except 33 component remains to be a puzzle. One way out is to consider Higgs-messenger

mass mixing [44] and to generate all the wanted Yukawa couplings between matter and

messengers from ordinary Yukawa couplings of matter with Higgs. There would be a direct

modification of squark spectrum if squark couples directly to the messenger.

Higgs-messenger mixing through Higgs-messenger-messenger coupling or Higgs-Higgs-

messenger coupling has been considered in [13, 14]. In this case, we often encounter

A/m2 problem. To understand this, it is worth to emphasize that, the two-loop soft mass

squared of the Higgs field Hu which has direct coupling to messenger Φ has a structure of

m2
Hu

∼ cλ4−c′λ2g2 where λ is a coupling constant of Higgs and messenger fields and g is the

gauge coupling(s). On the other hand, the two-loop soft mass squared of fields Q, Ū which

does not have a direct coupling with messenger has a form of m2
Q3,Ū3

∼ −c3λ2y2t . This fact

was extensively studied in [13]. For sufficiently large λ, large one-loop A terms are generated.

At the same time, m2
Hu

becomes positive so the soft mass of Hu can be much larger than

that in the pure gauge mediation. Moreover, the soft mass of Q3, Ū3 can be much smaller.

If the Higgs Hu superfield directly couples to messengers whereas the top superfields do not,

9

2 TeV stop
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Large stop mixing is not possible from RG

Very large A term is needed at the GUT scale 
to make X large (> 1).

dAt

d log Q
=

18
16

1
⇥2

y2
t At +

32
3

�s

4⇥
M3

e�
R 18y2

t
16�2 d log Q � 0.2

tan� = 10For

At(MZ) ⇥ �2.3M3 + 0.2At

m2
t̃ (MZ) � 5.0M2

3 + 0.6m2
t̃

exponential damping

8

����
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mt̃
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Meta-Stability

• Negative stop mass squared helps by making stop to 
be light at the weak scale.

• It is not possible in mSUGRA (or in any model with 
universal boundary condition) since slepton (the same 
as stop) can not be too negative due to small bino 
contribution.

9
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Radiatively generated maximal stop mixing

• The most natural 
solution predicts 
light stop.

• Light stop can imply 
meta-stability.

3
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FIG. 1: Renormalization group running of relevant SSBs for
tan β = 10 and GUT scale boundary conditions: −At = M3 =
200 GeV, m2

t̃
= −(400GeV)2 and m2

Hu
= 0GeV2. In order

to have both mass dimension one and two parameters on the
same plot and keep information about signs, we define mHu

≡

m2
Hu

/
√

|m2
Hu

| and mt̃ ≡ m2

t̃
/
√

|m2

t̃
|.

that unless mt̃ is too large compared to M3 it will run
to positive values at the EW scale. At the same time
the contribution to m2

Hu
from the energy interval where

m2

t̃
< 0 partially or even exactly cancels the contribu-

tion from the energy interval where m2

t̃
> 0 and so the

EW scale value of m2
Hu

can be arbitrarily close to the
starting value at MGUT , see Fig. 1. From Eq. (4) we
see that this happens for m2

t̃
" −4M2

3 (neglecting At).
No cancellation between initial value of m2

Hu
(or µ) and

the contribution from the running is required. And fi-
nally, from Eqs. (5) and (7) we see that the stop mixing
is typically much larger than in the case with positive
stop masses squared. For positive (negative) stop masses
squared we find |At(MZ)/mt̃(MZ)| ∼< 1 (∼> 1) starting
with At = 0 and small mt̃ at the GUT scale. Starting
with larger mt̃ the mixing is even smaller (larger) in the
positive (negative) case. Therefore large stop mixing at
the EW scale is generic in this scenario and actually it
would require very large GUT scale values of At to end
up with small mixing at the EW scale.

It turns out that in the region where m2
Hu

gets negligi-
ble contribution from running, the radiatively generated
stop mixing is close to maximal even when starting with
negligible mixing at the GUT scale. In this case, com-
paring Eqs. (5) and (7), we find [24]

At(MZ)/mt̃(MZ) " −1.5 + 0.2At/M3. (8)

Slightly more negative stop masses squared at the GUT
scale would result in maximal stop mixing at the EW
scale even when starting with negligible At. Neverthe-
less the example in Fig. 1 with simple GUT scale bound-
ary conditions already leads to EW scale parameters
mt̃(MZ) " 300 GeV and At(MZ) = −500 GeV pro-
ducing sufficiently heavy Higgs boson, mh " 115.4 GeV.
Small variations of GUT scale parameters, including pos-
itive or negative values of m2

Hu
, would produce similar re-

sults and scaling all parameters up would lead to larger
Higgs mass.

In a theory which predicts m2

t̃
" −4M2

3 , the fine tuning
problem is entirely solved. The contribution to m2

Hu
from

the running is negligible and the O(M2
Z) values of m2

Hu

and µ2 at the GUT scale naturally result in the correct
MZ . However, the absence of fine tuning is quite robust
and the relation above does not have to be satisfied very
precisely. If we define α by

|mt̃|

M3

= 2(1 + α), (9)

then the EW scale (4) can be written as

M2
Z " −1.9µ2 − 1.2m2

Hu
− 12αM2

3 . (10)

We see that requiring fine tuning less than 10%, large
range of α is allowed (for M3 " 200 GeV):

− 0.17 < α < 0.17. (11)

This interval is shrinking with increasing M3 which is a
sign of the coincidence problem discussed above.

In summary, a very reasonable set of SSBs at the GUT
scale: M3 ∼> 200 GeV, |mt̃L

| " |mt̃R
| " (1.7 − 2.3)M3

and At of order the other SSBs or smaller naturally repro-
duces the correct EW scale. The EW scale value of m2

Hu

is very close to the starting value at the GUT scale. In a
simplified way this can be understood as effectively lower-
ing the scale where SSBs are generated to the scale where
mt̃ " 0 (in the example in Fig. 1 it is 10 TeV). From this
scale SSBs run in a similar way they would run when
starting with positive stop masses. However this scale
is much closer to the EW scale and so δm2

Hu
, Eq. (3),

generated between this scale and the EW scale is consid-
erably smaller. The stop mixing at the EW scale is close
to maximal, but it is generated radiatively starting from
a small mixing at the GUT scale. It is to be compared
with the positive case which requires At to be several
times larger than other SSBs in order to produce large
enough mixing to satisfy LEP bounds on the Higgs mass.
Thus considering negative values for stop masses squared
keeps the desirable feature of radiative electroweak sym-
metry breaking and minimizes fine tuning. The Higgs
mass is automatically enhanced and staying above the
LEP bound does not require additional constraints on
the rest of SUSY parameters.

However strong constraints can originate when consid-
ering possible CCB minima. At the EW scale all scalar
masses squared (except m2

Hu
) are positive, nevertheless,

as already discussed, very large At term would generate
a CCB minimum at around the EW scale [12, 13]. Then
the EW vacuum should be the global minimum since oth-
erwise the EW vacuum would rapidly tunnel to the CCB
minimum as the barrier is neither high nor thick. The
optimal sufficient condition to avoid a CCB vacuum in

R. Dermisek, H.D. Kim, PRL 96 (2006) 211803
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Gauge mediation

SUSY
breaking
sector

visible
sector

SUSY breaking
messengers
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Gauge mediation

SUSY
breaking
sector

visible
sector

SUSY breaking
messengers

In the limit that the MSSM gauge couplings go to zero,
the theory decouples into the MSSM and the separate 

hidden sector that breaks SUSY. 

Meade Seiberg Shih 0801.3278
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Meade Seiberg Shih 0801.3278

Generic prediction for gauge mediation

flavor universality among the sfermion masses

small A terms

gravitino LSP

sum rules Tr Ym^2=0, Tr (B-L)m^2=0
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Figure 1: Values of tan β in the ξU −λ(MS) plane, for M = 1013 GeV and F/M = 1.72×105

GeV.
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Figure 2: Mass of the lightest CP-even Higgs boson h1 in the ξU −λ(MS) plane, for M = 1013

GeV and F/M = 1.72 × 105 GeV.
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Figure 3: Upper bound on the mass of the lightest CP-even Higgs boson h1 in N-GMSB and
GMSB as a function of tanβ, for M = 1013 GeV and F/M = 1.72 × 105 GeV.

The other particles have masses ma2
/3 ∼ M eN/2 ∼ mh3

∼ (k/λ) µ, while h2 and a1 have

masses of order µ. Due to the large value of k/λ the singlet-like scalars and the singlino are

much heavier than the other scalars and neutralinos, making the particle spectrum similar

to the one of ordinary gauge mediation.

Region III. The last region with relatively large mh1
lies at large values of λ and close to

the right edge of the region allowed by perturbativity of the couplings, where tan β < 2. The

soft parameters m̃2
N and Ak are large and negative, and they both contribute to generating

〈N〉. The ratio k/λ is close to 1, therefore all the heavy scalars, as well as the higgsinos

and the singlino, have masses of the order of µ, while the NLSP is the bino-like neutralino.

Concerning the mass of the lightest Higgs boson h1, the first term in the r.h.s. of eq. (40)

is suppressed by the low value of tanβ, but the term λ2 v2 sin2 2β is sizeable and lifts mh1

above the LEP bound.

If we give up the requirement that the couplings be perturbative up to the GUT scale,

considering only their evolution up to a relatively small messenger scale, we can accommodate

larger values of λ(MS), resulting in a larger tree-level contribution to mh1
. For example, for

M = 107 GeV, F/M = 1.5 × 105 GeV (so that the stop masses are of the order of 2 TeV)

and λ(MS) ∼ 0.7 we can find a range of values of ξD,T (MS) for which mh1
∼ 150 GeV.

