# Pnictides at high magnetic fields 

## Alex Gurevich

National High Magnetic Field Laboratory,
Florida State University, Tallahassee FL

## Collaborators

- NHMFL
J. Jaroszynski, F. Hunte, C. Tarantini, L. Balicas, A. Yamamoto, J. Jiang, F. Kametani, A.A. Polyanskii, E. Hellstrom, D.C. Larbalestier , G.S. Boebinger (Tallahassee);
F. Balakirev, A. Migliori (LANL)
- U Wisconsin

Chang-Beom Eom, S. Lee.

- U. Genova
M. Putti, C. Tarantini
- ORNL
R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus
- Nat. Lab for Superconductivity, and Nat. Lab for Cond. Mat. Phys. Beijing, China Z.A. Ren, J. Yang, X.L. Dong, X.L. Shen, W. Lu, Z.X. Zhao
- Institute of Physics, Beijing, China
L. Fang, P. Cheng, Y. Jia, H.-H. Wen


## A diverse superconducting/magnetic family

- Oxypnictide base
- ReOMPn
- M = Fe, Co, Ni
- $\mathrm{Pn}=\mathrm{As}$ or P
- $\operatorname{Re}=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Pr}$
- Superconducting AsFe layers and charge reservoir ReO layers

- Superconductivity occurs on the FeAs layer with magnetic pairbreaking $\mathrm{Fe}^{2+}$ ions
- Main families: ReOMPn based (1111)
$\mathrm{Ba}_{1-\mathrm{K}} \mathrm{K}_{\mathrm{x}} \mathrm{Fe}_{2} \mathrm{As}_{2}$ based (122)
$\mathrm{FeSe}_{\mathrm{x}} \mathrm{Te}_{1-\mathrm{x}}$ based (11)



## Supercondutivity upon doping



- $\mathrm{LaO}_{0.89} \mathrm{~F}_{0.11} \mathrm{FeAs}: \mathrm{T}_{\mathrm{c}} \cong 26 \mathrm{~K}$ (43K under pressure)
- $\mathrm{NdO}_{1-\mathrm{K}} \mathrm{F}_{\mathrm{F}} \mathrm{FeAs}: \mathrm{T}_{\mathrm{c}} \cong 52 \mathrm{~K}$
- $\mathrm{SmO}_{1-\mathrm{F}} \mathrm{F}_{x} \mathrm{FeAs}: \mathrm{T}_{\mathrm{c}} \cong 55 \mathrm{~K}$
- $\mathrm{PrO}_{1-\mathrm{K}} \mathrm{F}_{\mathrm{x}} \mathrm{Fe}$ As : $\mathrm{T}_{\mathrm{c}}=52 \mathrm{~K}$
- $\mathrm{CeO}_{1-x} \mathrm{~F}_{\mathrm{x}} \mathrm{FeAs}: \mathrm{T}_{\mathrm{c}}=40 \mathrm{~K}$
- $\mathrm{Ba}_{1-\mathrm{K}} \mathrm{K}_{\mathrm{x}} \mathrm{Fe}_{2} \mathrm{As}_{2} \quad: \mathrm{T}_{\mathrm{c}}=38 \mathrm{~K}$

Coexistence of AF and SC

## What makes oxypnictides special?

- High $\mathrm{T}_{\mathrm{c}}$ up to 55 K in a very broad family of materials (up to several hundreds compounds)
- A hope of discovering new higher- $\mathrm{T}_{\mathrm{c}}$ pnictides and a pathway for understanding cuprates
- Superconductivity resulting from magnetic Fe ions: coexistence of superconductivity and antiferromagnetism (elemental Fe has $\mathrm{T}_{\mathrm{c}}=2 \mathrm{~K}$ under 20 Gpa )
- Extremely high $\mathrm{H}_{\mathrm{c} 2}(0)>100 \mathrm{~T}$, grossly exceeding what would be normally expected from a SC with $\mathrm{T}_{\mathrm{c}}=20-50 \mathrm{~K}$ (well above the Pauli paramagnetic limit)
- Anomalous temperature dependence of $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ consistent with multiband pairing
- Small sizes of the Cooper pairs (2-3 nm): sensitivity to materials defects and strong current blocking by grain boundaries
- Competing SC/AF orders, low carrier density, strong fluctuation effects
- Rich vortex dynamics and pinning: vortex melting/vortex glass zoology + multibandband physics + interaction of vortices with magnetic structures. Some pnictides behave like HTS, some behave like LTS


