Multiple *b*-jets reveal natural SUSY and the 125 GeV Higgs

Erik Perkins

University of California, Santa Barbara

KITP Higgs Identification Miniprogram 21 December 2012

Overview

- Natural SUSY
- Simplified models
- lacksquare Related work on h o bar b
- Analysis
- Results
- Future directions

Motivation

- Want to know the full details of mass generation for fermions
- $lackbox{\hspace{0.1cm}$\bullet$} h
 ightarrow bar{b}$ seems obvious, but usually considered challenging
- Challenge can be overcome in SM using boosted higgs with jet substructure methods
- With well-motivated new physics, this search can be carried out in less-boosted region, without the need for jet substructure
- Consider simplified models in a natural SUSY context

■ In the MSSM at tree level,

$$-\frac{m_Z^2}{2} \sim |\mu|^2 + m_{H_u}^2$$

- To avoid fine-tuning, we need weak-scale SUSY
- lacktriangle Tolerances of fine-tuning place upper bound on μ

$$|\mu| \lesssim 200 \, GeV \left(\frac{m_h}{120 \, GeV}\right) \sqrt{0.2\Delta}$$

Natural SUSY II

$$\delta m_{H_u}^2 \mid_{\tilde{t}} = -\frac{3}{8\pi^2} y_t^2 \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \log \left(\frac{\Lambda}{TeV} \right)$$
$$\delta m_{H_u}^2 \mid_{\tilde{g}} = -\frac{2}{\pi} y_t^2 \left(\frac{\alpha_s}{\pi} \right) |M_3|^2 \log^2 \left(\frac{\Lambda}{TeV} \right)$$

- Really, we only need $m_{\tilde{t}}$, $m_{\tilde{g}}$, $m_{\tilde{h}}$ not too heavy, since these contribute most
- ⇒ first two sgenerations can decouple

Natural SUSY III

SUSY Cascades

■ Stop production guarantees lots of *b*-jets

Case 1 is textbook(e.g Baer & Tata, Weak-Scale Supersymmetry)

Simplified models

Benchmarks	I (GeV)	II (GeV)		
$m_{\widetilde{g}}$	1281	1264		
$m_{ ilde{t}_1}$	568	260		
$m_{\tilde{t}_2}$	682	586		
$m_{\tilde{b}_1}$	567	555		
$m_{\widetilde{\chi}_1^0}$	87	84		
$m_{ ilde{\chi}^0_2}^{ ilde{\chi}^0_2}$	325	415		
$m_{ ilde{\chi}_3^0}$	336	433		
$m_{\widetilde{\chi}_1^{\pm}}$	321	413		
m_h	125	125		
Benchmarks	I (%)	II (%)		
$\operatorname{Br}(\widetilde{t}_2 o \widetilde{t}_1 h)$	0	47		
$\mathrm{Br}(ilde{t}_1 ightarrow ilde{\chi}_1 ht)$	52	0		
${ m Br}(h o bar{b})$	61	61		

Hadronic reconstruction

- Finding $h \rightarrow b\bar{b}$ in VH, $t\bar{t}h$ possible in SM with jet substructure (0802.2470, 0910.5472)
- Multiple b tagging has been considered before for higgs searches in new physics (hep-ph/0603200, 0912.4731, 1006.1656, 1103.4138, 1108.6329, 1204.2317)
- New physics studies require $\geq 3b$ -jets in the final state
- Most also use jet substructure to reconstruct the hadronic higgs
- Is there another way?

Simulation framework

- \blacksquare SUSY-HIT \rightarrow MadGraph+Pythia
- no detector simulation, but smearing and detector-level cuts
- no pileup this will impact b-tagging and £_T measurement
- lacktriangledown parametrized b-tagging arepsilon o 60%

Backgrounds

- $t\bar{t}b\bar{b}$ is important always 4 b jets
- $t\bar{t}+$ jets is less important low $\not\!\!E_T$ in hadronic top decays
- $b\bar{b}b\bar{b}$ +jets is less important because of low H_T and low $\not\!\!E_T$
- SUSY backgrounds from events without Higgs are less important - fewer jets & b tags
- COMBINATORICS! This is the dominant background after event-level cuts

Production cross sections

• \tilde{t} cross sections are $\mathcal{O}(1\text{pb-}0.1\text{pb})$ at 14 TeV

■ LO $t\bar{t}b\bar{b}$ cross section normalized to 8.9 pb; include K factor of 2.3

$t\bar{t}b\bar{b}$ distribution

- multiple b-tagging requirement kills ttbb efficiently
- non-top b's come from gluon splitting, so softer, more collinear

