Spin-Driven Spontaneous Currents and Charge Redistribution in Mott Insulators

Daniel Khomskii, L.N. Bulaevskii, et al

KITP Higher Tc Program, July 9, 2009

Mott insulators

$$H = -\sum_{ij\sigma} t_{ij} \left(c_{i\sigma}^{+} c_{j\sigma} + c_{j\sigma}^{+} c_{i\sigma} \right) + \frac{U}{2} \sum_{i} \left(n_{i} - 1 \right)^{2},$$

•Standard paradigm: for U>>t and one electron per site electrons are localized on sites. All charge degrees of freedom are frozen out; only spin degrees of freedom remain in the ground and lowest excited states

$$H_{s} = \frac{4t^{2}}{U}(\vec{S}_{1} \cdot \vec{S}_{2} - 1/4).$$

•Not the full truth!

•For certain spin configurations there exist in the ground state of strong Mott insulators **spontaneous electric currents** (and corresponding orbital moments)!

•For some other spin textures there may exist a **spontaneous charge redistribution**, so that $\langle n_i \rangle$ is not 1! This, in particular, can lead to the appearance of a spontaneous **electric polarization** (a purely *electronic mechanism of multiferroic behaviour*)

•These phenomena, in particular, appear in frustrated systems, with scalar chirality playing important role

Spin systems: often complicated spin structures, especially in frustrated systems – e.g. those containing triangles as building blocks

Isolated triangles (trinuclear clusters) - e.g. in some magnetic molecules (V15, ...)

Solids with isolated triangles (La₄Cu₃MoO₁₂)

- Triangular lattices
- Kagome

Often complicated ground states; sometimes $\langle \vec{\mathbf{S}}_i \rangle = 0$ \longrightarrow spin liquids

Scalar chirality χ is often invoked in different situations:

- Anyon superconductivity
- Berry-phase mechanism of anomalous Hall effect
- New universality classes of spin-liquids
- Chiral spin glasses

Chirality in frustrated systems: Kagome

a) Uniform chirality (q=0) b) Staggered chirality ($\sqrt{3}x\sqrt{3}$)

But what is the scalar chirality physically?

- What does it couple to?
- How to measure it?

Breaks time-reversal-invariance T and inversion P - like currents!

 $\searrow \chi_{123} \neq 0$ means spontaneous circular electric current $j_{123} \neq 0$ and orbital moment $L_{123} \neq 0$

$$L_{123} \propto j_{123} \propto \chi_{123}$$

Couples to magnetic field: $-\vec{L}\vec{H} \sim -\chi H$ Difference between Mott and band insulators

$$H = -\sum_{ij\sigma} t_{ij} (c_{i\sigma}^{+} c_{j\sigma} + c_{j\sigma}^{+} c_{i\sigma}) + \frac{U}{2} \sum_{i} (n_{i} - 1)^{2}, \quad \langle n_{i} \rangle = 1.$$

- Only in the limit $U \rightarrow \infty$ electrons are localized on sites.
- At $t/U \neq 0$ electrons can hop between sites.

$$H_{s} = \frac{4t^{2}}{U}(\vec{S}_{1} \cdot \vec{S}_{2} - 1/4).$$

0

 $H = -t \sum c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum n_{i\tau} n_{i\ell} = H' + H_0$ t=o: localized electrons ftttft Superexchange: virtual creation of polas states with <n;>#1 with $\langle n_i \rangle \neq 1$ f = f A = 0 $\Delta E = -\frac{t^2}{4}$ E = 0 $E = -\frac{t^2}{4}$ E = 0 E = 0 $E = -\frac{t^2}{4}$ E = 0ctr Cir + 2 + Si ct Cil St cti que to si ciicin Cin Si $H_{eff} \sim \langle H'_{H_o-E_o}H' \rangle \sim \frac{1}{4} \langle c_i^{\dagger} c_j^{\dagger} c_j^{\dagger} c_i^{\dagger} c_i \rangle \rightarrow \frac{21}{4} \hat{s_i} \hat{s_j}$

Spin current operator and scalar spin chirality

• Current operator for Hubbard Hamiltonian on bond ij:

$$\vec{I}_{ij} = \frac{iet_{ij}\vec{r}_{ij}}{\hbar r_{ij}} \sum_{\sigma} (c_{i\sigma}^{+}c_{j\sigma} - c_{j\sigma}^{+}c_{i\sigma}).$$

 Projected current operator: odd # of spin operators, scalar in spin space. For smallest loop, triangle, 2

$$\vec{I}_{S,12}(3) = \frac{\vec{r}_{ij}}{r_{ij}} \frac{24et_{12}t_{23}t_{31}}{\hbar U^2} [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3.$$

Current via bond 23

$$I_{S,23} = I_{S,23}(1) + I_{S,23}(4).$$

• On bipartite nn lattice I_s is absent.