## Pairing gap symmetries

## s-wave



Most traditional SC: $\mathrm{Nb}, \mathrm{Pb}, \mathrm{NbTi}, \mathrm{Nb}_{3} \mathrm{Sn}$

## d-wave



High-T $\mathrm{T}_{\mathrm{c}}$ cuprates, heavy fermion SC, pnictides?

## Multi-gap:



## Two-gap superconductivity in $\mathrm{MgB}_{2}$

J. Akimitsu et al, Nature 410, 63 (2001)


- 2D big gap for in-plane $\sigma$-orbitals of $B$ and 3D small gap for out-of-plane $\pi$-orbitals of $B$
- Weak interband coupling
- Conventional electron-phonon pairing

Multicomponent s-wave order parameter

Interband phase excitations

## Critical temperature

Suhl, Mattias, Walker PRL 3, 552 (1959); Moskalenko, FMM 8,25 (1959):

$$
\begin{gathered}
T_{c 0}=1.14 \omega_{D} \exp \left[-\left(\lambda_{+}-\lambda_{0}\right) / 2 w\right], \\
\lambda_{ \pm}=\lambda_{11} \pm \lambda_{22}, \quad \lambda_{0}=\sqrt{\lambda_{-}^{2}+4 \lambda_{12} \lambda_{21}}, \\
w=\lambda_{11} \lambda_{22}-\lambda_{12} \lambda_{21},
\end{gathered}
$$

Pairbreaking interband impurity scattering

$$
\begin{gathered}
\psi\left(\frac{1}{2}+\frac{g}{t}\right)-\psi\left(\frac{1}{2}\right)=-\frac{\left(\lambda_{0}+w \ln t\right) \ln t}{p+w \ln t}, \\
2 p=\lambda_{0}+\left[\gamma_{-} \lambda_{-}-2 \lambda_{12} \gamma_{21}-2 \lambda_{21} \gamma_{12}\right] / \gamma_{+}
\end{gathered}
$$

Interband coupling increases $\mathrm{T}_{\mathrm{c}}$
Golubov, Mazin, PRB 55, 15146 (1997); AG, PRB 67, 184515 (2003)

- Weak interband pairing in $\mathrm{MgB}_{2}, \lambda_{12} \lambda_{21} \ll \lambda_{11} \lambda_{22}$
- Strong interband pairing in pnictides, $\lambda_{12} \lambda_{21}>\lambda_{11} \lambda_{22}$

$$
T_{c} \cong T_{c 0}-\frac{\pi \gamma_{12}}{8}\left(1 \mp \sqrt{\frac{N_{1}}{N_{2}}}\right)^{2}
$$

$T_{c}$ suppression is much weaker for the two-gap $\mathbf{s}^{++}(-)$than for $\mathbf{s}^{ \pm}(+)$

## Effect of interband scattering on $T_{c}$

## Possible scenarios

$\mathbf{s}^{+\boldsymbol{+}}$ weakly coupled bands

$\mathbf{s}^{++}$strongly coupled bands

$\mathbf{s}^{+-}$two-band pairing


## Multiband superconductivity in oxypnictides



Haule and Kotliar, NJP 025021 (2009)

Five d-orbitals of Fe hybridized with p-orbitals of As

Several disconnected pieces of FS


ARPES and tunneling: $\mathrm{Ba}_{0.6} \mathrm{~K}_{0.4} \mathrm{Fe}_{2} \mathrm{As}_{2}$

Ding et al, EL 83, 47001 (2008)

Multiple superconducting gaps

## Electron spectrum from ab-initio calculations and ARPES



- multiple bands crossing the Fermi level
- qualitative consistency of ARPES and ab-initio calculations
- two hole pockets at $\Gamma$ and two electron pockets at $M$

Figure 2 | Comparison between angle-resolved photoemission spectra and LDA band structures along two high-symmetry lines. ARPES data from LaOFeP (image plots) were recorded using $42.5-\mathrm{eV}$ photons with an energy resolution of 16 meV and an angular resolution of $0.3^{\circ}$.