• extra b's fail the jet p_T cut, or are reconstructed as a single b-jet

Event level kinematic distributions I

Event level kinematic distributions II

Event-level cuts

Case 1

- $n_j \ge 6$
- $n_b \ge 4$, $p_T > 30$ GeV for ≥ 1
- #_T > 150 GeV
- $H_T > 500 \text{ GeV}$

Case 2

- $n_j \ge 6$
- $n_b \ge 4$, $p_T > 30$ GeV for ≥ 1
- #_T > 120 GeV
- $H_T > 650 \text{ GeV}$

Event level cut flow

■ 40/fb of 14 TeV data

$\sqrt{s} = 14 \text{ TeV}$	<i>t</i> ₹+jets	t₹bБ	Case I	Case II
Events	5.2×10^{7}	8.2×10^{5}	26176	822275
Cut 1	3.5×10^7	474234	20600	406331
Cut 2	88700	12077	961	824
Cut 3	51 / 79	442 / 796	567	436
Cut 4	29 / 23	351 / 366	547	389

- Natural SUSY revealed (at $\lesssim 20\sigma$ for $\sim 40/{
 m fb}$)
- Or, relatively easy to kill this scenario

Busy events I

Want clean events...

Busy events II

... but get messy events

The combinatorial problem

- At least 6 pairs to choose if only 1 higgs, only 1 correct pair
- If we naively look at all pairs in the event, combinatorial background dominates (note: jet pairs are correlated here)

How to choose the pair?

Pair p_T distribution and ranking

- jet pair p_T can discriminate the correct pair
- \blacksquare Ranking pairs by p_T is most effective

 Still want another variable, relatively independent of kinematics Pull is designed to find dijets from color singlet decays

$$ec{t} = \sum_{i \in ext{jet}} rac{p_T^i |r_i|}{p_T^{ ext{jet}}} ec{r}_i$$

■ For color singlets, θ_t is less

Jet superstructure II

• Standard deviation of pull angles for each pair exhibit a slight p_T dependence

- Use all pull information available for each pair
- \blacksquare Construct a χ^2 variable as an effective pull angle

$$heta_{\mathsf{eff}} = \sqrt{rac{ heta_{t,1}^2}{\sigma_{ heta_t}(extsf{p}_{ au,1})} + rac{ heta_{t,2}^2}{\sigma_{ heta_t}(extsf{p}_{ au,2})}}$$

Jet superstructure III

 Effective pull angle distribution could be helpful

• As with p_T , rank jet pairs by θ_{eff}

Choosing the right pair

- Plot the pairs in the p_T -rank vs. θ_{eff} -rank plane.
- In the higgs mass window, a noticeable difference!

- Now we can cut!
- Take triangular region with p_T -rank + θ_{eff} -rank < 5

Measuring the significance

- Want to use multiple pairs per event (higgs pair may not be highest ranked)
- Pairs need to be uncorrelated
- Effective bin (mass window) is 40 GeV wide
- Choose multiple pairs per event if invariant masses differ by
 40 GeV
- Select pairs from rank triangle, starting with highest p_T pair
- Admit additional pair *i* if $|m_i m_j| > 40$ GeV for j > i

Invariant mass distributions

■ Higgs revealed

■ No assumption of m_h

Cut flow

$\sqrt{s} = 14 \text{ TeV}$	$t\bar{t}+$ jets	t₹bБ	Case I	Case II
Events	5.2×10^{7}	8.2×10^{5}	26176	822275
Cut 1	3.5×10^7	474234	20600	406331
Cut 2	88700	12077	961	824
Cut 3	51 / 79	442 / 796	567	436
Cut 4	29 / 23	351 / 366	547	389
$ heta_{\it eff}$ rank	20 / 11	5+157 / 4+157	99+215	65+135
p_T rank	20 / 12	4+166 / 4+159	91+219	86+108
$p_T - heta_{ extit{eff}}$ plane	13 / 13	5+104 / 3+104	78+147	65+62

Sensitivity comparison

Higgs revealed

Case 2

■ Best S/B is given by ranking plane method in both cases

Related scenarios

Important features:

- something like SM higgs $\leftrightarrow h \rightarrow b\bar{b}$ dominates
- lacksquare light top partner \leftrightarrow additional jets, b-jets
- long lived neutral particle $\leftrightarrow \not\!\! E_T$

Shared by:

- Randall-Sundrum with KK-parity
- little higgs with T-parity

Future directions

- Unfold events in detail to measure branching fractions
- Explicitly apply techniques to RS, LH models

Summary

- lacktriangle What is fermion mass generation mechanism? Need BR $(h o bar{b})$
- lacktriangle New physics cascades can help via b-jet multiplicity, $\not\!\!E_{\mathcal{T}}$
- Combinatorics can be overcome with kinematics and color flow
- lacktriangle (Re)discovery potential for 14 TeV LHC with < 1 year of data