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FIG. 1: The lattice parameters at room temperature as a
function of the composition.

using BaAs, KAs and Fe2As as the starting materials.
The BaAs was pre-synthesized by reacting Ba powder
with As powder in an evacuated quartz tube at 673 K
for 4 hours; KAs by reacting K lumps with As powder
at 523 K for 4 hours; and Fe2As by reacting the mix-
ture of element powders at 973 K for 4 hours. The raw
materials were weighed according to the stoichiometric
ratio of Ba1−xKxFe2As2. The mixed powders were then
thoroughly grounded and pressed into pellets. The pel-
lets were wrapped with Ta foil and sealed in evacuated
quartz tubes. These tubes were annealed at 973 ∼ 1093
K for 20 hours. The sample preparation, except for the
annealing, was carried out in glove box in which high pu-
rity argon atmosphere is filled. The samples were char-
acterized using an X-ray diffractometer at room temper-
ature and the powder diffraction pattern of all samples
can be indexed using the tetragonal ThCr2Si2 structure
of the space group I4/mmm (No 139). The variation of
the lattice parameters at room temperature is shown in
Fig. 1. Both the a and c change smoothly from x = 0 to
1.

We measured the resistivity using the standard four-
probe method. The results are shown in Fig. 2. The
anomaly associated with the structural and magnetic
transition is pronounced for x = 0 and 0.1. The anomaly
is rounded off for x = 0.2, which becomes a superconduc-
tor with the transition starting at 14 K and the resistivity
reaching zero at 3 K. The TC increases with further potas-
sium doping and the superconducting transition becomes
narrower until x = 0.5. Thereafter, TC begin to decrease
from the maximum TC ≈ 37.5 K with the potassium
doping. At x = 1, TC is 3.8 K for the KFe2As2 sample,
the same as reported by Sasmal et al.[21]. The TC as a
function of the composition is summarized in Fig. 3.

While the temperature of the simultaneous structural
and SDW transition can be inferred from the pronounced
anomaly in resistivity for x = 0 and 0.1 (Fig. 2), for
x ≥ 0.2, it becomes progressively less certain whether
there is an anomaly in the resistivity. To further in-

FIG. 2: Temperature dependence of the resistivity.

FIG. 3: The composition-temperature phase-diagram, show-
ing the structural, magnetic and superconducting transitions.
The TS denotes the temperature of the simultaneous struc-
tural and magnetic transition, and TC the superconduct-
ing one. The spin-density-wave (SDW) and superconducting
(SC) orders coexist at low temperature in 0.2 ≤ x < 0.4.

vestigate the crystal structure and structural transition,
powder diffraction experiments from 5 to 300 K were per-
formed for the x = 0, 0.1, 0.2, 0.3, 0.4 and 0.6 sam-
ples using synchrotron high-energy x-ray (λ = 0.1067Å)
at the beamline 11-ID-C at Advanced Photon Source of
ANL. The sample temperature was controlled by a cry-
omagnet. The synchrotron X-ray Bragg peaks from all
samples are resolution-limited, indicating uniform sam-
ple quality and excluding the possibility of phase sepa-
ration. The full spectra and detailed structural study
will be reported elsewhere. Here in Fig. 4, we shows the

H. Chen et al
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Cuperates :  Cu 3d electrons hybridize with O p-orbitals 
and the parent compound is a charge-transfer AF Mott 
insulator. 

Fe-pnictides and chalcogens : Fe 3d orbitals hybridize 
through As or Se 4p . Parent compound is a semi-metallic 
AF ( pressure or doping can lead to SC).

Heavy fermions : f-electrons hybridize with conduction 
spd electrons. Parent is a low T coherent, heavy mass 
paramagnetic metal (pressure or doping AF/SC).

Actinides:  Pu f-electrons hybridize with spd electrons 
along with direct f-f hopping.  Parent is itinerant heavy 5f 
electron material. 