16

120 GeV is the upper bound of the Higgs mass in gauge mediation

(for stop mass 2 TeV)

Delgado Giudice Slavich 0706.3873
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Yukawa assisted gauge mediation
Chacko Ponton, hep-ph/0112190

mass mixing between Higgs and messenger

induces matter-matter-messenger coupling
from matter-matter-Higgs Yukawa coupling

W = yijQiHuu
c
j ! W = y0ijQi�u

c
j

y0ij
yij

= const independent of flavor indices

Friday, December 14, 12
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SUSY
breaking
sector

Premier
messenger

Deuxieme
messenger

visible
sector

visible
sector

couple couple

couple

couple couple

Schematic diagram for mediation

Friday, December 14, 12



17

X
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couple couple

couple

couple couple

Q,u,d
L,e

Hu,Hd

Yukawa

gauge

gauge

Yukawa

Yukawa

B
W
g

Minimal/general gauge mediation
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X
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Phi^c
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couple couple

couple

couple couple

Q,u
Hd,e
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Yukawa

gauge
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Yukawa

Yukawa
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Hu
L

Neutrino assisted gauge mediation
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X
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couple couple

Q,u
Hd,e

d

Yukawa

gauge

gauge

Yukawa

Yukawa

B
W
g

Hu
L

Neutrino assisted gauge mediation
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X
Phi

Phi^c
N

couple couple

couple

couple couple

Q,u
Hd,e
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Yukawa

gauge

gauge

Yukawa

Yukawa

B
W
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Hu
L

Neutrino assisted gauge mediation

flavor
dependent

flavor
dependent
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W = �X��c

+ �0XNN

+ Y⌫NLHu

MN ! (1 + ✓2BN )MN

BN = FX/X

MN = �0hXi

RH neutrinos can be messengers

analytic continuation in superspace works

Neutrino assisted gauge mediation
1211.6479 HD Kim DY Mo M Seo

MN ⇠ 5⇥ 1014 GeV
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Analytic continuation into superspace
where ∆β[λ(M)] ≡ β>[λ(M)]−β<[λ(M)] and λ(M) = λ(ΛUV )+

∫ ln M
ln ΛUV

dt′β>[λ(t′; M)].

From the expression for λ(M) we also see that dλ(M)
d lnM = β>[λ(M)]. The second deriva-

tive can then be put in the following form:

d2δZ(t; M)

d lnM2

∣

∣

∣

∣

∣

t=ln M

=
∑

λ

(

d∆γ(M)

dλ(M)
β>[λ(M)] −

dγ<(M)

dλ(M)
∆β[λ(M)]

)

+ (∆γ(M))2 + [γ>(M), γ<(M)] , (3.8)

where [A, B] = AB −BA is a commutator. We have now all the ingredients required

to evaluate the soft parameters at the messenger scale. To lowest loop order we can
replace all factors of Z by 1 in Eqs. (3.3) and (3.4). Then using Eqs. (3.6) and (3.8)
(evaluated at µ = M), we obtain the final 2-loop expressions for the soft masses. In

matrix notation these are

m2
Q̃

∣

∣

∣

µ=M
= −

1

4

{

∑

λ

(

d∆γ

dλ
β>[λ] −

dγ<

dλ
∆β[λ]

)

+ [γ>, γ<]

}
∣

∣

∣

∣

∣

µ=M

FF †

MM †
. (3.9)

For the A–terms, we obtain from Eqs. (3.4) and (3.6) the 1–loop result

Aabc

∣

∣

∣

µ=M
=

1

2

(

λa′bc∆γa′
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Equations (3.9) and (3.10) are the main results of this section. These equations
are understood to hold just below the messenger scale. In particular, the sums in

Eq. (3.10)) run only over the couplings in the effective low-energy theory. Given a
specific model it is now straightforward to calculate the induced soft terms at the
messenger scale. Note that in the absence of direct matter-messenger couplings the

anomalous dimensions of the observable fields are continuous at µ = M . In this case
only the second (and third) terms in Eqn. (3.9) survive and one recovers the standard

gauge mediated results when λ is a gauge coupling.

4 The µ problem

The models of Yukawa Deflected Gauge Mediation naturally satisfy all constraints
coming from neutral flavor changing processes, which could arguably be considered
the most difficult challenge in theories of supersymmetry breaking. A second issue

that should be addressed in any model of supersymmetry breaking is the origin of
the Higgs bilinear term in the superpotential [13, 14, 15, 16, 17, 18, 19]

W = µHuHd . (4.1)
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involving the scalar components of the corresponding superfields, where

Ai(µ) =
∂ ln ZQi

(X, X†, µ)

∂ ln X

∣

∣
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∣

∣

X=M

F

M
. (15)

Notice that eq. (15) corresponds to the coefficients Ai defined in eq. (14) when W (Q) is expressed
in terms of renormalized fields and running coupling constants at the scale µ.

Let us now obtain ZQ(X, X†) from RG evolution. The crucial remark is that ZQ must be a
function of the product XX†. This is due to invariance under the chiral symmetry X → eiϕX,
Φ̄Φ → e−iϕΦ̄Φ. This symmetry is anomalous, but this has no effect in perturbation theory as
the anomaly only affects the Θ angle, as seen in eq. (8). It is then straightforward to solve
the RG evolution for the c-number ZQ(M, µ) and substitute M →

√
XX† at the end of the

calculation. Now, ZQ will just be a power series in LΛ = ln(µ2/Λ2
UV ) and LX = ln(µ2/XX†).

This property has a very important consequence that greatly simplifies the calculation of soft
masses. The contribution to the wave-function renormalization at the loop order " can be
written as

ln ZQ(X, X†, µ) = α"−1
UV P"(αUV LX ,αUV LΛ) , (16)

where αUV = α(ΛUV ) and P" ia s function computed by integrating the RG equations. Using
eq. (13), we see that the corresponding contribution to the soft scalar mass is

m̃2
Q(µ) = α(µ)"+1P̃" (α(µ)LX) , (17)

where the dependence on ΛUV disappears because of the invariance under the RG, and P̃" is a
function related to the second derivative of P". Therefore it is sufficient to use the RG at the
order " = 1 to obtain the α2 contribution to soft masses. We conclude that, while sfermion
masses arise from finite two loop diagrams, they can be extracted just by using the one-loop
anomalous dimensions. Soft masses are generated from loop momenta of the order of the
threshold M , but can be reconstructed from the behaviour of wave-function renormalization
far away from threshold (RG evolution).

Let us now derive the well-known results for gauge-mediated soft terms in the scalar sector
by using our technique. The one-loop RG equation for the wave-function renormalization of a
chiral superfield is

d

dt
ln ZQ =

c

π
α . (18)

Here c is the quadratic Casimir of the Q gauge representation (c = (N2−1)/(2N) for an SU(N)
fundamental). The function ZQ(M, µ) is determined by integrating eq. (18) from the ultraviolet
scale ΛUV down to µ with tree-level matching at the intermediate threshold M . Substituting
M →

√
XX† we get

ZQ(X, X†, µ) = ZQ(ΛUV )

[

α(ΛUV )

α(X)

]
2c
b′

[

α(X)

α(µ)

]
2c
b

, (19)

where the X dependence of α(µ) and α(X) is given by

α−1(µ) = 16π Re S(µ) = α−1(X) +
b

4π
ln

µ2

XX†
, (20)

5

This expression and the requirement of holomorphy fix S(X, µ) to have the form

S(X, µ) = S(ΛUV ) +
b′

32π2
ln

X

ΛUV

+
b

32π2
ln

µ

X
. (8)

Notice that the above equation reproduces also the renormalization Θ → Θ+(b− b′)arg(X) as
dictated by the chiral anomaly. By differentiating eq. (8) with respect to ln X keeping S(ΛUV )
fixed, we can express the gaugino mass in eq. (3) as

M̃g(µ) =
α(µ)

4π
N

F

M
. (9)

This is the familiar expression obtained by explicit loop integration. Notice that it already
contains its one-loop RG evolution.

We now turn to discuss the supersymmetry-breaking terms for the matter fields. Let ZQ be
the wave-function renormalization of the chiral superfield Q

L =
∫

d4θZQ(X, X†) Q†Q . (10)

In contrast to the case of the gauge multiplet, here we are dealing with the renormalization of
a D-term and therefore ZQ is a real function of both X and X†. Replacing the superfield-X
VEV in eq. (10), we find

L =
∫

d4θ

(

ZQ +
∂ZQ

∂X
F θ2 +

∂ZQ

∂X†
F †θ̄2 +

∂2ZQ

∂X∂X†
FF †θ2θ̄2

)
∣

∣

∣

∣

∣

X=M

Q†Q . (11)

It is useful to define a new variable Q′ with canonically normalized kinetic terms,

Q′ ≡ Z
1

2

Q

(

1 +
∂ ln ZQ

∂X
F θ2

)
∣

∣

∣

∣

∣

X=M

Q ≡ ZQ. (12)

Expressing eq. (11) in terms of Q′, we find that linear terms in F disappear, and we are left with
a quadratic term corresponding to a supersymmetry-breaking mass for the scalar component
of the chiral multiplet

m̃2
Q(µ) = −

∂2 ln ZQ(X, X†, µ)

∂ ln X ∂ ln X†

∣

∣

∣

∣

∣

X=M

FF †

MM †
. (13)

The derivatives in eq. (13) are computed keeping the couplings at ΛUV fixed. Again we have
made explicit the dependence on the renormalization scale µ. The redefinition of the chiral
superfield Q in eq. (12) however does not leave the superpotential invariant, and in particular
it gives rise to A-type supersymmetry-breaking terms proportional to F . Considering a super-
potential W (Q) with the fields Qi redefined by Q′

i = ZiQi, we obtain an A-type contribution
to the scalar potential

V =
∑

i

AiQi∂Qi
W (Q) + h.c. (14)

4
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is interpreted as the direct mixing term among the messengers, Higgs and matter (leptons).

The SUSY breaking effects at the See-Saw scale MN = λ〈X〉 is studied in [41]. When

right-handed neutrinos couple to the SUSY breaking sector, Majorana mass matrix is ana-

lytically continued to be MN → (1 + θ2BN )MN , as in the case of gauge mediation[42–44].

Here, we assume that the flavor structure of the right-handed neutrinos is fully determined

by MN , so BN = FX/X is a constant.

Then, SUSY breaking is transferred to the visible sector through the neutrino Dirac

Yukawa interaction. Wave function renormalization from the interaction with right-handed

neutrinos is given by

δZL =
Y R†
ν

16π2

(

1− ln
MR†MR

Λ2

)

Y R
ν , δZHu = TrδZL (7)

where

λRN = [Z−1/2
N ]TλNZ

−1/2
L Z−1/2

Hu
, MR = [Z−1/2

N ]TMNZ
−1/2
N , (8)

then analytically continued Majorana masses give the soft masses. From field redefinitions

L →
(

1−
δZL|0
2

)

(1− θ2δZL|θ2)L

Hu →
(

1−
δZHu |0

2

)

(1− θ2δZHu|θ2)Hu,

(9)

supersymmetric kinetic terms can be written in the simple form,

Φ†(1 + δZΦ)Φ → Φ†(1 + θ2θ̄2δZΦ|θ2θ̄2)Φ (10)

then we can read off the one-loop corrections to the soft masses

δm2
L = −δZL|θ2θ̄2 and δm2

Hu
= −δZHu |θ2θ̄2 . (11)

In the expression, BN is just a constant, not a matrix. So ln(M †
NMN) in the wave func-

tion renormalization is separated into holomorphic and anti-holomorphic parts, respectively.