Orbital currents in the spin ordered ground state $\langle \vec{S}_i \rangle \neq 0$

 Necessary condition for orbital currents is nonzero average chirality

$$\chi_{12,3} = [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3, \qquad \langle \chi_{ij,k} \rangle \neq 0.$$

It may be inherent to spin ordering or induced by magnetic field

Triangles with \pm chirality

On tetrahedron chirality may be nonzero but orbital currents absent. Chirality in the ground state without magnetic ordering

•
$$\left\langle \chi_{12,3} \right\rangle = \left\langle [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3 \right\rangle \neq 0, \quad \left\langle \vec{S}_i \right\rangle = 0.$$

- Geometrically frustrated 2d system \rightarrow Mermin-Wigner theorem $\rightarrow \langle \vec{S}_i \rangle = 0.$
- State with maximum entropy may be with broken discrete symmetry $\langle \chi_{12,3} \rangle \neq 0$.
- Example: $J_1 J_2$ model on kagome lattice:

$$H_{S} = J_{1} \sum_{\langle ij \rangle} \vec{S}_{i} \Box \vec{S}_{j} + J_{2} \sum_{\langle \langle ij \rangle \rangle} \vec{S}_{i} \Box \vec{S}_{k}.$$

•(group of C.Lhuillier)

Ordering in $J_1 - J_2$ model on kagome lattice at T=0

Boundary current in gaped 2d insulator

Pyrochloses with [111] auisotropy (ala spin ice, but with autifesto. exchange): - currents compensate at each boud four 4-in structure But in the field MIN[III]: Net cussent around basage triangle, and ZII[III] The same for the field giving 2 in-2007

•Tetrahedra in exact solution:

Ground state - S=0, doubly-degenerate. In the ground state one can chose the state with chirality + or - .

Nonzero chirality — magnetic state. But currents at each edge = 0 ! — magnetic octupole states?

Very similar to the situation with doubly-degenerate e_a orbitals:

$$z^{2}$$
> ----- $T^{z}=1/2$
 $x^{2}-y^{2}$ > ---- $T^{z}=-1/2$
 $||z^{2}+i||x^{2}-y^{2}>)$ ----- $T^{y}=1/2$, $(|z^{2}-i||x^{2}-y^{2}>)$ ----- $T^{y}=-1/2$,

Eigenstates of T^y – states with magnetic octupoles!

Real combinations $a|z^2 >+b|x^2 - states$ with electric quadrupoles.

The same for spin tetrahedra?

Spin-dependent electronic polarization

• Charge operator on site i: $Q_i = e \sum c_{i\sigma}^+ c_{i\sigma}$.

• Projected charge operator $n_{S,i} = Pe^{S}n_{i}e^{-S}P$,

$$n_{S,1}(2,3) = 1 - \frac{8t_{12}t_{23}t_{31}}{U^2} [\vec{S}_1 \Box (\vec{S}_2 + \vec{S}_3) - 2\vec{S}_2 \Box \vec{S}_3].$$

• Polarization on triangle $\vec{P}_{123} = e \sum_{i=1,2,3} n_{S,i} \vec{r}_i, \qquad \sum_i n_{S,i} = 3.$

Charge on site i is sum over triangles at site i.

Electronic polarization on triangle

Purely electronic mechanism of multiferroic behavior!

Charges on kagome lattice

1/3 magnetization plateau:

Charge ordering for spins 1/3 in magnetic field: spin-driven CDW

•Typical situation at the magnetization plateaux!

-will develop S-CDW

Saw-tooth (or delta-) chain

Net polarization

Polasitation of a triangle:

1 1 1 Y 3 X Px = 4V3ea(=) [5;(5,+5)-255 $P_{y} = 12ea(\frac{1}{2})^{3}\overline{s_{1}}(\overline{s_{2}}-\overline{s_{3}})$

Dipole moments, of polasization, and cullent on a triangle, can be combined in one "isospin'-z: Px -> - CTx Py -> CTy Feal (T-even) 1 2 I -> c Tz & imaginaly (T-odd) -somewhat similar to pseudospin ? for eg-orbitals (2, ->122>, 2, -> /x -y 2>, 2y -> to (122) + i/x -y) Feal (T-éseu) Jm. (T-odd)

Cousequeuces for dynamic properties: Equilateral triangle of S= 2 with antiferro. exchang $2^3 = 3 \text{ states } 1 \equiv 1 = 3/2$ Splits ground state quastet $= \underbrace{5^{2}}_{S=2}^{S^{2}-1}, \chi = + \underbrace{0}_{role}$ (DM interaction plays a role of spin -osbit interaction tos ground state quaster) $\underbrace{ \left[\begin{array}{c} s^{i} = 1 \\ s^{i} = -1 \end{array}, \begin{array}{c} \chi = + \\ \chi = - \end{array} \right] }_{z = -1}$

Isolated triangle: accounting for DM interaction

• DM coupling:
$$H_{DM} = \sum_{ij} D_{ij} \vec{S}_i \times \vec{S}_j$$
.