(doping leads to SC)



2.  The neutron scattering resonance in
the superconducting state

1
2
(1− ∆(k + Q)∆(k)

E(k + q)E(k)
) 1

∆(k + Q) = −∆(k)

This can occur because the BCS 
coherence factor

when

Q
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T = 5K

T = 40K

Q = (π, 0)

(1− ∆(k + Q)∆(k)
E(k + Q)E(k)

)
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 Common Threads:

Competition and/or coexistence of  AF and unconventional
superconductivity 

Families of layered 2D materials with correlated  
itinerant d or f electrons

The same electrons that are involved with 
superconductivity are involved with magnetism

Neutron scattering resonance implies a sign change of       
the gap

∆(k + Q) = −∆(k)



3.The Models
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Multi-orbital Hubbard Models
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4.  The properties of the models



The Hubbard Model

H = −t
∑

<i,j>σ

(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓

↑↓ ↑U
t

=1-xU/t n



The effective pairing interaction is given by the 
irreducible particle-particle vertex

Γpp(k′; k)

k

-k

k’

-k’

Here k=(k,i     ).  The momentum transfer is k’-k and 
the Matsubara energy transfer is 

ωn

.iωn′ − iωn



The Bethe-Salpeter equation for the particle-particle 
channel  with center of mass momentum Q=0 is

.

−(T/N)
∑

k′

Γpp(k, k′)G↑(k′)G↓(−k′)φα(k′) = λαφα(k)

Superconductivity

=φα(k′) φα(k)

k

-k

k’

-k’

Γpp(k, k′) λα



The Bethe-Salpeter equation for the particle-particle 
channel  with center of mass momentum Q=0 is

.

−(T/N)
∑

k′

Γpp(k, k′)G↑(k′)G↓(−k′)φα(k′) = λαφα(k)

Superconductivity

(T ) ≈ const

1− λdx2−y2 (T )

The d-wave pairfield susceptibility

Pd



In the same way, we have for the particle-hole channel 
with center of mass momentum Q

with the irreducible particle-hole vertex

−(T/N)
∑

k′

Γph(k, k′)G(k′ + Q)G(k′)ψα(k′) = λαψα(k)

Γph(k, k′)

 Magnetism

χAF (T ) ≈ const

1− λAF (T )
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FIG. 4: (a) The dx2−y2 eigenvalue λd(T ) versus T/t for U =
4t, 8t and 12t and 〈n〉 = 0.90. (b) The dx2−y2 eigenvalue
λd(T ) versus U/t for T = 0.15t and 〈n〉 = 0.90.

λd(T ) = 0.42 and the values of K lay along the dashed
line shown in Fig. 3. One clearly sees the d-wave struc-
ture of Φd. The dependence of Φd(K, πT ) for K along
the Kx axis is shown in the inset of Fig. 6. Here, one
sees that Φd(K, πT ) falls off as K moves away from the
Fermi surface towards the zone center.

We have also calculated the projection of Φd(K, πT )
on the first and second dx2−y2 crystal harmonics

di =
∑

K

gi(K)Φd(K, πT ) (9)

with g1(K) = cosKx − cosKy and g2(K) = cos 2Kx −
cos 2Ky. In table I, we list the values of d2/d1 versus
U at a filling 〈n〉 = 0.9. Here the sum in Eq. (9) is
over the entire Brillouin zone and the temperature was
adjusted so that the d-wave eigenvalue λd for each U/t
was the same (λd ≈ 0.4). If the sum over K in Eq. (9)
is restricted to values which lay along the dashed line in
Fig. 3, this ratio vanishes exactly in the 24-site cluster,
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since g2(K) = 0 on the momenta K along the dashed
line.

U/t 4 6 8

d2/d1 0.064 0.128 0.157

TABLE I: The ratio of the second to the first crystal d-wave
harmonic projection of Φd(K, πT ) for 〈n〉 = 0.9 and λd ≈ 0.4.

The Matsubara frequency dependence of
Φd(K, ωn)/Φd(K, πT ) with K = (π, 0) is shown in
Fig. 7 for 〈n〉 = 0.9 and U/t = 4, 8 and 12. Also shown

U/t = 6

< n >= 1

λd

λAF

Leading eigenvalues in the particle-hole 
and particle-particle channels for
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A measure of this is given by

Pd0(T ) =
T

Nc

∑

K

Φd(K)2χ̄pp
0 (K) (13)

which is plotted in Fig. 9 for U = 8t and 〈n〉 = 1. Here
one clearly sees that as the temperature is lowered and
the Mott-Hubbard gap opens, Pd0(T ) is suppressed.