## High-field measurements at NHMFL

45T Hybrid Magnet Highest DC Magnetic Field


200T, 1 microsecond One pulse per hour


"world's highest steady-field resistive (35 T) and hybrid (45 T) magnets"

## First signs of huge upper critical fields

Two-band superconductivity in LaFeAsO $\mathbf{0 . 8 9} \mathrm{F}_{0.11}$ at very high magnetic fields
F. Hunte ${ }^{1}$, J. Jaroszynski ${ }^{1}$, A. Gurevich ${ }^{1}$, D. C. Larbalestier ${ }^{1}$, R. Jin ${ }^{2}$, A. S. Sefat ${ }^{2}$, M. A. McGuire ${ }^{2}$, B. C. Sales ${ }^{2}$,
D. K. Christen ${ }^{2}$ \& D Mandrus ${ }^{2}$ D. K. Christen ${ }^{2}$ \& D. Mandrus ${ }^{2}$



- Very high $\mathrm{dH}_{\mathrm{c} 2} / \mathrm{dT}=3-10 \mathrm{~T} / \mathrm{K}$; extrapolation to low T suggests: $\mathrm{H}_{\mathrm{c} 2}(0) \approx 70 \mathrm{~T}$, well above WHH and the BCS paramagnetic limit
- Upward curvature of $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ for $\mathrm{H} \| \mathrm{c}$, similar to $\mathrm{MgB}_{2}$


## Bilayer toy model for $\mathrm{H}_{\mathrm{c} 2}$ in a two-band superconductor



- Two coupled films ( $\sigma$ and $\pi$ ): $\mathrm{T}_{\mathrm{c}}(\sigma)>\mathrm{T}_{\mathrm{c}}(\pi)$
- Josephson interface junction mimics interband coupling
- Breakdown of the GL angular scaling: temperature dependent anisotropy
- Model-independent behavior

Cleaner $\sigma$ : upward curvature of $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$


$$
H_{c 2}=\frac{H_{c 2}(0)}{\sqrt{\cos ^{2} \theta+\gamma^{-2} \sin ^{2} \theta}}
$$

applied separately for each films

## Two-gap superconductivity in the dirty limit

Two-gap Usadel eqs.

$$
\begin{aligned}
& \left(\omega+i \mu_{B} H\right) f_{1}-\frac{D_{\alpha \beta}^{(1)}}{2}\left[g_{1} \Pi_{\alpha} \Pi_{\beta} f_{1}-f_{1} \nabla_{\alpha} \nabla_{\beta} g_{1}\right]=\Delta_{1} g_{1}+\left(f_{2} g_{1}-f_{1} g_{2}\right) \gamma_{12} \\
& \left(\omega+i \mu_{B} H\right) f_{2}-\frac{D_{\alpha \beta}^{(2)}}{2}\left[g_{2} \Pi_{\alpha} \Pi_{\beta} f_{2}-f_{2} \nabla_{\alpha} \nabla_{\beta} g_{2}\right]=\Delta_{2} g_{1}+\left(f_{1} g_{2}-f_{2} g_{1}\right) \gamma_{21}
\end{aligned}
$$

Here $D_{\alpha \beta}$ are intraband electron diffusivities, $\Pi=\nabla+2 \pi \mathrm{i} A / \phi_{0}, \quad \gamma$ are interband scattering rates, $\lambda_{\mathrm{nm}}$ is $2 \times 2$ matrix of BCS coupling constants.

