How spin, charge and superconducting orders intertwine in the cuprates

Eduardo Fradkin
University of Illinois at Urbana-Champaign

Talk at the Kavli Institute for Theoretical Physics
Program on Higher temperature Superconductors
July 30, 2009

Collaborators

- Steve Kivelson, Erez Berg, Shoucheng Zhang (Stanford)
- Eun-Ah Kim (Cornell)
- Vadim Oganesyan (CUNY)
- John Tranquada (Brookhaven)

E. Berg, E. Fradkin, E.-A. Kim, S. Kivelson, V. Oganesyan, J. M. Tranquada, and S.-C. Zhang, Phys. Rev. Lett. **99**, 127003 (2007).

E. Berg, E. Fradkin and S. Kivelson, *The striped superconductor*, Phys. Rev. B **79**, 064515 (2009); arXiv:0810.1564.

E. Berg, E. Fradkin, S. Kivelson, and J. Tranquada, Striped Superconductors: How the cuprates intertwine spin, charge, and superconducting orders, to appear in New. J. Phys, arXiv:0901.4826 (2009).

E. Berg, E. Fradkin, and S. Kivelson, *Charge 4e superconductivity from pair density wave order in certain high temperature superconductors*, to appear in Nature Physics; arXiv:0904.1230 (2009).

Outlook

- LBCO is known to exhibit low energy stripe fluctuations in its superconducting state
- It has a very low T_c near x=1/8 where it shows static stripe order in the LTT crystal structure
- Experimental evidence for superconducting layer decoupling in LBCO at x=1/8
- Layer decoupling, long range charge and spin stripe order and superconductivity: a novel striped superconducting state, a Pair Density Wave, in which charge, spin, and superconducting orders are intertwined!

M. Hücker et al (2009)

ARPES and the 1/8 anomaly: Optimal Inhomogeneity in LBCO

T.Valla et al (BNL) (2005), He et al (Stanford)(2008)

Li et al (2007): Dynamical Layer Decoupling in LBCO

- ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8
- Static charge stripe order for T<T_{charge}=54 K
- Static Stripe Spin order T < T_{spin}= 42K
- ρ_{ab} drops rapidly to zero from T_{spin} to T_{KT}
- ρ_{ab} shows KT behavior for $T_{spin} > T > T_{KT}$
- $\rho_c \uparrow as T \downarrow for T > T^{**} \approx 35K$
- $\rho_c \rightarrow 0$ as T \rightarrow T_{3D}= 10K
- $\rho_c / \rho_{ab} \rightarrow \infty$ for $T_{KT} > T > T_{3D}$
- Meissner state only below $T_c = 4K$

Transport Below The Charge Order Transition

Li et al, 2007

Anisotropic Transport

Li et al, 2007

The 2D Resistive State and 2D Superconductivity

Li et al, 2007

A hierarchy of ordering scales in La_{2-x} Ba_xCuO_4 at x=1/8

Li, Hücker, Gu, Tsvelik and Tranquada, PRL 99, 067001 (2007)

Connection with "Fluctuating" Stripe Phases in LSCO

- SC phase of LSCO has "fluctuating" stripes: inelastic neutron scattering detects low energy incommensurate spin fluctuations (Tranquada and coworkers, 1998)
- Upon doping with low amounts of Zn (< I %) the stripe state becomes static and sharp
- In a magnetic field ~ 8T LSCO has static spin stripe order (B. Lake and coworkers, 2002)
- In the same range of magnetic fields, Josephson resonance experiments (Basov et al, 2008) also detect dynamical layer decoupling in LSCO
- LNSCO also displays similar temperaturedependent anisotropic transport (Ding et al, 2008)

How Do We Understand This Remarkable Effects?

- Broad temperature range, T_{3D} < T < T_{2D} with
 2D superconductivity but not in 3D, as if there is not interlayer Josephson coupling
- In this regime there is both striped charge and spin order
- This can only happen if there is a special symmetry of the superconductor in the striped state that leads to an almost complete cancellation of the c-axis Josephson coupling.

A Striped Textured Superconducting Phase

- The stripe state in the LTT crystal structure has two planes in the unit cell.
- Stripes in the 2nd neighbor planes are shifted by half a period to minimize the Coulomb interaction: 4 planes per unit cell
- The AFM spin order suffers a π phase shift accross the charge stripe which has period 4
- We propose that the superconducting order is also striped and also suffers a π phase shift.
- The superconductivity resides in the spin gap regions and there is a π phase shift in the SC order across the AFM regions

Period 4 Striped Superconducting State

- This state has intertwined striped charge, spin and superconducting orders.
- A state of this type was found in variational Monte Carlo (Ogata et al 2004) and MFT (Poilblanc et al 2007)

How does this state solve the puzzle?