Since θ2θ̄2 term is not generated, we do not have one-loop soft masses.

Hence, as in minimal gauge mediation, soft masses are generated at two loop level. In

[13], it was shown that soft scalar masses of the fields which directly couple to messengers

and those which do not are different. In our model, the slepton L̃ and the up-type Higgs

Hu couple to messengers N directly to give soft terms,

6
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δm2
L =

B2
N

(4π)4

[(

Tr[YνY
†
ν ] + 3Tr[YUY

†
U ]− 3g22 −

1

5
g21

)

Y †
ν Yν + 3Y †

ν YνY
†
ν Yν

]

δm2
Hu

=
B2

N

(4π)4

[

4Tr[YνY
†
ν Y

†
ν Yν]−

(

3g22 +
1

5
g21

)

Tr[YνY
†
ν ]
]

.

(12)

On the other hand, Q̃ and Ũ obtain two-loop soft scalar masses through the wave function

renormalization of Hu and the corrections are given by

δm2
Q = −

B2
N

(4π)4
Tr[YνY

†
ν ]Y

†
UYU

δm2
U = −

B2
N

(4π)4
Tr[YνY

†
ν ]YUY

†
U

(13)

while the soft masses of Ẽ and Hd come out of the wave function renormalization of L and

the corrections are given by

δm2
E = −

B2
N

(4π)4
YEY

†
ν YνY

†
E

δm2
Hd

= −
B2

N

(4π)4
Tr[YEY

†
ν YνY

†
E].

(14)

By replacing YE → YE(1 + δAE), YU → YU(1 + δAU), and YD → YD(1 + δAD), we have

following soft terms at one loop level,

δAE = −δZL|θ2, δAU = −IδZHu |θ2,

δAD = 0, δB = −δZHu |θ2 .
(15)

Unlike gauge mediation, right-handed neutrino mediation generates one-loop A−terms,

AE =
BN

16π2
Y †
ν Yν

AU = −TrAE × I3×3

B = TrAE .

(16)

While gauge mediation contributions are flavor universal, See-Saw Yukawa mediation

is flavor dependent and one of the virtue of the gauge mediaion would disappear. In the

absence of See-Saw Yukawa mediation, cLFV can appear when the messenger scale is higher

than the right-handed neutrino Majorana mass scale. See-Saw Yukawa contributes to the

slepton soft mass through the renormalization group equation (RGE) ,

µ
d

dµ
m2

L = µ
d

dµ
m2

L

∣

∣

∣

MGM
+

1

16π2

[

(m2
LY

†
ν Yν + Y †

ν Yνm
2
L) + 2(Y †

ν m
2
NYν +m2

Hu
Y †
ν Yν + Ã†

νÃν)
]

(17)
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(17)

7

1 loop :  A term is generated for Hu and L

PMNS if
RH neutrino mass diagonal

charged lepton Yukawa diagonal
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2 loop :   soft scalar mass for L, Hu
and (L) Hd, e, (Hu), Q, u
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νÃν)
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2 loop :   soft scalar mass for L, Hu
and (L) Hd, e, (Hu), Q, u

δm2
L =

B2
N

(4π)4

[(

Tr[YνY
†
ν ] + 3Tr[YUY

†
U ]− 3g22 −

1

5
g21

)

Y †
ν Yν + 3Y †

ν YνY
†
ν Yν

]

δm2
Hu

=
B2

N

(4π)4

[

4Tr[YνY
†
ν Y

†
ν Yν]−

(

3g22 +
1

5
g21

)

Tr[YνY
†
ν ]
]

.

(12)
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yν gets larger, it would be easy to realise the maximal stop mixing by making the stop soft

scalar mass sufficiently small.

FIG. 4. Mt̃ as a function of yν for BN = 5× 105 GeV, ρ = 0.1. tan β = 10.

FIG. 5. Xt/Mt̃ as a function of yν for BN = 5× 105 GeV, ρ = 0.1, tan β = 10.

Fig. 3 shows the contribution assisted by neutrino messengers, compared to the minimal

gauge mediation which corresponds to yν = 0 with stop mass at around 1 TeV. In the

minimal gauge mediation, the Higgs mass is computed to be at around 121 ∼ 122 GeV for

tan β = 10 ∼ 30. For yν = 0.7, the Higgs mass can be as large as 125 ∼ 126 GeV. 4 to 5

GeV gain in the Higgs mass is obtained in neutrino assisted gauge mediation. The gain does

not look impressive but has an impact on allowed superparticle spectrum. In the absence of

At at the messenger scale as is the case in minimal gauge mediation, this extra 5 to 6 GeV

can be achieved by making the logarithmic contribution large and the stop mass should be

as heavy as 5 to 10 TeV rather than 2 TeV.
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FIG. 3. Higgs mass as a function of yν for BN = 5×105 GeV, ρ = 0.1. Higgs mass can be achieved

with the help of Yukawa mediation for large tan β region. At yν ∼ 0.7, stop mass is approximately

1TeV.

as analysed in detail in [14].

Neutrino assisted gauge mediation uses the Yukawa coupling among messengers (neutri-

nos), Higgs and lepton doublets. As a result, Higgs and lepton doublet soft scalar masses

get extra contribution from Yukawa mediation. The same A/m2 problem applies here and

neutrino Dirac Yukawa coupling can not be taken to be a large value for successful elec-

troweak symmetry breaking in principle. On the other hand, too large m2
Hu

and too large

A term may drive stop tachyonic through renormalization group running with top Yukawa.

The problem becomes worse as the stop soft scalar mass squared at the messenger scale

gets a negative contribution from Yukawa mediation. The situation is shown in Fig. 2. For

the running mass of the top quark 160 GeV (the central value), the tachyonic stop appears

before the real A/m2 problem prevents the successful electroweak symmetry breaking as we

increase yν . The crucial difference compared to the previous work in which A/m2 problem

is emphasized [13, 14] comes from the number of messengers. In neutrino assisted gauge

mediation, the number of messengers is three, N = 3. The y2 contribution is effectively

replaced by Ny2ν . Large N effectively reduces the A/m2 problem by 1/N . At the same time

smaller yν can provide the same impact with the aid of N > 1. If tachyonic stop appears as

11

Neutrino assisted gauge mediation

light stop is responsible 
for the maximal stop mixing ~

~
~

FIG. 6. Ãt ≡ AtYt as a function of yν for tan β = 10, BN = 5 × 105GeV. Without Yukawa

mediation, one can obtain Ãt ∼ −2700GeV at the weak scale by RG running effects. With help

of neutrino mediation at the messenger scale, one can obtain Ãt ∼ −4500GeV at weak scale. This

drives more stop mixing, which helps 125GeV Higgs mass.

Note that the plot stops at yν = 0.72. Neutrino assisted gauge mediation is classified

as Higgs-messenger mixing scenario as the right-handed neutrino is the messenger and the

neutrino Dirac Yukawa coupling connects Higgs, lepton doublet and the messenger (right-

handed neutrino). The stop soft scalar mass squared gets smaller and becomes tachyonic as

the neutrino Dirac Yukawa coupling is increased as in Fig. 4. The logarithmic correction

to the Higgs mass also rapidly drops beyond yν ∼ 0.7 as the stop mass becomes too light

(and becomes tachyonic) as is shown in Fig. 3. The maximal mixing is realised around this

point, as shown in Fig. 5. This also corresponds to the corner of the parameter space next

to the critical point as in [46].

Fig. 6 compares At in the minimal gauge mediation and the neutrino assisted gauge

mediation both at the messenger scale and the weak scale. Note that At by itself is enhanced

by 1.5 at the weak scale with the help of messenger scale At.

Fig. 7 shows the relation between BN and the Higgs mass. The neutrino Dirac Yukawa

coupling yν is chosen to be close to 0.72 which can maximize the Higgs mass for given BN .

In summary, the minimal gauge mediation needs stop mass at around 5 to 10 TeV to

raise the Higgs mass up to 125 GeV. If the right-handed neutrinos are the messengers of the

13
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Stop Tachyonic

No EWSB

Stop Tachyonic

No EWSB

FIG. 2. Phase diagrams indicating stop tachyonic and no EWSB region for tan β = 10, tan β = 30,

respectively. BN is set to be 5× 105 GeV.

relatively light stop in natural SUSY can be easily obtained as we can have the small stop

soft mass from the effect explained above and the large LR mixing from large A term. A/m2

problem appears in Hu soft terms such that large A term at the same time generate large

m2
Hu

at the messenger scale and it can make the electroweak symmetry breaking difficult.

It is analogous to the famous µ/Bµ problem in gauge mediation. To avoid this but to allow

the large λ for maximal mixing, large −c2λ2g2 part in m2
Hu

is required. This can be achieved

by introducing new gauge bosons or making strong interaction involved [13]. On the other

hand, one loop, negative contribution to m2
Hu

can be considered if the messenger scale is low

10

Two critical problems
for the large Yukawa

Tachyonic stop at EW scale

No EWSB due to large mHu
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observations[47–51], small corrections should be added. When the neutrino Dirac Yukawa

coupling has such corrections, such that it has a deviation from identity, cLFV is generated.

We look for several ways to suppress cLFV, at least under the experimental bound.

Superfield S4 Z4 U(1)L U(1)R

L 3 1 1 1

Ē 2+ 1 2 -1 0

N 3 3 -1 0

Φ 3+ 3′ 1 0 0

χ 1+ 2+ 3 2 2 0

Hu 1 0 0 1

Hd 1 0 0 1

X 1 0 0 2

TABLE I. Charge assignments under S4 × Z4 × U(1)L × U(1)R for leptons, flavons, Higgs, and

SUSY breaking spurions.

To make the PMNS matrix tri-bi maximal, we use S4 discrete symmetry, since it is closely

related to the permutation structure of Yukawa couplings. Other discrete symmetries, such

as A4, the even permutation of the S4 could be used. The main difference is that the first and

the second generation of the right-handed leptons belong to 2 dimensional representation

in S4 while they correspond to different one dimensional representations, 1′, 1′′ in A4. In

[52–55], the structure we use is obtained from A4 symmetry and discussion on the deviation

from the tri-bi maximal mixing is in parallel. The S4 symmetry model building is reviewed

in [56]. In Appendix A, we summarised representations and tensor products of S4 group.