- Gap equations:

$$
\Delta_{m}=2 \pi T \sum_{\omega>0}^{\omega_{\mathrm{D}}} \sum_{\mathrm{s}=1,2} \lambda_{\mathrm{ms}} \mathbf{f}_{\mathrm{s}}\left(\omega, \Delta_{\mathrm{s}}\right)
$$

## Equation for $\mathrm{H}_{\mathrm{c} 2}$ including inter and intraband scattering, and paramagnetic effects in the dirty limit

## AG, PRB 67, 184515 (2003); Physica C546, 160 (2007)

$$
\begin{aligned}
& 2 \mathbf{w} \mathbf{F}_{+} \mathbf{F}_{-}+\left(\lambda_{0}+\tilde{\lambda}\right) \mathbf{F}_{+}+\left(\lambda_{\mathbf{0}}-\bar{\lambda}\right) \mathbf{F}_{-}=\mathbf{0} \\
& \mathbf{F}_{ \pm}=\ln \mathbf{t}+\operatorname{Re} \psi\left(\frac{1}{2}+\frac{\Omega_{ \pm}+\mathbf{i} \mu_{\mathbf{B}} \mathbf{H}}{2 \pi \mathbf{T}}\right)-\Psi\left(\frac{1}{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& 2 \Omega_{ \pm}=\omega_{+}+\gamma_{+} \pm \sqrt{\omega_{-}^{2}+\gamma_{+}^{2}+2 \gamma_{-} \omega_{-}}, \\
& \gamma_{ \pm}=\gamma_{12} \pm \gamma_{21}, \quad \omega_{ \pm}=\left(D_{1} \pm D_{2}\right) \pi H / \phi_{0}, \\
& \bar{\lambda}=\left[\left(\omega_{-}+\gamma_{-}\right) \lambda_{-}-2 \lambda_{12} \gamma_{21}-2 \lambda_{21} \gamma_{12}\right] / \Omega_{0}
\end{aligned}
$$

- Can be used for different pairing mechanisms
- Application to $\mathrm{MgB}_{2}$ : weak interband pairing: $\lambda_{12} \lambda_{21} \ll \lambda_{11} \lambda_{22}$
- Application to pnictides: strong interband pairing: $\lambda_{12} \lambda_{21}>\lambda_{11} \lambda_{22}$


## Nd-1111 single crystal




## F. F. Balakirev

National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
L. Fang, P. Cheng, Y. Jia, and H. H. Wen

Chinese Academy of Sciences, Beijing 100190, People's Republic of China (Received 14 October 2008; published 21 November 2008)


- Combined dc (Tallahassee) and pulse (LANL) fields
- The same multiband behavior of $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ as on $\mathrm{La}-1111$ polycrystals
- Naïve extrapolation to $\mathrm{T}=0$ suggests $\mathrm{H}_{\mathrm{c} 2} \| \mathrm{ab} \approx 200-300 \mathrm{~T}$


## Nd-1111 single crystals: temperature-dependent anisotropy




- Two-band angular scaling for $\mathrm{H}_{\mathrm{c} 2}$ :

$$
D_{m} \Rightarrow D_{m}(\theta)=\left[D_{m}^{2}{ }^{(a b)} \cos ^{2} \theta+D_{m}^{(c)} D_{m}^{(a b)} \sin ^{2} \theta\right]^{1 / 2}
$$

- GL single-band scaling is not too bad
- Temperature-dependent $\gamma(\mathrm{T})$ indicates multiband superconductivity
- Different dependencies of $\gamma(\mathrm{T})$ for $\mathrm{H}_{\mathrm{c} 2}$ (onset) and irreversibility field (10\%)


## Nd-1111 single crystals: clean or dirty?

- GL coherence lengths $\xi_{a b}(0)$ and $\xi_{c}(0)$ estimated from the observed $H_{c 2}(T)$ slopes near $T_{c}$ :

$$
\xi_{a b}=\left(\frac{\phi_{0}}{2 \pi T_{c}\left|H_{c 2}^{\prime}\right|}\right)^{1 / 2} \cong 2-3 n m, \quad \xi_{c}=\frac{\xi_{a b}}{\gamma} \cong 0.3-0.4 n m \quad \text { for } \mathrm{H}_{\mathrm{c} 2}^{\prime}=2-4 \mathrm{~T} / \mathrm{K}, \gamma=7-10
$$