V. CONCLUSION

The cos kx − cos ky dependence of Φd(k, ωn) reflects
a pairing interaction Γpp(k|k′) which increases at large
momentum transfer k − k′, implying a spatially short-
range interaction which is repulsive for pair formation
on the same site but attractive for singlet pair forma-
tion between near-neighbor sites. The ωn dependence of
Φd(k, ωn) tells us that the pairing interaction is retarded
on a time scale set by J−1. The strength of the inter-
action is largest when U is of order the bandwidth and
increases as the system is doped towards half-filling. Of
course, with U = 8t, as 〈n〉 goes to 1, a Mott-Hubbard
gap opens and there are no holes to pair.
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Figure 23: Leading eigenvalues of the Bethe-
Salpeter equations in various channels for
U/t = 4 and a site occupation 〈n〉 = 0.85.
The Q = (π, π), ωm = 0, the S = 1 mag-
netic eigenvalue is seen to peak at low tem-
peratures. The leading eigenvalue in the
even singlet Q = (0, 0), ωm = 0 particle-
particle channel has dx2−y2 symmetry and in-
creases toward 1 at low temperatures. The
largest charge density eigenvalue occurs in
the Q = (0, 0), ωm = 0 channel and satu-
rates at a small value. The inset shows the
distribution of k-points for the 24-site clus-
ter. (Maier et al. [33])
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Figure 24: The Matsubara frequency de-
pendence of the eigenfunction φdx2−y2

(K, ωn)
of the leading particle-particle eigenvalue
of Fig. 23 for K = (π, 0) normalized
to φ(K, πT ) (red). Here, ωn = (2n +
1)πT with T = 0.125t. For compari-
son, the Matsubara frequency dependence
of the normalized magnetic spin suscepti-
bility 2χ(Q, ωm)/[χ(Q, 0) + χ(Q, 2πT )] for
Q = (π, π) versus ωm = 2mπT is also shown
(green). In the inset, the momentum de-
pendence of the eigenfunction φdx2−y2

(K, πT )
normalized to φdx2−y2

((0, π), πT ) shows its
dx2−y2 symmetry. Here, ωn = πT and the
momentum values correspond to values of K

which lay along the dashed line shown in the
inset of Fig. 23. (Maier et al. [33])

in the main part of Fig. 24. Here, φ((π, 0), ωn) has been normalized so that at ωn = πT

its value is 1. It is even in ωn as it must be for a d-wave singlet to satisfy the Pauli

principle. Also shown in this figure is the ωm-dependence of the Q = (π, π) spin susceptibility

χ(Q, ωm) normalized by (χ(Q, 0) + χ(Q, 2πT ))/2 for comparison with φ((π, 0), ωn). The

boson Matsubara frequency dependence, ωm = 2mπT , of the susceptibility is seen to interlace

with the fermion, ωn = (2n + 1)πT , dependence of the eigenfunction. The momentum and

frequency dependence of φdx2−y2
(K, ω) reflects the structure of the pairing interaction Γpp

e .

The numerical results show that Γpp
e is an increasing function of momentum transfer and is

U/t = 6
λd

λAF

< n >= 0.85



The k and     dependence of the gap function
reflect the structure of the pairing interaction.                    
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FIG. 1: (Color online) (a) Imaginary part of the anomalous
self-energy ImΣan ≡ Σ′′

an at the Fermi wave vector nearest
to the antinodal point, for various dopings. In (b) Imaginary
part of the local spin susceptibility Im χ ≡ χ′′. Black dots
in (a) and (b) identify peaks. The position of the peaks of
Σ′′

an in (a) are reported as magenta dots in (b) at the same
height as the corresponding χ′′ to illustrate the correspon-
dence between the main peaks of the two functions. The
frequency splitting between the peaks decreases with doping,
like the single particle gap. The red curves are for the normal
state. The lower frequency peak present in the supercon-
ducting state disappears and the next peak moves to higher
frequency with doping. In all the figures Lorentzian broaden-
ing is 0.125t, U = 8t, t′ = −0.3t, t′′ = −0.08t, t = 1, ! = 1,
for La2−xSrxCuO4.