For quark sector, the CKM matrix is close to the identity. Deviation from the identity

has a hierarchy structure parametrized by some powers of the Cabibbo angle, λ = sin θC .

On the other hand, the PMNS matrix, mixing matrix in the lepton sector has large mixing

angles. Even the smallest mixing angle, θ13 is in the order of λ. To explain this, it is natural

to assume that u− and d− quark sectors have almost the same structure under the discrete
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flavor symmetry whereas the charged lepton and the right-handed neutrino sectors do not.

This picture can be realised by introducing appropriate ‘flavons’ charged under discrete

symmetry group and more symmetries can be introduced to forbid useless couplings. Here,

we consider the symmetry group S4×Z4×U(1)L, where U(1)L represents a lepton number,

which may be discretized. In this paper, we consider superpotential for See-Saw mechanism

with flavons Φ and χ,

W = −l1ijĒiΦLjHd + l2ijNiLjHu +
1

2
l3ijXNiχNj , (19)

where i, j = 1, 2, 3 are the generation indices and X is a SUSY breaking spurion. For this,

S4, Z4, U(1)L and U(1) R-symmetry quantum numbers are given in Table I.

The charged lepton Yukawa couplings can be constructed from ĒΦLHd, the neutrino

Dirac Yukawa coupling can be constructed from NL, and the Majorana mass of the heavy

neutrinos can be constructed from XNχN . On the other hand, Φ2, χ2, and Φχ cannot

couple to the combinations ĒLHd, NL, and XNN to make singlets. Note that U(1)R is

introduced to forbid unwanted coupling NχN , which makes BN in a matrix form, not a

constant.

The discrete symmetry quantum number can be extended to the quark sector, such as

Q : (3, 1, 1, 1, 1), Ū : (2+ 1, 2, 0, 0), and D̄ : (2+ 1, 2, 0, 0) under S4 × Z4 × U(1)L×U(1)R.

The flavons Φ : (3 + 3′, 1, 0) make the singlet combinations ŪΦQHu + D̄ΦQHd and Yukawa

couplings YU and YD have the same form as the charged lepton Yukawa coupling. They are

diagonalized by the same unitary matrix so CKM matrix is the identity in the leading order.

If another type of flavon couples to either of up and down quark sectors to give subleading

corrections of order λ, it would explain the Cabibbo angle.

Lepton Li is in the 3 and Ēj is in the 1+2 representations, in which (Ē1)1 + (Ē2, Ē3)2.

Also there are the SM singlet flavons Φ3, and Φ3′ in the 3, and 3′ representations. We do

not provide a complete vacuum alignment in this setup. Instead in Appendix B, we show

a few simple examples in which the aligned vacuum is realised. If, for instance, VEVs are

arranged to be 〈Φ3〉 = v2(1, 1, 1), and 〈Φ3′〉 = v3(1, 1, 1), we have the following Yukawa

structure

YE = λE
1√
3











c c c

a aω aω2

b bω2 bω











(20)
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where a = (λv2 + λ′v3)/Λ, b = (λv2 − λ′v3)/Λ, c = λ′′v2/Λ, and λ,λ′,λ′′ are coupling

constants of Ē2L3Φ3, Ē2L3Φ3′ , and Ē1L3Φ3, respectively. In this case, Y †
EYE has the form

of

Y †
EYE = |λE|2











a2 + b2 + c2 c2 + a2ω + b2ω2 c2 + b2ω + a2ω2

c2 + a2ω2 + b2ω a2 + b2 + c2 c2 + a2ω + b2ω2

c2 + b2ω2 + a2ω c2 + a2ω2 + b2ω a2 + b2 + c2











, (21)

which will be diagonalized to |λE|2((ε3)2, (ε)2, 1) by the unitary matrix,

V l
L =

1√
3











1 1 1

1 ω2 ω

1 ω ω2











. (22)

Here we use ε # mµ/mτ as the order parameter. Then, c = ε3, a = ε and b = 1.

On the other hand, let heavy neutrinos Ni be in the triplet 3. Φ3 and Φ3′ cannot couple

to the combination LiNj by Z4 and U(1)L symmetries as well as the SM gauge symmetry.

Since the combination L1N1 + L2N2 + L3N3 is a singlet, we naturally have the neutrino
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where 〈χ1〉 = w1 and 〈χ3〉 = w2(0, 1, 0), respectively. Therefore, the neutrino mass matrix

Mν = −v2uY
T
ν M−1

N Yν is diagonalized by

V ν
L =











1√
2
0 − 1√

2

0 1 0

1√
2
0 1√

2
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so we obtain the PMNS matrix in the tri-bi maximal mixing,

VPMNS ≡ (V l
L)

†V ν
L =











√

2
3

1√
3

0

−ω 1√
6

ω 1√
3

e−i5π/6 1√
2

−ω2 1√
6
ω2 1√

3
ei5π/6 1√

2
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where a = (λv2 + λ′v3)/Λ, b = (λv2 − λ′v3)/Λ, c = λ′′v2/Λ, and λ,λ′,λ′′ are coupling

constants of Ē2L3Φ3, Ē2L3Φ3′ , and Ē1L3Φ3, respectively. In this case, Y †
EYE has the form

of

Y †
EYE = |λE|2











a2 + b2 + c2 c2 + a2ω + b2ω2 c2 + b2ω + a2ω2

c2 + a2ω2 + b2ω a2 + b2 + c2 c2 + a2ω + b2ω2

c2 + b2ω2 + a2ω c2 + a2ω2 + b2ω a2 + b2 + c2











, (21)

which will be diagonalized to |λE|2((ε3)2, (ε)2, 1) by the unitary matrix,

V l
L =

1√
3











1 1 1

1 ω2 ω

1 ω ω2











. (22)
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Here we use ε # mµ/mτ as the order parameter. Then, c = ε3, a = ε and b = 1.
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to the combination LiNj by Z4 and U(1)L symmetries as well as the SM gauge symmetry.

Since the combination L1N1 + L2N2 + L3N3 is a singlet, we naturally have the neutrino

Dirac Yukawa coupling Yν proportional to the identity. Finally, XNiNj has again the form

of 3+ 3′ + 1 + 2. Φ’s cannot couple to it while singlet χ1 and triplet χ3 in the singlet and

triplet representation can do, so we have the following Majorana mass term:

MN =
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flavor symmetry whereas the charged lepton and the right-handed neutrino sectors do not.

This picture can be realised by introducing appropriate ‘flavons’ charged under discrete

symmetry group and more symmetries can be introduced to forbid useless couplings. Here,

we consider the symmetry group S4×Z4×U(1)L, where U(1)L represents a lepton number,

which may be discretized. In this paper, we consider superpotential for See-Saw mechanism

with flavons Φ and χ,

W = −l1ijĒiΦLjHd + l2ijNiLjHu +
1

2
l3ijXNiχNj , (19)

where i, j = 1, 2, 3 are the generation indices and X is a SUSY breaking spurion. For this,

S4, Z4, U(1)L and U(1) R-symmetry quantum numbers are given in Table I.

The charged lepton Yukawa couplings can be constructed from ĒΦLHd, the neutrino

Dirac Yukawa coupling can be constructed from NL, and the Majorana mass of the heavy

neutrinos can be constructed from XNχN . On the other hand, Φ2, χ2, and Φχ cannot

couple to the combinations ĒLHd, NL, and XNN to make singlets. Note that U(1)R is

introduced to forbid unwanted coupling NχN , which makes BN in a matrix form, not a

constant.

The discrete symmetry quantum number can be extended to the quark sector, such as

Q : (3, 1, 1, 1, 1), Ū : (2+ 1, 2, 0, 0), and D̄ : (2+ 1, 2, 0, 0) under S4 × Z4 × U(1)L×U(1)R.

The flavons Φ : (3 + 3′, 1, 0) make the singlet combinations ŪΦQHu + D̄ΦQHd and Yukawa

couplings YU and YD have the same form as the charged lepton Yukawa coupling. They are

diagonalized by the same unitary matrix so CKM matrix is the identity in the leading order.

If another type of flavon couples to either of up and down quark sectors to give subleading

corrections of order λ, it would explain the Cabibbo angle.

Lepton Li is in the 3 and Ēj is in the 1+2 representations, in which (Ē1)1 + (Ē2, Ē3)2.

Also there are the SM singlet flavons Φ3, and Φ3′ in the 3, and 3′ representations. We do

not provide a complete vacuum alignment in this setup. Instead in Appendix B, we show

a few simple examples in which the aligned vacuum is realised. If, for instance, VEVs are

arranged to be 〈Φ3〉 = v2(1, 1, 1), and 〈Φ3′〉 = v3(1, 1, 1), we have the following Yukawa

structure

YE = λE
1√
3











c c c

a aω aω2

b bω2 bω











(20)
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To the first order in ρ, mass eigenvalues are given by

−|yν |2
v2 sin2 β

2w1

(1 + iρ

1 + x
, 1− 2iρ,

1 + iρ

1 − x

)

. (38)

Taking absolute values of these eigenvalues, we obtain neutrino masses −[|yν |2v2 sin2 β/(2w1)](1/(1+

x), 1, 1/(1− x)) +O(ρ2).

In summary, we expect that even though the charged lepton flavor violating effects are

generated in the AE term at one loop and in them2
L term at two loop, they can be suppressed

by extra small expansion parameter ρ proportional to θ13. With the vacuum alignment of

the doublet flavon i(v, v), it is possible to cancel the first order correction of ρ and the off-

diagonal elements of the slepton mass squared would have ρ2 suppression as a result. Fig.

8 shows how measured θ13 can be explained for the choices of ρ and x parameters satisfying

observed neutrino mass squared ratio,
√
R. The observed θ13 ∼ 0.15 can be accommodated

for ρ ∼ 0.1.

B. Model II

Of course, θ13 can come from both Majorana mass correction and neutrino Dirac Yukawa

correction. Only the neutrino Dirac Yukawa coupling can affect the cLFV. To see the two-

parameter case, consider

Yν = yν











1 + 2iρ 0 0

0 1− iρ 0

0 0 1− iρ











(39)

and

MN =











w1 0 w2

0 w1 0

w2 0 w1(1− ζ)











. (40)

The neutrino mass is given by

Mν = −|yν |2
v2 sin2 β

2w1

1

1− x2 − ζ











1 + 4iρ− ζ 0 −x(1 + iρ)

0 (1− x2)(1− 2iρ)− ζ 0

−x(1 + iρ) 0 1− 2iρ











+O(ρ2, ζ2)

(41)
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Nonzero theta13 from two sources

LFV

no LFV
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In the limit of ζ → 0, both θ13 and cLFV come from the neutrino Dirac Yukawa which

corresponds to the Model I. In the opposite limit, ρ → 0, θ13 is entirely obtained from

Majorana mass term and cLFV does not appear.