- If this order is perfect, the Josephson coupling between neighboring planes cancels exactly due to the symmetry of the periodic array of π textures
- The Josephson couplings J₁ and J₂ between planes two and three layers apart also cancel by symmetry.
- The first non-vanishing coupling J_3 occurs at four spacings. It is quite small and it is responsible for the non-zero but very low T_c
- Defects and/or discommensurations gives rise to small Josephson coupling J_0 neighboring planes

Are there other interactions?

- It is possible to have an inter-plane biquadratic coupling involving the product SC of the order parameters between neighboring planes Δ_1 Δ_2 and the product of spin stripe order parameters also on neighboring planes \mathbf{M}_1 . \mathbf{M}_2
- However in the LTT structure M_1 , $M_2=0$ and there is no such coupling
- In a large enough perpendicular magnetic field it is possible (spin flop transition) to induce such a term and hence an effective Josephson coupling.
- Thus in this state there should be a strong suppression of the 3D SC T_c but not of the 2D SC T_c

Away from x=1/8

- Away from x=1/8 there is no perfect commensuration
- Discommensurations are defects that induce a finite Josephson coupling between neighboring planes $J_1 \sim |x-1/8|^2$, leading to an increase of the 3D SC T_c away from 1/8
- Similar effects arise from disorder which also lead to a rise in the 3D SCT_c

Landau-Ginzburg Theory of the striped SC: Order Parameters

- Striped SC: $\Delta(\mathbf{r}) = \Delta_{\mathbf{Q}}(\mathbf{r})$ e^{i **Q.r**} + $\Delta_{\mathbf{Q}}(\mathbf{r})$ e^{-i **Q.r**}, complex charge 2e singlet pair condensate with wave vector, (i.e. an FFLO type state at zero magnetic field)
- Nematic: detects breaking of rotational symmetry:
 N, a real neutral pseudo-scalar order parameter
- Charge stripe: $\rho_{\mathbf{K}}$, unidirectional charge stripe with wave vector \mathbf{K}
- Spin stripe order parameter: S_Q, a neutral complex spin vector order parameter, K=2Q

Rotations by $\pi/2$

- The nematic order parameter changes sign: $N \rightarrow -N$
- The CDW ordering wave vector rotates: $\rho_{\mathbf{K}} \rightarrow \rho_{\mathbf{K'}}$
- The SDW ordering wave vector rotates: $S_Q \rightarrow S_{Q'}$
- The striped SC (s or d wave): $\Delta_{\pm \mathbf{Q}} \rightarrow \pm \Delta_{\pm \mathbf{Q}}$

Translations

- Under a translation by r
 - $N \rightarrow N$, $\rho_{\mathbf{K}} \rightarrow e^{i\mathbf{K}\cdot\mathbf{r}} \rho_{\mathbf{K}}$, $\mathbf{S}_{\mathbf{Q}} \rightarrow e^{i\mathbf{Q}\cdot\mathbf{r}} \mathbf{S}_{\mathbf{Q}}$

Ginzburg-Landau Free Energy Functional

$$\bullet F = F_2 + F_3 + F_4 + \dots$$

•The quadratic and quartic terms are standard

```
•F_3= \gamma_s \rho_{\mathbf{K}}^* \mathbf{S}_{\mathbf{Q}} \cdot \mathbf{S}_{\mathbf{Q}} + \pi/2 \text{ rotation} + \text{c.c.}
+\gamma_{\Delta} \rho_{\mathbf{K}}^* \Delta_{-\mathbf{Q}}^* \Delta_{\mathbf{Q}} + \pi/2 \text{ rotation} + \text{c.c.}
+g_{\Delta} N \left( \Delta_{\mathbf{Q}}^* \Delta_{\mathbf{Q}} + \Delta_{-\mathbf{Q}}^* \Delta_{-\mathbf{Q}} - \pi/2 \text{ rotation} \right) + \text{c.c.}
+g_s N \left( \mathbf{S}_{\mathbf{Q}}^* \cdot \mathbf{S}_{\mathbf{Q}} - \pi/2 \text{ rotation} \right)
+g_c N \left( \rho_{\mathbf{K}}^* \rho_{\mathbf{K}} - \pi/2 \text{ rotation} \right)
```

Some Consequences of the GL theory

- The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q
- Striped SC order implies charge stripe order with I/2 the period, and of nematic order
- Charge stripe order with wave vector 2Q and/or nematic order favors stripe superconducting order which may or may not occur depending on the coefficients in the quadratic part

Charge 4e SC order

- Coupling to a charge 4e SC order parameter Δ_4
- $F'_3=g_4 \left[\Delta_4^* \left(\Delta_{\mathbf{Q}} \Delta_{\mathbf{-Q}} + \text{rotation}\right) + \text{c.c.}\right]$
- Striped SC order (PDW) ⇒ uniform charge 4e SC order!
- Since the coupling is independent of θ , the charge 4e SC order is unaffected by the Bragg glass of the pinned CDW
- The half vortices of θ_+ are the fundamental hc/4e vortices of the charge 4e SC.