namely t′ = −0.17t for nearest-neighbor and t′′ = 0.08t
for next-nearest-neighbor hopping. CDMFT with U = 8t
then leads to superconductivity in the doping range ob-
served experimentally [23]. The anomalous self-energy
Σ′′

an is defined as minus the off-diagonal part of the in-
verse Green function in Nambu space. Numerical results
are presented in energy units where t = 1. For all differ-
ent dopings, the positions of the first two peaks in the
spin fluctuations (black dots on middle panel) are just
shifted down with respect to the corresponding peaks in
Σ′′

an (black dots on top panel).
In Eliashberg theory for the electron-phonon interac-

tion, the first two peaks in the phonon density of states
are shifted down with respect to those in Σ′′

an by the

BCS gap [7]. Similarly, the down shift of peaks in χ′′

seen in Fig. 1b increases as we underdope, like the single-
particle gap. For U = 12t and realistic band structure for
YBa2Cu3O7−x the shift is very weakly doping dependent
[26].

In Migdal-Eliashberg theory, the real part of the self
energy Σ′

an times the quasiparticle renormalization fac-
tor is the gap function. We find that this function, has
no static (frequency independent) contribution, [26] con-
trary to what was found in the t − J model. [7, 24].

To identify the energy scales relevant for the pairs, we
introduce the function

IG (ω) ≡ −

∫ ω

0

dω′

π
Im FR

ij (ω′) . (2)

FR is the retarded Gork’ov function defined in imaginary
time by Fij ≡ −〈Tci↑(τ)cj↓(0)〉 with i and j nearest-
neighbors. The infinite frequency limit of IG (ω) is equal
to 〈ci↑cj↓〉 which in turn is proportional to the T = 0
d-wave order parameter (it changes sign under π/2 ro-
tation). It was shown in Ref. [24] that 〈ci↑cj↓〉 scales
like Tc. For all these reasons, IG (ω) is useful to esti-
mate the frequencies relevant for binding. Its meaning is
illustrated by the d-wave BCS result in Fig. 2a). The
function IG (ω) rises monotonically until it reaches the
sharp BCS cutoff frequency ωc above which no binding
occurs. IG (ω) extracted from the Eliashberg calculation
[30] for lead is also displayed in Fig. 2a). The maximum
is reached at a frequency just above the largest phonon
frequency.

IG (ω) is plotted in Fig. 2b for underdoping δ = 0.4,
optimal doping δ = 0.16 and overdoping δ = 0.26. The
asymptotic large frequency value of IG (ω) indicated by
horizontal lines gives the order parameter that, as a func-
tion of doping, has the dome shape dependence [23]. The
functions IG (ω) cross their respective asymptotic values
at progressively lower frequencies as doping increases.
The spin fluctuations that dominate at the lower frequen-
cies come from wave vectors around (π, π) , as illustrated
in Fig. 2c for an underdoped case. The maximum of
IG (ω) is more pronounced in the underdoped regime.
The form of IG (ω) in the overdoped regime is closer to
the BCS limit with just a sharp cutoff. Our calculations
are less precise at high frequencies, but nevertheless they
suggest that, in all cases, IG (ω) undershoots very slightly
its asymptotic value and then recovers at frequencies that
are of order U/2 where the upper Hubbard band opens
new scattering channels [7]. This has no analog in ordi-
nary superconductors.

In Fig. 3 we focus on the low-frequency behavior. On
the top panel, IG (ω) crosses its asymptotic value for
the first time near its maximum. This crossing point
shown by vertical lines follows the first peak in the corre-
sponding χ′′ in the bottom panel. By studying the cases
U = 8, 12, 16 we have verified that these features scale
with J . Clearly, if we wished to design an approximate

Imφd(ω)

Imχ(ω)

U=8t



2

0

0.2

0.4

0.6

0.8

1

Σ
′
′

a
n
(k

F
,
ω
)

(a)

0

1

2

3

0 0.2 0.4 0.6 0.8

χ
′
′
(ω

)

ω

δ = 0.04

δ = 0.37δ = 0.29

δ = 0.26

δ = 0.16

(b)