In addition, we can also constrain absolute mass scale of light neutrinos. The most

stringent constraint on neutrino absolute mass is given by CMB data of WMAP experiment,

combined with supernovae data and data on galaxy clustering, Σjmj ! 0.68eV, 95% C.L.

Conservatively, we set the bound 2.6 × 1014GeV ! MN . Throughout paper, we use MN =

5× 1014GeV, the heaviest right-handed neutrino mass.

IV. CHARGED LEPTON FLAVOR VIOLATION

Since flavor structures of supersymmetric particles can be different from those of SM

partners, flavor number is easily violated in SUSY. In general, the structure of the slepton

mass matrix raises dangerous cLFV. Such cLFV in SUSY is studied in [60, 61]. In our

model, once the identity structure of the neutrino Yukawa coupling Yν is broken, cLFV is

produced. As a possible modification, one may put off-diagonal terms into Yν . On the other

hand, when the degeneracy of Yν is broken, the combination of Yνs in the charged lepton

mass basis, (V l
L)

†(Y †
ν Yν)V l

L has off-diagonal terms as shown in Sec. III. The slepton mass

squared gets extra contribution from neutrino Dirac Yukawa interactions,

δm2
L =

B2
N

(4π)4

[(

Tr[YνY
†
ν ] + 3Tr[YUY

†
U ]− 3g22 −

1

5
g21

)

Y †
ν Yν + 3Y †

ν YνY
†
ν Yν

]

. (46)

In the charged lepton mass basis, (V l
L)

†m2
LV

l
L has off-diagonal elements and cLFV appears.

Even though this is a general feature, it is also possible to find some parameter space in

which charged lepton number is conserved. For example, in Sec. IIIA, off diagonal terms

of the slepton soft mass squared, (m2
L)12 can vanish for specific value of yν . Corresponding

condition would be

(δm2
L)12 ∝

[

Tr[Y †
ν Yν] + 3Tr[YUY

†
U ]− 3g22 −

1

5
g21

]

(Y †
ν Yν)12 + 3(Y †

ν YνY
†
ν Yν)12 = 0, (47)

which is equivalent to

(δm2
L)12 ∝

[

3(1 + 2ρ2)y2ν + 3y2t − 3g22 −
1

5
g21

]

y2νρ
2 + 3y4ν2ρ

2

% y2ν

[

3y2t − 3g22 −
1

5
g21

]

ρ2 + 9y4νρ
2 +O(ρ4) = 0.

(48)
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FIG. 14. Branching ratio of µ → eγ as a function of θ13 for tan β = 10, yν = 0.62, ρ = 0.1. Future

MEG expected bound is O(10−13), we set the value 2×10−13. Observed muon g−2 discrepancy is

about (2.25± 1)× 10−9, we draw Br(µ → eγ) at each muon g − 2 contribution. Green and yellow

band indicate 1σ, 3σ level of neutrino θ13, respectively. In upper figure, θ13 is purely obtained

from neutrino Dirac Yukawa splitting. In lower figure, only 1/15 portion of θ13 is obtained from

neutrino Dirac Yukawa.

Moreover, the neutrino Dirac Yukawa Yν contains information on the neutrino oscillation

observables. Since we consider the model where parameters of Yν are related to θ13 and

cLFV, we have a strong correlation between Br(µ → eγ), θ13, and muon g − 2 as discussed

32
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FIG. 15. Contour plot of Higgs mass(red solid line), cLFV(black dashed line), and muon g−2(blue

dashed line) in BN - yν plane for ρ = 0.1, tan β = 30.

in [82].

Fig. 14 summarises the result. Both muon anomalous magnetic moment and cLFV

is a function of tan β/M2 in which M is the typical supersymmetry breaking scale. The

cLFV has extra suppression proportional to (m2
L)12. The S4 flavor model discussed here is

constructed from the neutrino Dirac Yukawa matrix which is proportional to the identity

matrix and does not provide any off-diagonal entry in the slepton mass squared matrix if

θ13 vanishes. Recently measured θ13 ∼ 0.15 provides an extra information depending on the

origin of modification for nonzero θ13.

If the full θ13 is explained by the degeneracy lift of the neutrino Dirac Yukawa matrix

and if the entire discrepancy of the muon anomalous magnetic moment should be explained

by light slepton, the current MEG bound tells that θ13 should be smaller than 0.01 which is

incompatible with the observation recently made. The parameter space which is consistent

33

Blue : muon g-2

Red : Higgs mass (GeV)

Black : Br(µ ! e�)

Interesting parameter space
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What can I do for
supersymmetry?

Give up
weak scale

supersymmetry!
after LEPII : no Higgs

Tevatron Run II : no SUSY

Give up CMSSM!
It’s role as a benchmark 
model is already over

Give up MSSM!Give up R-parity!
Jet + missing energy search

does not apply for RPV

Develop new benchmark:

Natural SUSY

to understand where we are
from direct search/constraints

Check it again anything missed
before giving it up!

Supersymmetry 
under the top

Asano, HD Kim, Kitano, Shimizu (2010)
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stop’

sbottom

stop
chargino/neutralino

goldstino > eV

mt

mt

gluino

bino, wino, 
1&2nd squarks & sleptons,  

stau, tau sneutrino

< 300 GeV
< 200 GeV

< 550 GeV

< 1.1 TeV

fine tuning ~ 10%

> 2 TeV

Higgs (h)< 120 GeV

H, A, H+
< 200*             GeV

Natural Supersymmetry

p
tan�

Asano, HD Kim, Kitano, Shimizu (2010)

Dimopoulos, Giudice (1995)

Cohen, Kaplan, Nelson (1996)
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Fine tuning

R2 = m2
Q̃3

+m2
t̃c + |At|2where

M2
Z~

~ 25 4% fine tuning in the MSSM : for R = 1 TeV

��m2
H = log(M/m

soft

)

log(M/m
soft
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1

5
(
R

MZ
)2
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Mu problem 
in gauge mediation

38
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Mu problem in supersymmetry

Why is the supersymmetric mass for the Higgs the same 
as other supersymmetry breaking parameters?

W = µHuHd

JE Kim HP Nilles (1984)

µ 6= MPl1) Pecci-Quinn symmetry can forbid it

PQ charge : Q(Hu)=Q(Hd)=1

2) µ ⇠ M
soft

K =
X†

MPl
HuHd W = m

soft

HuHd

Giudice-Masiero mechanism
works gravity mediation
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K = HuHd K =
�†

�
HuHd

Friday, December 14, 12



Natural mu & Bmu in Gauge Mediation
G. Giudice, H. D. Kim and R. Rattazzi, PLB(2008)

When the mediation scale is different from Planck scale,
Bmu in general causes a big problem.

Gauge mediation is of typical example.
(The problem is common in anomaly mediation,

gaugino mediation, mirage mediation, etc.)

40
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New proposal for mu/Bmu problem

No Bmu is generated at one loop

anti-holomorphic         vs       supercovariant derivative

K = HuHd[f(X) + g(X†) + D2h(X, X†)] + h.c.

�W = HuHd[D̄2g(X†) + D̄2D2h(X, X†)]

� V = D2W = 0

g(X†) D2h(X, X†)

41

G. Giudice, H. D. Kim and R. Rattazzi, PLB(2008)
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Effective potential in supersymmetry
(Grisaru formula; supersymmetric Coleman-Weinberg potential)

after integrating out messengers with mass

K = � 1
16⇥2

�
d4�M†M log

M†M
�2

W = �̄M�

M =
�

X S
0 X

⇥
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G. Giudice, H. D. Kim and R. Rattazzi, PLB(2008)
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The Model

W = N

�
HuHd +

S2

2
�M2

s

⇥

+S�̄1�2 + X(�̄1�1 + �̄2�2)

MZ �Ms �M

�X⇥ = M + �2F

43

G. Giudice, H. D. Kim and R. Rattazzi, PLB(2008)

HuHd log X† is generated in Kahler potential at one loop.
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m2

h = �2m2

H = �2µ2 � 2m2

soft

Unavoidable tuning between m2

soft

µ2 and

µ problem is the biggest obstacle in supersymmetry

Model building should start from mu problem.

44

Friday, December 14, 12



Higgs as a
pseudo-Goldstone boson

in supersymmetry 

45

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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K = HuHd K =
�†

�
HuHd

m2
H =

✓
µ2 Bµ
Bµ µ2

◆

pGB Higgs : toy example

µ = F�

Bµ = F 2
�

m2
H = F 2

�

✓
1 1
1 1

◆

m2
h = 0 tan� = 1
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K = HuHd K =
�†

�
HuHd

m2
H =

✓
µ2 Bµ
Bµ µ2

◆

pGB Higgs : toy example

µ = F�

Bµ = F 2
�

m2
H = F 2

�

✓
�2 �
� �2

◆

� = 1 is a fine tuning

��

For large mu, tan beta is close to 1.
It holds as long as soft scalar mass is small compared to mu.
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2

I. INTRODUCTION

The µ problem in supersymmetric models lies in the center of the electroweak symmetry break-

ing. In this paper we consider a possibility of large µ without spoiling natural electroweak symme-

try breaking. The Higgs appears as a pseudo-Goldstone boson of the global symmetry breaking at

around 10 TeV and is independent of µ. At the scale of the global symmetry breaking, the Higgs

potential is absent. The global symmetry is explicitly broken by top Yukawa coupling and gauge

couplings. As a result there appears a loop correction from the global symmetry breaking scale

down to the weak scale.

II. PSEDU-GOLDSTONE BOSON INTERPRETATION

We take this part from Dvali, Giudice and Pomarol (1996).

W = S(�
1

HH̄ + �
2

NN̄ + ���̄�M2

N ),

where �
1

= �
2

corresponds to U(3) limit. H and H̄ are two Higgs doublets, N and N̄ are two

singlet super fields and � and �̄ are the messengers belong to 5 and 5̄ representation of SU(5).

⌃ = (H,N) and ⌃̄ = (H̄, N̄) transform as triplet and anti-triplet under a U(3) transformation.

In the supersymmetric limit, the VEVs of N and N̄ break the U(3) down to U(2). Gauge and

Yukawa interactions break U(3) symmetry explicitly and the corresponding Goldstone bosons get

their masses from loops.