- the numbers are similar to those for YBCO
- Drude mean-free path estimated from $\rho_{n}\left(T_{c}\right)$ :

$$
\ell=\frac{m^{*} v_{F}}{\rho_{n} n e^{2}}=\frac{\lambda_{L}^{2} v_{F} \mu_{0}}{\rho_{n}} \cong 2-3 n m \quad l \begin{aligned}
& \rho_{\mathrm{n}}\left(\mathrm{~T}_{\mathrm{c}}\right) \approx 0.2-0.3 \mathrm{~m} \Omega \mathrm{~cm}, \lambda_{\mathrm{L}} \approx 200 \mathrm{~nm}, \\
& \mathrm{v}_{\mathrm{F}}=1.3^{* 10^{7} \mathrm{~cm} / \mathrm{s}}
\end{aligned}
$$

- Moderately dirty limit, $\xi_{a b}(0) \approx \ell$.
- Dirty limit is applicable
- Unclear what part of $\rho_{n}\left(T_{c}\right)$ comes from nonmagnetic impurity scattering


## Two-band analysis of $\mathrm{H}_{\mathrm{c} 2}$ in Nd -1111 single crystal


$\mathbf{s}^{+\boldsymbol{n}}$ no PM terms

$\mathbf{s}^{ \pm}$no PM terms

$\mathbf{s}^{++} \& P M$ terms

- Reproducing the observed upward curvature of $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ requires a significant difference in the band diffusivities $D_{1}$ and $D_{2}$
- $s^{++}$two-band pairing: $D_{2} \approx 0.1 D_{1}$ (a)
- $s^{ \pm}$pairing requires $D_{2} \approx 0.01 D_{1}(b)$
- Pauli pairbreaking reduces the extrapolated $\mathrm{H}_{\mathrm{c} 2}(0)$ from 200-300 T down to 60-120T


## 60 T pulse measurements on Sm-1111 crystals

H.-S. Lee et al, arXiv: 0908.1287


## Single band versus multiband analysis



60 T is not enough to distinguish between different scenarios

## PM limit in pnictides is greatly exceeded


$\mathrm{SrFe}_{2} \mathrm{As}_{2}$ epitaxial films.
Baley et al, PRL 102, 117004 (2009)


Yamamoto et al, APL 94, 062511 (2009)

$H_{p}[T]=1.84 \mathrm{~T}_{\mathrm{c}}[\mathrm{K}]$


Yuan et al, Nature 457, 565 (2009)


Altarawneh et al, PRB 78, 220505 (R) (2008).

Nearly isotropic $\mathrm{H}_{\mathrm{c} 2}$
Paramagnetic limit is exceeded by the factor ~2

How can it be in a seemingly layered compound?

## Paramagnetic limitations of $\mathrm{H}_{\mathrm{c} 2}$

- BCS one-gap paramagnetic limit (Chandrasekhar; Klogston (1962); Maki (1964));

$$
\mu_{\mathrm{B}} \mathbf{H}_{\mathrm{p}}=\Delta / \sqrt{2} \quad \Longrightarrow \quad B_{p}[T]=1.84 T_{c}[K]
$$

- Which gap in multiband superconductors?
- For $T=g=0$, both $D_{\sigma}$ and $D_{\pi}$ should be replaced by effective diffusivities

$$
\tilde{\mathbf{D}}_{\sigma}=\sqrt{\mathbf{D}_{\sigma}^{2}+\mathbf{D}_{0}^{2}}, \quad \tilde{\mathbf{D}}_{\pi}=\sqrt{\mathbf{D}_{\pi}^{2}+\mathbf{D}_{0}^{2}}
$$

- Quantum diffusivity:

$$
\mathbf{D}_{0}=\hbar / 2 \mathrm{~m}
$$

(diffusion relation and the energy uncertainty principle $\mathrm{L}^{2}=\mathrm{Dt}$ and $\hbar / \mathrm{t}=\hbar^{2} / 2 \mathrm{~mL}^{2}$ )