FIG. 1: (Color online) (a) Imaginary part of the anomalous
self-energy ImΣan ≡ Σ′′

an at the Fermi wave vector nearest
to the antinodal point, for various dopings. In (b) Imaginary
part of the local spin susceptibility Im χ ≡ χ′′. Black dots
in (a) and (b) identify peaks. The position of the peaks of
Σ′′

an in (a) are reported as magenta dots in (b) at the same
height as the corresponding χ′′ to illustrate the correspon-
dence between the main peaks of the two functions. The
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ducting state disappears and the next peak moves to higher
frequency with doping. In all the figures Lorentzian broaden-
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for next-nearest-neighbor hopping. CDMFT with U = 8t
then leads to superconductivity in the doping range ob-
served experimentally [23]. The anomalous self-energy
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an is defined as minus the off-diagonal part of the in-
verse Green function in Nambu space. Numerical results
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spin fluctuations (black dots on middle panel) are just
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an (black dots on top panel).
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seen in Fig. 1b increases as we underdope, like the single-
particle gap. For U = 12t and realistic band structure for
YBa2Cu3O7−x the shift is very weakly doping dependent
[26].

In Migdal-Eliashberg theory, the real part of the self
energy Σ′

an times the quasiparticle renormalization fac-
tor is the gap function. We find that this function, has
no static (frequency independent) contribution, [26] con-
trary to what was found in the t − J model. [7, 24].

To identify the energy scales relevant for the pairs, we
introduce the function

IG (ω) ≡ −
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FR is the retarded Gork’ov function defined in imaginary
time by Fij ≡ −〈Tci↑(τ)cj↓(0)〉 with i and j nearest-
neighbors. The infinite frequency limit of IG (ω) is equal
to 〈ci↑cj↓〉 which in turn is proportional to the T = 0
d-wave order parameter (it changes sign under π/2 ro-
tation). It was shown in Ref. [24] that 〈ci↑cj↓〉 scales
like Tc. For all these reasons, IG (ω) is useful to esti-
mate the frequencies relevant for binding. Its meaning is
illustrated by the d-wave BCS result in Fig. 2a). The
function IG (ω) rises monotonically until it reaches the
sharp BCS cutoff frequency ωc above which no binding
occurs. IG (ω) extracted from the Eliashberg calculation
[30] for lead is also displayed in Fig. 2a). The maximum
is reached at a frequency just above the largest phonon
frequency.

IG (ω) is plotted in Fig. 2b for underdoping δ = 0.4,
optimal doping δ = 0.16 and overdoping δ = 0.26. The
asymptotic large frequency value of IG (ω) indicated by
horizontal lines gives the order parameter that, as a func-
tion of doping, has the dome shape dependence [23]. The
functions IG (ω) cross their respective asymptotic values
at progressively lower frequencies as doping increases.
The spin fluctuations that dominate at the lower frequen-
cies come from wave vectors around (π, π) , as illustrated
in Fig. 2c for an underdoped case. The maximum of
IG (ω) is more pronounced in the underdoped regime.
The form of IG (ω) in the overdoped regime is closer to
the BCS limit with just a sharp cutoff. Our calculations
are less precise at high frequencies, but nevertheless they
suggest that, in all cases, IG (ω) undershoots very slightly
its asymptotic value and then recovers at frequencies that
are of order U/2 where the upper Hubbard band opens
new scattering channels [7]. This has no analog in ordi-
nary superconductors.

In Fig. 3 we focus on the low-frequency behavior. On
the top panel, IG (ω) crosses its asymptotic value for
the first time near its maximum. This crossing point
shown by vertical lines follows the first peak in the corre-
sponding χ′′ in the bottom panel. By studying the cases
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FIG. 1: The lattice parameters at room temperature as a
function of the composition.

using BaAs, KAs and Fe2As as the starting materials.
The BaAs was pre-synthesized by reacting Ba powder
with As powder in an evacuated quartz tube at 673 K
for 4 hours; KAs by reacting K lumps with As powder
at 523 K for 4 hours; and Fe2As by reacting the mix-
ture of element powders at 973 K for 4 hours. The raw
materials were weighed according to the stoichiometric
ratio of Ba1−xKxFe2As2. The mixed powders were then
thoroughly grounded and pressed into pellets. The pel-
lets were wrapped with Ta foil and sealed in evacuated
quartz tubes. These tubes were annealed at 973 ∼ 1093
K for 20 hours. The sample preparation, except for the
annealing, was carried out in glove box in which high pu-
rity argon atmosphere is filled. The samples were char-
acterized using an X-ray diffractometer at room temper-
ature and the powder diffraction pattern of all samples
can be indexed using the tetragonal ThCr2Si2 structure
of the space group I4/mmm (No 139). The variation of
the lattice parameters at room temperature is shown in
Fig. 1. Both the a and c change smoothly from x = 0 to
1.