Coexisting uniform and striped SC order

- PDW order Δ_Q and uniform SC order Δ_0
- $F_{3,u}=\Upsilon_{\Delta}\Delta_0^* \rho_{\mathbf{Q}} \Delta_{-\mathbf{Q}}+\rho_{-\mathbf{Q}} \Delta_{\mathbf{Q}}+g_{\rho} \rho_{-2\mathbf{Q}} \rho_{\mathbf{Q}}^2$ +rotation +c.c.
- If $\Delta_0 \neq 0$ and $\Delta_{\mathbf{Q}} \neq 0 \Rightarrow$ there is a $\rho_{\mathbf{Q}}$ component of the charge order!
- The small uniform component Δ_0 removes the sensitivity to quenched disorder of the PDW state

Topological Excitations of the Striped SC

- $\rho(r) = |\rho_{\mathbf{K}}| \cos [K r + \Phi(r)]$
- $\Delta(r) = |\Delta_{\mathbf{Q}}| \exp[i \mathbf{Q} \mathbf{r} + i \theta_{\mathbf{Q}}(r)] + |\Delta_{\mathbf{Q}}| \exp[-i \mathbf{Q} \mathbf{r} + i \theta_{\mathbf{Q}}(r)]$
- $F_{3,\Upsilon}=2\Upsilon_{\Delta} |\rho_{\mathbf{K}} \Delta_{\mathbf{Q}} \Delta_{\mathbf{Q}}| \cos[2 \theta_{-}(r)-\Phi(r)]$
- $\bullet \quad \theta_{\pm Q}(r) = [\theta_{+}(r) \pm \theta_{-}(r)]/2$
- $\theta_{\pm Q}$ single valued mod $2\pi \Rightarrow \theta_{\pm}$ defined mod π
- ϕ and θ_{-} are locked \Rightarrow topological defects of ϕ and θ_{+}

Topological Excitations of the Striped SC

- SC vortex with $\Delta\theta_+ = 2\pi$ and $\Delta\phi = 0$
- Bound state of a 1/2 vortex and a dislocation $\Delta\theta_+ = \pi, \Delta\varphi = 2\pi$
- Double dislocation, $\Delta\theta_+ = 0$, $\Delta\phi = 4\pi$
- All three topological defects have logarithmic interactions

Half-vortex and a Dislocation

Double Dislocation

Thermal melting of the PDW state

- Three paths for thermal melting of the PDW state
- Three types of topological excitations: (1,0) (SC vortex), (0,1) (double dislocation), (±1/2, ±1/2) (1/2 vortex, single dislocation bound pair)
- Scaling dimensions: $\Delta_{p,q} = \pi (\rho_{sc} p^2 + \kappa_{cdw} q^2)/T = 2$ (for marginality)
- Phases: PDW, Charge 4e SC, CDW, and normal (Ising nematic)

Schematic Phase Diagram

Phase Sensitive Experiments

$$I=J_2 \sin(2\Delta\theta)$$

Non-collinear Order and Time Reversal Symmetry Breaking

- PDW order in the planes leads to frustration of the interplane Josephson coupling
- We will regard the SC phase as an XY "pseudo-spin" and we get non-collinear order
- Non-collinear order ⇔ circulating currents ⇒ Time Reversal symmetry breaking effects
- The resulting non-collinear order depends on the lattice, and it is different for the LTT structure of LBCO than for the orthorhombic (chain) structure of YBCO
- Twin boundaries (domain walls) and edges also lead to noncollinear order
- The period of the Josephson coupling between a uniform and a striped SC is $\boldsymbol{\pi}$

Non-collinear order and circulating currents for (a) the LTT structure (LBCO), (b) the orthorhombic (chain) structure of YBCO, and (c) an in-plane domain wall ("twin boundary").

Effects of Disorder

- The striped SC order is very sensitive to disorder: disorder ⇒ pinned charge density wave ⇒ coupling to the phase of the striped SC ⇒ SC "gauge" glass with zero resistance but no Meissner effect in 3D
- Disorder induces dislocation defects in the stripe order
- Due to the coupling between stripe order and SC,
 ±π flux vortices are induced at the dislocation core.
- Strict layer decoupling only allows for a magnetic coupling between randomly distributed ±π flux vortices
- Novel glassy physics and "fractional" flux

Conclusions

- LBCO at x=1/8 is a 2D HTSC with striped PDW dwave superconductivity and very low 3D critical temperature
- It has a high pairing scale and an optimal degree of inhomogeneity
- Charge order is part of the SC order and both orders are intertwined rather than competing
- We introduced a striped SC, a Pair Density Wave, whose symmetries can explain the experiments
- Natural charge 4e SC order and hc/4e flux quantization

Conclusions, cont'd

- If the striped SC competes with the uniform d-wave
 SC in general both orders are present
- This leads to a uniform nodal d-wave SC at low energies and a striped SC at high energies, "two gaps"?
- An external magnetic field suppresses the uniform d-wave SC and can allow a striped SC to develop
- How pervasive is PDW order in the cuprates?