## How dirty should it be to reach the PM limit?

- Impurity diffusivity = quantum diffusivity: $\ell \mathrm{v}_{\mathrm{F}} / 3=\hbar / 2 \mathrm{~m}$
- Fermi-Compton mean free path:

$$
\ell \cong \frac{\hbar}{m v_{F}} \quad \mathrm{H}\left\|\mathrm{c} \quad \ell \cong \frac{\hbar}{m \sqrt{v_{F \sigma}^{(a b)} v_{F \sigma}^{(c)}}} \mathrm{H}\right\| \mathrm{ab}
$$

For $\mathrm{v}_{\mathrm{F}} \sim 10^{7}-10^{8} \mathrm{~cm} / \mathrm{s}$ (depending on the orientation), we get $\ell \sim 2-20 \AA$
Easier to reach in pnictides because of their small Fermi velocities $v_{F} \cong 10^{7} \mathrm{~cm} / \mathrm{s}$

## PMI limit in two-gap superconductors

- Maximum possible field $H_{p}$ in the extreme dirty limit $D_{1} \ll D_{0}$ and $D_{2} \ll D_{0}$ :

$$
\mathbf{H}_{\mathbf{p}}^{(\max )}=\frac{\pi \mathbf{T}_{\mathbf{c}}}{2 \gamma \mu_{\mathbf{B}}}
$$

## Same as in one-gap SO

- Two more limiting cases:

$$
\begin{align*}
& H_{p}=\frac{\pi T_{c}}{2 \gamma \mu_{\mathrm{B}}} \exp \left(-\frac{\lambda_{-}+\lambda_{0}}{2 w}\right) \ll H_{p}^{(\max )}, \quad D_{0} \ll \mathrm{D}_{1} \exp \left(-\lambda_{0} / w\right)  \tag{dirty2}\\
& H_{p}=\frac{\pi T_{c}}{2 \gamma \mu_{\mathrm{B}}} \exp \left(\frac{\lambda_{-}-\lambda_{0}}{2 w}\right) \approx H_{\mathrm{p}}^{(\max )}, \quad D_{0} \ll \mathrm{D}_{2} \exp \left(-\lambda_{0} / w\right) \tag{dirty1}
\end{align*}
$$

## PIM first order phase transition induced by strong disorder



Nonmonotonic $H_{p}(T)$ for small values of the control parameter $\mathrm{D}_{\sigma} / \mathrm{D}_{0}$

First order phase transition between N and S state at low T

Similar to the paramagnetic first order transition in the one-gap BCS theory (Sarma, 1963, Maki, 1964)

## Crossover from orbital to paramagnetically limited $H_{c 2}$



- Pnictides are not exceptional: for $\mathrm{PbMo}_{6} \mathrm{~S}_{8}$ $\mathrm{H}_{\mathrm{c} 2}(\mathrm{O})>2 \mathrm{H}_{\mathrm{p}}{ }^{\text {BCS }}$
- Enhancement of $\mathrm{H}_{\mathrm{p}}$ by spin-orbit interaction and strong coupling effects

- Quasi-isotropic $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ might reflect the crossover from anisotropic orbital to isotropic Pauli pairbreaking

Werthammer, Helfand, Hohenberg,
Phys. Rev. 147, 291 (1966)
Orlando, McNiff, Foner, Beasley,
PRB 19, 4545 (1979)

$$
H_{p}=(1+\lambda) H_{p}{ }^{B C S}
$$

Schlossman, Carbotte, PRB 39, 4210 (1989)

## Can FFLO state occur in pnictides?



Paramagnetic depairing: in-plane modulation of the order parameter for $\mathrm{H} \| \mathrm{ab}$
$\Delta(x)=\Delta_{0} \cos (2 q x)$


Similar to $\mathrm{CeColn}_{5}$
Bianchi et al, PRL 91, 187004 (2003)


FFLO in pnictides requires very high fields

## Nd-1111 single crystal: thermally-activated vortex dynamics



- Thermally-activated TAFF

$$
\rho=\rho_{0} \exp \left[-E_{a}(T, B) / T\right]
$$ resistivity over 4-5 decades in $\rho$ :