At one loop level, the relevant part of the e↵ective potential is U(3) invariant and one linear

combination of the Higgs doublets (H + H̄†)/
p
2 remains exactly massless.

µ = XXX,

Bµ = XXX,

and Bµ = µ2 holds at one loop if �
1

= �
2

. There are 9 � 4 = 5 broken generators corresponding

to one Higgs doublet and one singlet. In the supersymmetric limit, these are doubled according to

supersymmetry. At one loop the symmetry is broken and only 5 pGBs are left, one Higgs doublet

and one Higgs singlet.

The correction to the quadratic term comes from the messenger scale down to the

S : SU(2) singlet

H : SU(2) doublet 

N : SU(2) singlet
(H,N) : SU(3) triplet

Phi : SU(5) doublet (messenger)

M_N : Supersymmetric mass scale
~ f : spontaneous breaking of SU(3)

Dvali Giudice Pomarol (1996)

�1 = �2 SU(3) global symmetry if

Higgs as a pseudo-Goldstone boson
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K = (X + S)†(X + S) log(X + S)†(X + S)

X†S logX†X

X = MN + ✓2FFor the SUSY breaking spurion

V ' FMNSTadpole for S is generated

With the supersymmetric mass V ' M2
N |S|2

hSi ' F

MN
Mu term is generated

Bmu appear at two loop FS ' (
F

MN
)2
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9-4=5=4+1 Goldstone bosons appear

One SU(2) doublet Higgs + One singlet

h s

One Higgs doublet remains massless

2
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In the supersymmetric limit, the VEVs of N and N̄ break the U(3) down to U(2). Gauge and

Yukawa interactions break U(3) symmetry explicitly and the corresponding Goldstone bosons get

their masses from loops.

At one loop level, the relevant part of the e↵ective potential is U(3) invariant and one linear

combination of the Higgs doublets (H + H̄†)/
p
2 remains exactly massless.

µ = XXX,

Bµ = XXX,

and Bµ = µ2 holds at one loop if �
1

= �
2

. There are 9 � 4 = 5 broken generators corresponding

to one Higgs doublet and one singlet. In the supersymmetric limit, these are doubled according to

supersymmetry. At one loop the symmetry is broken and only 5 pGBs are left, one Higgs doublet

and one Higgs singlet.

The correction to the quadratic term comes from the messenger scale down to the

3

superparticles What if the messenger scale and the superparticle mass scale are the

same?

If the global symmetry is well preserved in the symmetry breaking sector and is only broken

by the Yukawa couplings and gauge couplings at the scale f ⌘ hNi (= MNp
�
2

), the potential for the

pGB Higgs vanishes at the scale f .

V (h) = 0,

at the scale f .

Below the scale f , there would be a correction to the Higgs potential.

V (h) = �cm2

soft

log(
m

susy

m
soft

)|h|2 + ��|h|4,

wherem
susy

is the scale from which the supersymmetry breaking parameters appear, i.e., messenger

scale in gauge mediation and m
soft

is the soft supersymmetry breaking scale. �� is proportional to

log(msoft

m
top

) in which m
soft

is the stop mass. There is a finite threshold correction to �� when stop is

integrated out.

III. LOOP CORRECTION TO THE HIGGS POTENTIAL QUARTIC

We are interested in the quartic which was zero at the scale f and is driven to the positive

value by the large top Yukawa coupling and new Yukawa coupling of vector-like fermions. The

correction to the quartic will be written as the correction to the physical Higgs mass as the vacuum

expectation value is fixed by the measurement of W and Z boson mass. Later we can change

the presentation as a correction to the quartic if it is more transparent.

Global SU(3) is explicitly broken
by top Yukawa and gauge couplings.

tan beta =1

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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III. LOOP CORRECTION TO THE HIGGS POTENTIAL QUARTIC

We are interested in the quartic which was zero at the scale f and is driven to the positive

value by the large top Yukawa coupling and new Yukawa coupling of vector-like fermions. The

correction to the quartic will be written as the correction to the physical Higgs mass as the vacuum

expectation value is fixed by the measurement of W and Z boson mass. Later we can change

the presentation as a correction to the quartic if it is more transparent.

RG running from f to Mz determines the physical Higgs mass

Now the electroweak scale is not tied to mu
and mu can be very large, e.g., 2 ~ 10 TeV.

4

m2

h = ct [At +Bt] + ct0 [At0 +Bt0 ] ,

At = log
m2

˜t

m2

t

,

Bt =
X2

t

m2

˜t

(1� 1

12

X2

t0

m2

˜t

),

At0 = log
m2

˜t0

m2

t0
,

Bt0 =
X2

t0

m2

˜t0

(1� 1

12

X2

t0

m2

˜t0

),

where Xt = At � µ/ tan� and Xt0 = At0 � µ/ tan�.

IV. LOOP CORRECTION TO THE HIGGS POTENTIAL QUADRATIC

m2

H = �3(yt/
p
2)2

8⇡2

(m2

˜Q
3

+m2

˜tc
+A2

t +m2

H) log
M

m
soft

+
3

8⇡2

(g2
2

M
2

(µ+M
2

) +
g2
1

5
M

1

(µ+M
1

)) log
M

m
soft

�3(yt0/
p
2)2

8⇡2

(m2

˜Q0
3

+m2

˜t0c
+A2

t0 +m2

H) log
M

m
soft

,

where M is the messenger scale below which the supersymmetry breaking parameters appear and

m
soft

is the supersymmetry breaking mass scale of top squark and other sfermions. There are also

corrections from gauging loop diagrams which is not written in this expression. m2

H should end

up with �m2

h up to factor 2. The expression can be rewritten as follows.

m2

H = � 3

8⇡2

F log
M

m
soft

,

F = (yt/
p
2)2(m2

˜Q
3

+m2

˜tc
+A2

t +m2

H) + (yt0/
p
2)2(m2

˜Q0
3

+m2

˜t0c
+A2

t0 +m2

H)

�g2
2

M
2

(µ+M
2

)� g2
1

5
M

1

(µ+M
1

).

We can get a help from stop mixing
without spoiling the quadratic term.

Xt=mu can be very large

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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SU(3) spontaneously broken2~5 TeVµ ⇠ f

MN ⇠
p
F 20~50 TeV Messenger scale of SUSY breaking

m
soft 1 TeV Stop, Stop’

mh ⇠ MZ 100 GeV EW scale, Z/Higgs

3

superparticles What if the messenger scale and the superparticle mass scale are the

same?

If the global symmetry is well preserved in the symmetry breaking sector and is only broken

by the Yukawa couplings and gauge couplings at the scale f ⌘ hNi (= MNp
�
2

), the potential for the

pGB Higgs vanishes at the scale f .

V (h) = 0,

at the scale f .

Below the scale f , there would be a correction to the Higgs potential.

V (h) = �cm2

soft

log(
m

susy

m
soft

)|h|2 + ��|h|4,

wherem
susy

is the scale from which the supersymmetry breaking parameters appear, i.e., messenger

scale in gauge mediation and m
soft

is the soft supersymmetry breaking scale. �� is proportional to

log(msoft

m
top

) in which m
soft

is the stop mass. There is a finite threshold correction to �� when stop is

integrated out.

III. LOOP CORRECTION TO THE HIGGS POTENTIAL QUARTIC

We are interested in the quartic which was zero at the scale f and is driven to the positive

value by the large top Yukawa coupling and new Yukawa coupling of vector-like fermions. The

correction to the quartic will be written as the correction to the physical Higgs mass as the vacuum

expectation value is fixed by the measurement of W and Z boson mass. Later we can change

the presentation as a correction to the quartic if it is more transparent.

contribution
to quadratic term

contribution
to quartic term

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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6

VI. HOW TO OBTAIN THE GLOBAL SYMMETRY AT LOW ENERGY?

Chacko et al used the fixed point argument to justify the global symmetry. The possibility

should be investigated.

At the same time the fate of the singlet should be discussed.

VII. HIGGS MASS IN SUPERSYMMETRY WITH VECTOR-LIKE FERMIONS

TH Jung

VIII. HIGGS PHENOMENOLOGY WITH VECTOR-LIKE FERMIONS

KJ Bae

In this section, we consider the modification of Higgs couplings to various particles, such as

photon pair, gluon pair, vector boson pair and fermion pair. We consider here the e↵ects of

vectorlike superfields, so we consider some representative models for purpose. In order not to

spoil successive gauge coupling unification of SUSY models, we can introduce vectorlike particles

according to GUT representation (here we consider simple SU(5) model). The two well-known

examples are already discussed in Ref. [5]. The one is to introduce 5+ 5̄, which can be called the

“LND model”. Its superpotential is given by

W = MLLL̄+MNNN̄ +MDDD̄ + kNHuLN̄ � hNHdL̄N, (1)

where the charge assignment of each field under SU(3)c ⇥ SU(2)L ⇥ U(1)Y is given by

L = (1,2,�1/2), L̄ = (1,2, 1/2), (2)

N = (1,1, 0), N̄ = (1,1, 0), (3)

D = (3,1,�1/3), D̄ = (3̄,1, 1/3). (4)

The other one is to introduce 10 + 1̄0, which can be called “QUE model”. Its superpotential is

given by

W = MQQQ̄+MUUŪ +MEEĒ + kUHuQŪ � hUHdQ̄U, (5)

6

VI. HOW TO OBTAIN THE GLOBAL SYMMETRY AT LOW ENERGY?

Chacko et al used the fixed point argument to justify the global symmetry. The possibility

should be investigated.

At the same time the fate of the singlet should be discussed.