We measured the resistivity using the standard four-
probe method. The results are shown in Fig. 2. The
anomaly associated with the structural and magnetic
transition is pronounced for x = 0 and 0.1. The anomaly
is rounded off for x = 0.2, which becomes a superconduc-
tor with the transition starting at 14 K and the resistivity
reaching zero at 3 K. The TC increases with further potas-
sium doping and the superconducting transition becomes
narrower until x = 0.5. Thereafter, TC begin to decrease
from the maximum TC ≈ 37.5 K with the potassium
doping. At x = 1, TC is 3.8 K for the KFe2As2 sample,
the same as reported by Sasmal et al.[21]. The TC as a
function of the composition is summarized in Fig. 3.

While the temperature of the simultaneous structural
and SDW transition can be inferred from the pronounced
anomaly in resistivity for x = 0 and 0.1 (Fig. 2), for
x ≥ 0.2, it becomes progressively less certain whether
there is an anomaly in the resistivity. To further in-

FIG. 2: Temperature dependence of the resistivity.

FIG. 3: The composition-temperature phase-diagram, show-
ing the structural, magnetic and superconducting transitions.
The TS denotes the temperature of the simultaneous struc-
tural and magnetic transition, and TC the superconduct-
ing one. The spin-density-wave (SDW) and superconducting
(SC) orders coexist at low temperature in 0.2 ≤ x < 0.4.

vestigate the crystal structure and structural transition,
powder diffraction experiments from 5 to 300 K were per-
formed for the x = 0, 0.1, 0.2, 0.3, 0.4 and 0.6 sam-
ples using synchrotron high-energy x-ray (λ = 0.1067Å)
at the beamline 11-ID-C at Advanced Photon Source of
ANL. The sample temperature was controlled by a cry-
omagnet. The synchrotron X-ray Bragg peaks from all
samples are resolution-limited, indicating uniform sam-
ple quality and excluding the possibility of phase sepa-
ration. The full spectra and detailed structural study
will be reported elsewhere. Here in Fig. 4, we shows the

Competition and/or coexistence of  AF and unconventional
superconductivity 



Neutron scattering resonance implies a sign change of       
the gap ∆(k + Q) = −∆(k)
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Figure 23: Leading eigenvalues of the Bethe-
Salpeter equations in various channels for
U/t = 4 and a site occupation 〈n〉 = 0.85.
The Q = (π, π), ωm = 0, the S = 1 mag-
netic eigenvalue is seen to peak at low tem-
peratures. The leading eigenvalue in the
even singlet Q = (0, 0), ωm = 0 particle-
particle channel has dx2−y2 symmetry and in-
creases toward 1 at low temperatures. The
largest charge density eigenvalue occurs in
the Q = (0, 0), ωm = 0 channel and satu-
rates at a small value. The inset shows the
distribution of k-points for the 24-site clus-
ter. (Maier et al. [33])
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Figure 24: The Matsubara frequency de-
pendence of the eigenfunction φdx2−y2

(K, ωn)
of the leading particle-particle eigenvalue
of Fig. 23 for K = (π, 0) normalized
to φ(K, πT ) (red). Here, ωn = (2n +
1)πT with T = 0.125t. For compari-
son, the Matsubara frequency dependence
of the normalized magnetic spin suscepti-
bility 2χ(Q, ωm)/[χ(Q, 0) + χ(Q, 2πT )] for
Q = (π, π) versus ωm = 2mπT is also shown
(green). In the inset, the momentum de-
pendence of the eigenfunction φdx2−y2