- TAFF activation energy:

$$
E_{a}=\frac{E_{0}\left(1-T / T_{c}\right)^{\alpha}}{\left[1+B / B_{0}(T)\right]^{\beta}}\left[1-\frac{B}{B_{c 2}(T)}\right]^{\gamma}
$$

- $E_{0} \sim 10^{2}-10^{3} K, B_{0} \cong 3 T, \alpha \approx 1$, and $\beta=1.1, B \| c$, and $\beta=0.17 B \| a b$ Similar to YBCO
J. Jaroszynski et al, PRB 78, 174523 (2008)


## Strong thermal fluctuations in 1111-pnictides

- Critical fluctuation region: $\Delta \mathrm{T}=\mathrm{T}_{\mathrm{c}}-\mathrm{T}<\mathrm{T}_{\mathrm{c}} \mathrm{Gi}$
- Ginzburg parameter: $G i=\frac{\gamma^{2}}{2}\left(\frac{k_{B} T_{c}}{H_{c}^{2} \xi^{3}}\right)^{2} \propto\left(\frac{T_{c}^{2} m \gamma}{v_{F} n}\right)^{2}$

- Anisotropy parameter and the London penetration depth in a uniaxial superconductor:

$$
\gamma=\left(\frac{m_{c}}{m_{a b}}\right)^{1 / 2}=\frac{\lambda_{c}}{\lambda}=\frac{\xi}{\xi_{c}}
$$

$$
\lambda=\left(\frac{m c^{2}}{4 \pi e^{2} n_{s}}\right)^{1 / 2}
$$

## $\Delta T_{c} \propto T_{c}^{5} \gamma^{2} / n^{3}$

- LTS: $\mathrm{Gi} \sim 10^{-8}, \Delta \mathrm{~T} \sim 10^{-7} \mathrm{~K}$
- YBCO: Gi~0.1-10-2, $\Delta \mathrm{T} \sim 1-10 \mathrm{~K}$
- 122 pnictides: Gi ~ $10^{-4}-10^{-3}$
- 1111 pnictides: Gi ~ $10^{-2}$
- $T_{c}$ reduction by phase fluctuations
- Melting of the vortex lattice. Reduced irreversibility field, $\mathrm{H}^{*}(\mathrm{~T})<\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$. Numerous vortex glasses


## Melting of the vortex lattice

- Lindemann criterion: (Nelson et al; Hougtion, Pelcovits, Sudbo; Blatter et al, Brandt et al)

$$
\left\langle u^{2}\right\rangle=c_{L}{ }^{2} \phi_{0} / B, \quad c_{L} \approx 0.15-0.17
$$

- Upper branch of the melting field $\mathrm{B}_{\mathrm{c} 1} \ll \mathrm{~B}_{\mathrm{m}} \ll \mathrm{B}_{\mathrm{c} 2}$ :

$$
\frac{B_{m}}{B_{c 2}(0)} \approx \alpha\left(1-\frac{T_{c}}{T}\right)^{2}, \quad \alpha=\frac{\pi^{2} c_{L}^{4}}{G i}
$$

- For $\mathrm{Nd}-1111, \gamma=7, \mathrm{Gi}=0.01, \mathrm{c}_{\mathrm{L}}=0.15, \kappa=\lambda / \xi \sim 10^{2}$

$$
\text { we get } \alpha \approx 0.5
$$

- Low carrier density and strong anisotropy in Nd-1111 reduce the melting field well below $\mathrm{H}_{\mathrm{c} 2}$

$$
B_{m} \propto \frac{1}{\gamma^{2} \lambda_{L}^{4} T_{c}^{2}}
$$

- Effect of thermal fluctuations is much weaker in 122



Yamamoto et al, APL 94, 062511 (2009)

## Types of grain boundaries

## [001] tilt GB (parallel c-axis)



Chain of edge dislocations spaced by
$\mathbf{d}=\mathbf{b} / 2 \sin (\theta / 2)$

## Twist GB



Cellular structure of twist dislocations in the ab plane

(b)
[100]-tilt

(c)


