Interplay between charge, pairing (and orbital current) modulations in some t-J models

Didier Poilblanc*

Manuela Capello, Marcin Raczkowski R. Frésard and A. Oles

*CNRS and Université Paul Sabatier, Toulouse (France)

Outline

- The basics of RVB and the pseudo-gap
- Observation of charge order in High-Tc superconducting materials
- Results on superconducting RVB hole stripes
- Results for a single Zinc impurity
- Open issue: competition with orbital current states

High-Tc Phase diagram

*RVB is a simple appealing theory for pseudo gap

* Can we also describe inhomogeneous states with the RVB framework?

Superconducting state emerges from doping a Mott insulator

The pseudogap phase

(pi,0) vs.T Fedorov 1999 Bi2212 Tc=91K Existence of a pseudo-gap but no superconductivity and no quasiparticles

Resonating Valence Bond state

- * Mott physics: no double occupancies
- * Antiferromagnetic term important

Non-magnetic ground state: good for low spin, low dimensionality

$$\bullet = \frac{1}{\sqrt{2}} (\uparrow_i \downarrow_j - \downarrow_i \uparrow_j)$$

[Anderson, Science 1987]

RVB: liquid of singlets of spins which resonate

(Simple minded) RVB scenario

Holes frustrate antiferromagnetism

The RVB state regains the lost AF exchange by the resonance betwen many different configurations

The RVB state naturally becomes a superconductor since the pairing already exists

The t-J model

$$H_{tJ} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. + J \sum_{\langle ij \rangle} S_i \cdot S_j$$

KINETIC TERM

AF EXCHANGE TERM

CONSTRAINT of NO DOUBLE OCCUPANCIES

RVB variational state

$$H_{BCS} = H_{kin} + \sum_{ij} \Delta_{ij} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} + \mu \sum_{i} n_i + h.c.$$

Uncorrelated

state | D >

$$|\Psi_{RVB}\rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow})|D\rangle$$

Strongly correlated wavefunction

Δ,μ are variational parameters

All Δ_{ij} uniform with d-wave symmetry

RVB => Correct behavior of pseudo-gap & SC order parameter

Anderson et al. J.Phys. C 2004

Neutron scattering: AF Stripes

La_{2-x}Ba_xCuO₄ at doping x=1/8

[Tranquada et al. Nature 1995]

ANTIFERROMAGNETIC STRIPE SCENARIO

Spatially ordered state with holes concentrated *unidirectionally* between AF domains

Could the SC state become also stripy?

Stripes are compatible with pairing!

LaBaCuO: Tc~0 at doping x=1/8 but (ARPES + STM) d-wave gap still there!

[Valla et al., Science 2006]

Planes are (Josephson) decoupled but pairing exists!

[Berg et al., PRL 2007]

[Li et al., PRL 2007]

STM Experiments:

DIFFERENTIAL CURRENT

dI/dV(r,V) =f(r,z) N(r,E=eV)

*N(r,E) LOCAL DOS

*f(r,z) tunnelling matrix element (unknown)

J.C. Davis' group

EXTRACT e-

INSERT e

Ground state properties ?

STM-experiments: R-maps

 $Ca_{2-x}Na_xCuO_2Cl_2$ and Dy-Bi2212 (at T<Tc)

[Kohsaka et al. Science 2007]

$$R(r, z, V) = \frac{I(r, z, +V)}{I(r, z, -V)} \sim \frac{x(r)}{1 - x(r)}$$

Extract hole density x(r)

Bond-centered unidirectional patterns

Different low-energy properties

HOLE RICH

HOLE POOR

Not a Fermi surface nesting mechanism!

[Valla et al., Science 2006]

SPATIAL ORDER + SUPERCONDUCTIVITY

GOAL: describe superconducting hole-stripes within RVB framework?

RVB variational state revisited

$$H_{BCS} = H_{kin} + \sum_{ij} \Delta_{ij} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} + \mu \sum_{i} n_i + h.c.$$

 t_{ij} and Δ_{ij} become bond dependent !!