VII. HIGGS MASS IN SUPERSYMMETRY WITH VECTOR-LIKE FERMIONS

TH Jung

VIII. HIGGS PHENOMENOLOGY WITH VECTOR-LIKE FERMIONS

KJ Bae

In this section, we consider the modification of Higgs couplings to various particles, such as

photon pair, gluon pair, vector boson pair and fermion pair. We consider here the e↵ects of

vectorlike superfields, so we consider some representative models for purpose. In order not to

spoil successive gauge coupling unification of SUSY models, we can introduce vectorlike particles

according to GUT representation (here we consider simple SU(5) model). The two well-known

examples are already discussed in Ref. [5]. The one is to introduce 5+ 5̄, which can be called the

“LND model”. Its superpotential is given by

W = MLLL̄+MNNN̄ +MDDD̄ + kNHuLN̄ � hNHdL̄N, (1)

where the charge assignment of each field under SU(3)c ⇥ SU(2)L ⇥ U(1)Y is given by

L = (1,2,�1/2), L̄ = (1,2, 1/2), (2)

N = (1,1, 0), N̄ = (1,1, 0), (3)

D = (3,1,�1/3), D̄ = (3̄,1, 1/3). (4)

The other one is to introduce 10 + 1̄0, which can be called “QUE model”. Its superpotential is

given by

W = MQQQ̄+MUUŪ +MEEĒ + kUHuQŪ � hUHdQ̄U, (5)
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7

where the charge assignment is given by

Q = (3,2, 1/6), Q̄ = (3̄,2,�1/6), (6)

U = (3,1, 2/3), Ū = (3̄,1,�2/3), (7)

E = (1,1,�1), Ē = (1,1, 1). (8)

In LND model, we do not have any charged particle that can a↵ect the Higgs-photon-phton

coupling. On the other hand, we have two types of coupling, kU and hU , which can contribute

Higgs-photon-photon coupling. Hence, from now on we would consider the QUE model for our

scenario. Meanwhile, complication exists in this model since Q and U (and their conjugates) are

all colored particle so that they also a↵ect Higgs-gluon-gluon coupling. We need much more careful

study to investigate current LHC observations of SM-like scalar particle.

Before proceeding the detailed analyses, we consider a toy model that can a↵ect only Higgs-

photon-photon coupling. We call “LE model”, whose superpotential is given by

W = MLLL̄+MEEĒ + kEHuL̄E � hEHdLĒ. (9)

According to Ref. [? ], Higgs-photon-photon coupling is expressed by

Lh�� =
↵Fµ⌫F

µ⌫

16⇡

hp
2v

X

i

bi
@

@ log v
log

�
detM†

F,iMF,i

�
+
X

i

bi
@

@ log v
log

�
detM2

B,i

��
(10)

where MF,i and MB,i are the mass matrices of fermions and bosons. bi’s are the beta function

coe�cients which are given by

b
1/2 =

4

3
Nc,fQ

2

f for a Dirac fermion, (11)

b
1

= �7 for the W boson, (12)

b
0

=
1

3
Nc,SQ

2

S for a charged scalar, (13)

where Nc,f(s) is internal degree of freedom such as color and Qf(s) is electromagnetic charge. Since

we consider the model containing two Higgs doublets, Eq. (10) is changed to

Lh�� =
↵Fµ⌫F

µ⌫

16⇡


hup
2vu

@

@ log vu
+

hdp
2vd

@

@ log vu

�

X

i

bi log
�
detM†

F,iMF,i

�
+
X

i

bi log
�
detM2

B,i

��
.

(14)

LND model

QUE model

S. Martin (2009)

K. S. Babu et al (2004/2008)

P. Graham et al (2009)

Vector-like matters in supersymmetry 
T. Moroi Y. Okada (1992)
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IR quasi-fixed point of  Yukawa couplings

7

FIG. 1: Gauge coupling unification in the MSSM,
LND and QUE models. The running is performed
with 3-loop beta functions, with all particles be-
yond the Standard Model taken to decouple at Q =
600 GeV, and mt = 173.1 GeV with tanβ = 10.
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FIG. 2: Renormalization group trajectories near the fixed point for kN in the LND model (left panel) and kU

in the QUE model (right panel), showing the infrared-stable quasi-fixed point behaviors. Here mt = 173.1
GeV and tanβ = 10 are assumed.

a small amount that can be reasonably ascribed to threshold corrections of whatever new physics
occurs at Munif .

The largest corrections to mh0 are obtained when the new Yukawa couplings of the type kN ,
kU , or kD are as large as possible in the LND, QUE, and QDEE models respectively. These new

Yukawa couplings have infrared quasi-fixed point behavior, which limits how large they can be at
the TeV scale while staying consistent with perturbative unification. This is illustrated in Figure
2, which shows the renormalization group running‡ of the kN coupling in the LND model and kU

in the QUE model. The running of kD in the QDEE model is very similar to the latter (and so

‡ In this paper, I use 3-loop beta functions for the gauge couplings and gaugino masses, and 2-loop beta functions
for the Yukawa couplings, soft scalar trilinear couplings, and soft scalar squared masses. These can be obtained
quite straightforwardly from the general results listed in [25–27], and so are not given explicitly here.

Yukawa coupling has
a quasi-fixed point behavior

at IR

y* ~ 1 to 1.2
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[The first and second family anomalous dimensions in the approximation of eq. (6.1.2) follow by setting
yt, yb, and yτ to 0 in the above.] Putting these into eqs. (6.5.1), (6.5.2) gives the running of the
superpotential parameters with renormalization scale:

βyt ≡
d

dt
yt =

yt
16π2

[
6y∗t yt + y∗byb −

16

3
g23 − 3g22 −

13

15
g21
]
, (6.5.22)

βyb ≡
d

dt
yb =

yb
16π2

[
6y∗byb + y∗t yt + y∗τyτ −

16

3
g23 − 3g22 −

7

15
g21
]
, (6.5.23)

βyτ ≡ d

dt
yτ =

yτ
16π2

[
4y∗τyτ + 3y∗byb − 3g22 −

9

5
g21
]
, (6.5.24)

βµ ≡ d

dt
µ =

µ

16π2

[
3y∗t yt + 3y∗byb + y∗τyτ − 3g22 −

3

5
g21
]
. (6.5.25)

The one-loop RG equations for the gauge couplings g1, g2, and g3 were already listed in eq. (6.4.7).
The presence of soft supersymmetry breaking does not affect eqs. (6.4.7) and (6.5.22)-(6.5.25). As a
result of the supersymmetric non-renormalization theorem, the β-functions for each supersymmetric
parameter are proportional to the parameter itself. One consequence of this is that once we have a
theory that can explain why µ is of order 102 or 103 GeV at tree-level, we do not have to worry about
µ being made very large by radiative corrections involving the masses of some very heavy unknown
particles; all such RG corrections to µ will be directly proportional to µ itself and to some combinations
of dimensionless couplings.

The one-loop RG equations for the three gaugino mass parameters in the MSSM are determined
by the same quantities bMSSM

a that appear in the gauge coupling RG eqs. (6.4.7):

βMa ≡ d

dt
Ma =

1

8π2
bag

2
aMa (ba = 33/5, 1, −3) (6.5.26)

for a = 1, 2, 3. It follows that the three ratios Ma/g2a are each constant (RG scale independent) up to
small two-loop corrections. Since the gauge couplings are observed to unify at Q = MU = 2 × 1016

GeV, it is a popular assumption that the gaugino masses also unify§ near that scale, with a value called
m1/2. If so, then it follows that

M1

g21
=

M2

g22
=

M3

g23
=

m1/2

g2U
(6.5.27)

at any RG scale, up to small (and known) two-loop effects and possibly much larger (and unknown)
threshold effects near MU . Here gU is the unified gauge coupling at Q = MU . The hypothesis of
eq. (6.5.27) is particularly powerful because the gaugino mass parameters feed strongly into the RG
equations for all of the other soft terms, as we are about to see.

Next we consider the 1-loop RG equations for the holomorphic soft parameters au, ad, ae. In models
obeying eq. (6.4.5), these matrices start off proportional to the corresponding Yukawa couplings at the
input scale. The RG evolution respects this property. With the approximation of eq. (6.1.2), one can
therefore also write, at any RG scale,

au ≈




0 0 0
0 0 0
0 0 at



 , ad ≈




0 0 0
0 0 0
0 0 ab



 , ae ≈




0 0 0
0 0 0
0 0 aτ



 , (6.5.28)

§In GUT models, it is automatic that the gauge couplings and gaugino masses are unified at all scales Q ≥ MU , because
in the unified theory the gauginos all live in the same representation of the unified gauge group. In many superstring
models, this can also be a good approximation.

64

IR quasi-fixed point of  Yukawa couplings

For order one Yukawa (top Yukawa),

A B

(i) Yt is driven to be small if A > B

(ii) Yt is driven to be small if A < B

(iii) Yt runs slowly if A ~ B

*It is not the exact fixed point as strong coupling runs
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125 GeV Higgs from supersymmetry with vector-like matters

m2
h ' 2M2

Z

m2
h ' 3M2

Z

125 GeV Higgs :

160 GeV Higgs : Babu et al (2008)

Discovered in 2012

m2
h ' M2

Z + 2M2
Z

tree level one loop level

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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m2
h ' M2

Z +M2
Z +M2

Z

160 GeV Higgs mass

tree level

top/stop one loop

vector-like matter one loop

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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m2
h ' M2

Z +M2
Z +M2

Z

125 GeV Higgs mass

tree level

top/stop one loop

vector-like matter one loop

It is possible to obtain 125 GeV Higgs using one loop correction.

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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RG running from f to Mz : quadratic terms

5

As we deal with At = 0 and At0 = 0 with mH = 0 at f , the expression can be simplified.

m2

H = � 3

8⇡2

F log
M

m
soft

,

F = (yt/
p
2)2(m2

˜Q
3

+m2

˜tc
) + (yt0/

p
2)2(m2

˜Q0
3

+m2

˜t0c
)

�g2
2

M
2

(µ+M
2

)� g2
1

5
M

1

(µ+M
1

).

Note that yt/
p
2 ⇠ yt0/

p
2 ⇠ 1, g2

2

⇠ 0.4.

V. LARGE µ

In the MSSM, the light CP even Higgs gets a correction to the mass.

m2

h ' M2

Z + c [A+B] ,

A = log
m2

˜t

m2

t

,

B =
X2

t

m2

˜t

(1� 1

12

X2

t

m2

˜t

),

where Xt = At � µ/ tan�.

Now I know that roughly A = 6 or A = 3, B = 3 can provide 125 GeV mass. It means that

roughly A+B = 6 is needed in the MSSM. Indeed B = 3 is the maximum value appearing in the

maximal mixing.

In order to make the discussion simple, I’ll consider (125 GeV)2 = 2M2

Z which roughly works.

Given the information, I’m asking the question of what might happen for tan� = 1. In his case

the tree level mass is zero as it is in the vanishing D-flat direction. The decoupling theorem of the

Higgs sector tells me that if the only light state is the CP even Higgs, the contribution should be

independently of tan�. Therefore I would obtain the same one loop correction to m2

h.

For the same stop configuration now I obtain m2

h = M2

Z .

If there is a vector-like states 10 and 1̄0 and if there is an order one Yukawa coupling between

Q0 and uc0 or Q̄0 and ūc0, it would be possible to get a similar correction of order M2

Z from the

one-loop running.