## The grain boundary problem in cuprates

$16^{0}$ [001] tilt grain boundary in YBCO


- $\mathrm{Y} / \mathrm{Ba} \quad \mathrm{Cu} \circ \mathrm{O}$

X. Song et al. Nature Mat. 4, 470 (2005)
$J_{c}(\theta)=J_{0} \cos ^{2} 2 \theta$ - pure d-wave scenario is too weak to explain the observed exponential decrease of $\mathrm{J}_{\mathrm{c}}(\theta)$


Current blocking revealed by scanning laser micrscopy and magneto-optical imaging in $\mathrm{Ba}\left(\mathrm{Fe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}}\right)_{2} \mathrm{As}$ bicrystals $(\mathrm{x}=0.16)$


## Rapid drop of $\mathrm{J}_{\mathrm{c}}$ with the misorientation angle measured by transport (S. Lee et al, arXiv: 0907.3741)



Similar ratio of $\mathrm{J}_{\mathrm{c}}\left(24^{\circ}\right) / \mathrm{J}_{\mathrm{d}} \sim$ $2 \times 10^{-4}$ indicates similar suppression of the OP on grain boundaries in YBCO and 122 pnictides

## Critical currents of GBs in magnetic field




Very similar to the behavior observed on YBCO grain boundaries

## Vortices on grain boundaries



Pinning of vortices on GB by vortices in the grains

## Similarities of cuprates and pnictides





- short coherence length, $\xi \approx 1-2 \mathrm{~nm}$
- charging and strains effects of dislocation cores
- competing orders: nonsuperconducting AF phase precipitates on GB
- low carrier density $\Rightarrow$ long Thomas Fermi screening length $\mathrm{I}_{\mathrm{TF}} \approx 1-2 \mathrm{~nm}$


## Strain effects at grain boundaries

$\qquad$
AG and E. Pashitskii, PRB, 56, 6213 (1987).



$\mu_{\mathrm{c}}$

$$
\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{c} 0}-\mathrm{C}_{\mathrm{a}} \varepsilon_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}} \varepsilon_{\mathrm{b}}-\mathrm{R}_{\mathrm{iklm}} \varepsilon_{\mathrm{ik}} \varepsilon_{l m}
$$

- Strain-induced dielectric and normal regions near dislocation cores.
- Anisotropic $T_{c}(\varepsilon)$ for YBCO $\left(C_{a} \approx-C_{b} \sim 300 K\right)$. Isotropic $T_{c}(\varepsilon)$ for BSCCO $\left(C_{a} \approx C_{b} \sim 300 K\right)$



## Current Channels and Charging Effects

- Charged coupling of dielectric/metallic core regions of size ~ b
- Superconductivity suppression in the space charge layer of thickness $21_{D} \sim \xi_{0}$

AG and E. Pashitskii, PRB 57, 13875 (1998);
H. Hilgenkamp and J. Mannhart, APL 73, 265 (1998); RMP 74, 485 (2002)

- "Transistor" model of GB: $\mu+\mathrm{e} \Phi=$ const


$$
\Phi_{0} \cong-\frac{Z N_{0} \zeta \boldsymbol{b}(1-2 \sigma)^{2} l_{D} \ln \left(d / r_{i}\right)}{4(1-\sigma)^{2} \kappa_{\infty}} \sin \frac{\theta}{2}
$$



- Zone bending near GB: shift toward the nonsuperconducting AF state.


## Peculiarities and open questions of superconductivity in oxypnictides

- Mechanism of superconductivity - the nature of the pairing glue
- Why strong magnetism does not kill s-wave superconductivity and why nonmagnetic impurities do not suppress $T_{c}$ ?
- How far can $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ go and what is the behavior of $\mathrm{H}_{\mathrm{c} 2}(\mathrm{~T})$ at low temperatures? Any new states due to paramagnetic effects (FFLO state?).
- Vortex physics in pnictides. Pinning, critical currents and irreversibility fields. Effect of magnetism on vortex behavior.
- Proximity of SC state to AF semimetal, short coherence length, long screening length: weak linked grain boundaries block current