Uncorrelated

state | D >

$$|\Psi_{RVB}\rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |D\rangle$$

Strongly correlated wavefunction

A convenient guide:
Gutzwiller approximation
+

Mean-field

VMC: optimization scheme developped in S. Sorella's group, up to 16x16 clusters with PBC

Superconducting stripes

We allow for inhomogeneous Δ_{ij}

Bond centered

Site centered

Create line-defects in the RVB state Impose $\Delta_{ij}=0$ along one direction, with periodicity 1/2x

Superconducting stripes (II): pi-domain RVB stripes

Bond-centered symmetry

The pi-phase shift in Δ_k implies regions with domain walls in the pairing, with $\Delta_{ij}=0$

Charge modulation is there!

2 NON-EQUIVALENT SITES

Holes concentrate where spin-pairing is smaller (around the domain walls)

In-phase domains

Hole stripes emerge

Superconductivity is modulated!

$$P_s^2(r) = \langle \tilde{\Delta}_{s+r}^{\dagger} \tilde{\Delta}_s \rangle$$

$$\tilde{\Delta}_{s}^{\dagger} = c_{s\uparrow}^{\dagger} c_{s+a\downarrow}^{\dagger} - c_{s\downarrow}^{\dagger} c_{s+a\uparrow}^{\dagger}$$

Energies are really close (~10-4 t)

WF	E _{VMC} [t]	
RVB	-0.45564(3)	
SFP	-0.44630(3)	
pi-DRVB	-0.44529(3)	
BC-hDRVB	-0.45490(3)	
SC-hDRVB	-0.45530(3)	

t/J=3,
doping 1/8
up to
16x16 clusters

Anti-phase

In-phase

Role of t'

Lattice distortion

$$H_{tJ}^{\alpha} = -t \sum_{\langle ij \rangle, \sigma} \alpha_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. + J \sum_{\langle ij \rangle} \alpha_{ij}^{2} S_{i} \cdot S_{j}$$

The tilt in the oxygen octahedra induces a different t and J along x and y:

tilt axis along y: $\alpha_x < I$ and $\alpha_y = I$

Lattice LTT distortion further stabilizes the superconducting stripes

In-phase

Anti-phase

Tilt axis along y

Tilt axis along x

Other related work

* Himeda, Kato & Ogata, PRL 2002

[simple cosine modulation of SC]

* Berg, Fradkin, Kim, Kivelson, Oganesyan, Tranquada & Zhang, PRL (2007)

[Dynamical layer decoupling scheme]

* Yang, Chen, Rice, Sigrist and Zhang, arXiv:0807.3789 [Mean-field RVB including spin ordering]

Role of impurities ?

Low-energy DOS around Zinc impurity in SC state

- Large DOS along nodal directions
- Suppression of SC within~15A from Zn

Pan et al., Nature 403, 746 (2000)

 $Bi_2Sr_2Ca(Cu_{1-x}Zn_x)_2O_{8+\delta}$ single crystals

Controlled impurity doping offers a stringent test for correlated models and RVB wf's!

Variational Gutzwillerprojected RVB wavefunction (16x16 clusters) x=12 %

Suppression of pairing correlations over large distances

x=7 %

16x16 cluster (only central region shown)

Strong modulation of local hole density

x=12%

But needs STM R-maps to compare to experiments !!

x=7 %

Open issue: magnetism around Zn? To compare to NMR ...

Competition with orbital-current phases?

- Motivation from early numerics:
 - scalar-chiral spin correlations (DP, Riera, Dagotto, 91)
 - current-curent (Leung, 2000) correlations
- DMRG (White-Scalapino) shows t' destabilizes SDW stripes
- 4x4 "checkerboard"?

C. Weber et al., PRB 2006

Needs more VMC / DMRG simulations!

Conclusions

- Striped superconducting states are competitive w.r.t. the uniform RVB but have higher energies within our extended t-J model ...
- Out-of-phase SC domains cost more than in-phase: in agreement with DMRG (S.White et al.)
- Impurities like Zinc induce large domains of modulated SC regions: might have a role in the STM patterns seen
- 4x4 checkerboard charge ordered state seems energetically very competitive: relevant competing non-SC state with TRS breaking?