- For V15 $H_{DM} \approx D_z L_z S_z$.
- Splits lowest quartet into 2 doublets $|+\uparrow\rangle, |-\downarrow\rangle$ and $|+\downarrow\rangle, |-\uparrow\rangle$ separated by energy $\Delta = D_z$.
- Ac electric field induces transitions between $\chi = \pm 1$.
- Ac magnetic field induces transitions between

$$S_z = \pm 1/2.$$

ESR : magnetic field (-HM) causes transitions

$$|1/2,\chi\rangle \rightarrow |-1/2,\chi\rangle, \text{ or } |-1/2,\chi\rangle \rightarrow |1/2,\chi\rangle$$

Here: electric field (-Ed) has nondiagonal matrix elements in χ :

$$\left\langle \chi = + \left| \mathbf{d} \right| \chi = - \right\rangle \neq 0$$

electric field will cause

dipole-active transitions

$$|S^{z},+\rangle \Leftrightarrow |S^{z},-\rangle$$

-- ESR caused by electric field E !

Ε

Qusispherical layered molecular structure of $K_6[V_{15}^VAs_{6}^{III}O_{42}(H_2O)]-8H_2O(V_{15}-cluster)$

First observation of coherent states in which the fifteen cluster spins and the photons are entangled:

"Quantum oscillations in a molecular magnet" S. Bertaina, S. Gambarelli, T.Mitra, B. Tsukerblat, A. Müller, B. Barbara, Nature, 2008.

From a triangle to extended frustrated systems

Frustrated trimeric carboxilates

Frustrated nanoscopic systems

Crystal lattice

Triads of the metal ions

 $(Cr_3), (Fe_3),$ $(FeCr_2), (Fe_2Cr)$ The M centers (colored spheres) of the $\{(Mo)Mo_5\}M_{30}$ type Keplerates (M = V^{IV}, Fe^{III})

Achim Müller & coworkers

Kagomé lattice in which equilateral triangles are arranged around regular hexagons in a two dimensional plane.

Low frequency dynamic properties: negative refraction index

• Responses to ac electric and ac magnetic field are comparable for $J \approx 100 \, \text{K}_{\odot}$

$$\varepsilon_{ik}(\omega) = \varepsilon_0 \delta_{ik} + \frac{8\pi}{V} \sum_n \frac{\omega_{n0} \langle 0 | P_{S,i} | n \rangle \langle n | P_{S,k} | 0 \rangle}{\omega_{n0}^2 - \omega^2 + i\delta},$$

- Spin-orbital coupling may lead to common poles in $\mathcal{E}_{ik}(\omega)$ and $\mu_{ik}(\omega)$
- Negative refraction index if dissipation is weak.

Chirality as a qubit?

Triangle: S=1/2, chirality (or pseudosin T) = $\frac{1}{2}$

Can one use chirality instead of spin for quantum computation etc, as a qubit instead of spin?

We can control it by magnetic field (chirality = current = orbital moment) and by electric field

Chirality as a qubit?

Triangle: S=1/2, chirality (or pseudosin T) = $\frac{1}{2}$

Can one use chirality instead of spin for quantum computation etc, as a qubit instead of spin?

We can control it by magnetic field (chirality = current = orbital moment) and by electric field

Georgeot, Mila, arXiv 26 February 2009

CONCLUSIONS

 Contrary to the common belief, there are real charge effects in strong Mott insulators (with frustrated lattices):
spin-driven spontaneous electric currents and orbital moments, and charge redistribution in the ground state

- Spontaneous currents are ~ scalar spin chirality $\chi_{123} = \vec{S}_1 [\vec{S}_2 \times \vec{S}_3]$
- Charge redistribution (<n_i> is not 1!) may lead to electric polarization (purely electronic mechanism of multiferroicity)
- Many consequences:

In the ground state: lifting of degeneracy; formation of spin-driven CDW,

In dynamics: electric field-induced "ESR"; rotation of electric polarization by spins; contribution of spins to low-frequency dielectric function; possibility of negative refraction index; etc