RG running from f to Mz 
:quartic terms

4

m2

h = ct [At +Bt] + ct0 [At0 +Bt0 ] ,

At = log
m2

˜t

m2

t

,

Bt =
X2

t

m2

˜t

(1� 1

12

X2

t0

m2

˜t

),

At0 = log
m2

˜t0

m2

t0
,

Bt0 =
X2

t0

m2

˜t0

(1� 1

12

X2

t0

m2

˜t0

),

where Xt = At � µ/ tan� and Xt0 = At0 � µ/ tan�.

IV. LOOP CORRECTION TO THE HIGGS POTENTIAL QUADRATIC

m2

H = �3(yt/
p
2)2

8⇡2

(m2

˜Q
3

+m2

˜tc
+A2

t +m2

H) log
M

m
soft

+
3

8⇡2

(g2
2

M
2

(µ+M
2

) +
g2
1

5
M

1

(µ+M
1

)) log
M

m
soft

�3(yt0/
p
2)2

8⇡2

(m2

˜Q0
3

+m2

˜t0c
+A2

t0 +m2

H) log
M

m
soft

,

where M is the messenger scale below which the supersymmetry breaking parameters appear and

m
soft

is the supersymmetry breaking mass scale of top squark and other sfermions. There are also

corrections from gauging loop diagrams which is not written in this expression. m2

H should end

up with �m2

h up to factor 2. The expression can be rewritten as follows.

m2

H = � 3

8⇡2

F log
M

m
soft

,

F = (yt/
p
2)2(m2

˜Q
3

+m2

˜tc
+A2

t +m2

H) + (yt0/
p
2)2(m2

˜Q0
3

+m2

˜t0c
+A2

t0 +m2

H)

�g2
2

M
2

(µ+M
2

)� g2
1

5
M

1

(µ+M
1

).

m2
h = �2m2

H

small log is better

arXiv:1208.3748, K Bae, TH Jung and HD Kim
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f(x)=1/3 is the maximum
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h
k

500

1000

1500

2000
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3000

3500
mh2

Even if one Yukawa is turned off,
we get the same size of correction to the Higgs mass.
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d�

dt
=

3

8⇡2
(�y4t � 2�y2t + 4�2 + · · · )

m2
phys = 2�v2 v=246 GeV
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The Standard Model

SUSY (no mixing)

maximal mixing
of stop with large mu

vector-like
fermions

SUSY + vector-like fermions

1 TeV 5 ~ 10 TeV ~ 10^10 GeV

(90 GeV)

(125 GeV)

m2
h ' M2

Z

m2
h ' 2M2

Z

Friday, December 14, 12



The Standard Model

SUSY (no mixing)
vector-like
fermions

SUSY + vector-like fermions

1 TeV 5 ~ 10 TeV ~ 10^10 GeV

(90 GeV)

(125 GeV)

m2
h ' M2

Z

m2
h ' 2M2

Z

split SUSY

d�

dt
=

3

8⇡2
(�y4t � 2�y2t + 4�2 + · · · )
g4

100 TeV

Higgs mass is raised by vector-like fermions.
(Instability of vector-like fermions is a virtue.)
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Higgs - photon - photon coupling : LNE model

7

where Nc,f(s) is internal degree of freedom such as color and Qf(s) is electromagnetic charge. Since

we consider the model containing two Higgs doublets, Eq. (10) is changed to

Lhγγ =
αFµνFµν

16π

[
hu√
2vu

∂

∂ log vu
+

hd√
2vd

∂

∂ log vu

]

[∑

i

bi log
(
detM†

F,iMF,i
)
+

∑

i

bi log
(
detM2

B,i

)]
.

(14)

For LE model, there are charged fermion mass mixing between L, Ē and L̄, E. In order to easily

see, we redefine the above fields as follows.

L ≡



NL

EL



 , Ē ≡ Ec
R, (15)

L̄ ≡



Ec
L

N c
L



 , E ≡ ER. (16)

Note that superscript c does not mean charge conjugation. From the superpotential (9), we can

easily read off the fermion mass matrix,

(
Ec

L Ec
R

)
Mf



EL

ER



 =
(
Ec

L Ec
R

)


 ML kEvu

hEvd ME







EL

ER.



 (17)

We obtain

M†
fMf =



 M2
L + h2Ev

2
d MLkEvu +MEhEvd

MLkEvu +MEhEvd M2
E + k2Ev

2
u



 , (18)

where we assume the masses and Yukawa couplings are real for simplicity. If the mass matrix is

given by

M†
fMf =



m2
11 m2

12

m∗2
12 m2

22



 , (19)

we find

∂

∂v
log

(
detM†

fMf

)
=

1

m2
11m

2
22 − |m2

12|2

(
m2

11
∂

∂v
m2

22 +m2
22

∂

∂v
m2

11 −
∂

∂v
|m2

12|2
)
. (20)
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see, we redefine the above fields as follows.

L ≡



NL

EL
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charged lepton mass term

8

From this, we obtain

∂

∂vu
log

(
detM†

fMf

)
=

2

detM†
fMf

{
(M2

L + h2Ev
2
d)k

2
Evu − (MLkEvu +MEhEvd)MLkE

}
, (21)

∂

∂vd
log

(
detM†

fMf

)
=

2

detM†
fMf

{
(M2

E + k2Ev
2
u)h

2
Evd − (MLkEvu +MEhEvd)MEhE

}
. (22)

If MLME > kEhEv2d(u), the first (second) quantity become negative so that such contribution

contructively interfere dominant W boson loop.

Scalar component of the above superfields also contribute the Higgs-phonton-photon coupling.

Lagrangian of soft SUSY breaking terms corresponding to Eq. (9) is given by

−Lsoft =m2
L|L̃|2 +m2

L̄|
˜̄L|2 +m2

E |Ẽ|2 +m2
Ē |

˜̄E|2

+ bLL̃
˜̄L+ bEẼ

˜̄E + akHu
˜̄LẼ − ahHdL̃

˜̄E + h.c..
(23)

The scalar mass matrix is given by

M2
S = M2

f +





m2
L̄
+∆Ec

L
0 b∗L a∗kvu − kEµvd

0 m2
Ē
+∆Ec

R
a∗hvd − hEµvu b∗E

bL ahvd − hEµ∗vu m2
L +∆EL 0

akvu − kEµ∗vd bE 0 m2
E +∆ER




(24)

where

M2
f =



MfM†
f 0

0 M†
fMf



 (25)

and ∆i is the D-term contribution of i-th particle’s mass squared. In order to visualize in easier

way, we change the basis of the scalar mass matrix as the following.

V †M2
SV =



A C

C† B



 (26)

Constructive interference with W if

N̄ = N c
R

N = NR

Higgs mass

1206.1082 Carena Low Wagner
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Higgs to di-photon rate is enhanced

-
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1.6 (1.3) for 1 (1.4) TeV

mu : 2 TeV,   stop, scalar : 1TeV,   k=1

N=1 N=2

1.3 (1.2) for 1 (1.4) TeV

N=1

N=2
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FIG. 3. Black dashed lines are gauge couplings. And green regid line is top yukawa and the red
line is kN and blue one is hN . Dotted lines are primed yukawa. The yukawa couplings are set to
be 2.5 at MZ ⇥ 1014
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Oblique corrections from vector-like fermions
Maekawa (1996)
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Summary

Relatively light Higgs has been discovered on July 4.

Higgs mass is at around the weak scale.m2
h = 2M2

Z

Gauge mediation is not compatible with H125 and TeV stop.

Neutrino assisted gauge mediation works. 
(and also xxx assisted gauge mediation)

Diphoton rate can be enhanced by vector-like fermions.

Higgs as a pGB can survive with the help of these fermions.

70

Mu problem should be the start of model building in SUSY.

Large mu is compatible with pGB Higgs. (tan beta close to 1)

Higgs mass is raised by vector-like fermions.
(Instability of vector-like fermions is a virtue.)
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FIG. 4: Contours of constant Higgs mass mh (GeV) (blue/black) and the gluon fusion rate Rg

(green/gray) in mt̃ – Xt/mt̃ plane. The plot on the right zooms in on the region of small mt̃ and

large mixing Xt/mt̃. All other SUSY masses are fixed to 400 GeV, tan β = 10 and µ = 200 GeV.

in the literature. If there is no mixing in the stop sector, the stop mass mt̃ needs to be close

to 1 TeV in order to have a Higgs mass above the LEP bound of 114 GeV. The Higgs mass

starts increasing when one turns on the mixing and eventually reaches a maximum value for

|Xt/mt̃| ∼ 2. In the region of large mixing light stops, mt̃ " 300 GeV, are still allowed by

mh ≥ 114 GeV.

When we consider both kinds of contours together, there are several observations to be

made. First consider the region of small mixing. In this region contours of constant mh and

Rg run somewhat parallel to each other vertically, implying a very loose constraint on mt̃,

the overall stop mass scale, unless the gluon production rate can be measured precisely in

experiments. Furthermore, the region where Rg ! 1 corresponds to the region where EWSB

is more fine-tuned. Once we move into the region where Rg " 1, contours of constant Rg

run at large angles with contours of constant mh, which means it is possible to determine

both mt̃ and Xt/mt̃ fairly well even if there is a large uncertainty in Rg. This is because in

this region Rg is quite sensitive to mt̃ and (especially) Xt/mt̃, and decreases rapidly with

increasing mixing and decreasing stop masses. Therefore measurements of mh and Rg will

allow for a fairly accurate determination of mt̃ and Xt/mt̃ in the region of large mixing and

light stops. All these measurements involve properties of the Higgs boson and can be done

without prior knowledge of other masses and mixing angles in the MSSM spectrum. As

12

Dermisek and Low (2007)

�(gg ! h)

�(gg ! h)SM

Higgs mass (GeV)

Djouadi (1998)

Low and Rattazzi (2009)
Higgs production (gluon fusion) is suppressed 

in all theories dealing with the hierarchy problems.
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Recall predictions before the discovery of 125 GeV Higgs

NMSSM : Modified Higgs decay (SM decay is suppressed)

MSSM with maximal stop mixing : gluon fusion suppressed

Little Higgs : top friends suppress gluon fusion

Composite Higgs : Similar suppression of the standard channel

And many models with sizable invisible decay width

72
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Recall predictions before the discovery of 125 GeV Higgs

NMSSM : Modified Higgs decay (SM decay is suppressed)

MSSM with maximal stop mixing : gluon fusion suppressed

Little Higgs : top friends suppress gluon fusion

Composite Higgs : Similar suppression of the standard channel

After the discovery

SM : consistent

New leptons can explain enhanced diphoton rate

And many models with sizable invisible decay width
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