References:

- (I) Raczkowski et al., PRB (RC) **76**, 140505 (2007)
- (II) Capello et al., PRB **77**, 224502 (2008)
- (III) Capello and DP, PRB 79, 224507 (2009)

Partial summary

* superconducting RVB hole stripes

* pi-shift RVB hole stripes

Charge and Superconductivity might coexist even without spin order!

L.Taillefer's group [arXiv:0806.2881]

ARPES: the d-wave gap

(pi,0) vs (pi/2,pi/2) Shen 1993 Bi2212 Tc=88K

Nodal quasiparticles at pi/2,pi/2

The gap closes at pi/2,pi/2

Charge and Superconductivity might coexist even without spin order!

L.Taillefer's group [arXiv:0806.2881]

RVB theory: mathematical framework

Correlated wavefunctions Gutzwiller projected HF d-wave BCS:

$$P |\Phi\rangle = P \prod_{\vec{k}} \left(u_{\vec{k}} + v_{\vec{k}} c_{\vec{k}\uparrow}^{\dagger} c_{-\vec{k}\downarrow}^{\dagger} \right) |0\rangle$$

$$P = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow})$$

- → Variational Monte Carlo
- → Mean field theory

F.C. Zhang et al., Supercond. Sci. Technol. 1, 36 (1988).

Gutwiller approximation

$$\langle c_{i\sigma}^{+}c_{j\sigma}\rangle = g_{t}\langle c_{i\sigma}^{+}c_{j\sigma}\rangle_{0}$$
$$\langle S_{i}\cdot S_{j}\rangle = g_{S}\langle S_{i}\cdot S_{j}\rangle_{0}$$
$$\downarrow$$

$$H_{eff} = g_t T + g_S J \sum_i \mathbf{S}_i \cdot \mathbf{S}_j$$

Competing phases: d-wave RVB ←→ staggered flux

Affleck-Marston 1988

Meanfield Fermionic theory

Extend RVB picture & formalism to inhomogeneous case

$$H_{\text{MF}} = -t \sum_{\langle ij \rangle \sigma} g_{ij}^{t} (c_{i,\sigma}^{\dagger} c_{j,\sigma} + h.c.) - \mu \sum_{i\sigma} n_{i,\sigma}$$
$$-\frac{3}{4} J \sum_{\langle ij \rangle \sigma} g_{i,j}^{J} (\chi_{ji} c_{i,\sigma}^{\dagger} c_{j,\sigma} + h.c. - |\chi_{ij}|^{2})$$
$$-\frac{3}{4} J \sum_{\langle ij \rangle \sigma} g_{i,j}^{J} (\Delta_{ji} c_{i,\sigma}^{\dagger} c_{j,-\sigma}^{\dagger} + h.c. - |\Delta_{ij}|^{2}),$$

- → + usual MF self-consistent equations
- → Site dependent g's, bond amplitudes and site densities

10/05/2005 **Batz** 38

Energetics for the t-J model

$$H_{tJ} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. + J \sum_{\langle ij \rangle} S_i \cdot S_j$$

t/J=3,
doping 1/8
up to
16x16 clusters

WF	E _{RMFT} [t]	E _{VMC} [t]	
RVB	-0.4549	-0.45564	
SFP	-0.4284	-0.44630	
pi-DRVB	-0.4412	-0.44529	$\begin{array}{c} \Delta_{\mathbf{k}} \\ \end{array}$

Very close energies but pi-shift in Δ_k has a cost

Cuprates Structure

 $YBa_2Cu_3O_{7(-x)}$

chains charge reservoir

Layered structure with CuO₂ planes

charge reservoirs (La,Y,Ba,Ca,O)

$Bi_2Sr_2CaCu_2O_{8(+x)}$

The Cuprates

La₂CuO₄

Layered structure with CuO₂ planes

Cu d-orbitals: small overlap strong correlation

2D square lattice

Interesting Physics upon doping

*Undoped: La₂CuO₄: I electron per site

*Doped: La³⁺ substituted with (Ba,Sr)²⁺ introduction of extra carriers (holes) in the planes