(K, πT )
normalized to φdx2−y2

((0, π), πT ) shows its
dx2−y2 symmetry. Here, ωn = πT and the
momentum values correspond to values of K

which lay along the dashed line shown in the
inset of Fig. 23. (Maier et al. [33])

in the main part of Fig. 24. Here, φ((π, 0), ωn) has been normalized so that at ωn = πT

its value is 1. It is even in ωn as it must be for a d-wave singlet to satisfy the Pauli

principle. Also shown in this figure is the ωm-dependence of the Q = (π, π) spin susceptibility

χ(Q, ωm) normalized by (χ(Q, 0) + χ(Q, 2πT ))/2 for comparison with φ((π, 0), ωn). The

boson Matsubara frequency dependence, ωm = 2mπT , of the susceptibility is seen to interlace

with the fermion, ωn = (2n + 1)πT , dependence of the eigenfunction. The momentum and

frequency dependence of φdx2−y2
(K, ω) reflects the structure of the pairing interaction Γpp

e .

The numerical results show that Γpp
e is an increasing function of momentum transfer and is
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FIG. 4: (a) The dx2−y2 eigenvalue λd(T ) versus T/t for U =
4t, 8t and 12t and 〈n〉 = 0.90. (b) The dx2−y2 eigenvalue
λd(T ) versus U/t for T = 0.15t and 〈n〉 = 0.90.

λd(T ) = 0.42 and the values of K lay along the dashed
line shown in Fig. 3. One clearly sees the d-wave struc-
ture of Φd. The dependence of Φd(K, πT ) for K along
the Kx axis is shown in the inset of Fig. 6. Here, one
sees that Φd(K, πT ) falls off as K moves away from the
Fermi surface towards the zone center.

We have also calculated the projection of Φd(K, πT )
on the first and second dx2−y2 crystal harmonics

di =
∑

K

gi(K)Φd(K, πT ) (9)

with g1(K) = cosKx − cosKy and g2(K) = cos 2Kx −
cos 2Ky. In table I, we list the values of d2/d1 versus
U at a filling 〈n〉 = 0.9. Here the sum in Eq. (9) is
over the entire Brillouin zone and the temperature was
adjusted so that the d-wave eigenvalue λd for each U/t
was the same (λd ≈ 0.4). If the sum over K in Eq. (9)
is restricted to values which lay along the dashed line in
Fig. 3, this ratio vanishes exactly in the 24-site cluster,
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the leading eigenvalue λAF in the Q = (π, π), S = 1 particle-
hole channel at half-filling.
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FIG. 6: The dx2−y2 eigenvector Φd(K, ωn) at ωn = πT , nor-
malized to its value at K = (π, 0), versus K for U/t = 8, band
filling 〈n〉 = 0.9 and T/t = 0.22. In the main figure, the K
points move along the dashed line shown in Fig. 3. The inset
shows the behavior of Φd when K varies along the kx axis.

since g2(K) = 0 on the momenta K along the dashed
line.

U/t 4 6 8

d2/d1 0.064 0.128 0.157

TABLE I: The ratio of the second to the first crystal d-wave
harmonic projection of Φd(K, πT ) for 〈n〉 = 0.9 and λd ≈ 0.4.

The Matsubara frequency dependence of
Φd(K, ωn)/Φd(K, πT ) with K = (π, 0) is shown in
Fig. 7 for 〈n〉 = 0.9 and U/t = 4, 8 and 12. Also shown

U/t = 6

< n >= 1

λd

λAF

λd

λAF

In both the materials and the models 
superconductivity appears when 
antiferromagnetism is suppressed.



The k dependence of the gap depends upon the electronic
band structure  ( Fermi surfaces and orbital weights).

The frequency dependence of the gap depends on the
frequency dependence of the magnetic susceptibility.

In the models we see that the structure of the 
interaction is reflected in ∆(k, ω)
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FIG. 1: (Color online) (a) Imaginary part of the anomalous
self-energy ImΣan ≡ Σ′′

an at the Fermi wave vector nearest
to the antinodal point, for various dopings. In (b) Imaginary
part of the local spin susceptibility Im χ ≡ χ′′. Black dots
in (a) and (b) identify peaks. The position of the peaks of
Σ′′

an in (a) are reported as magenta dots in (b) at the same
height as the corresponding χ′′ to illustrate the correspon-
dence between the main peaks of the two functions. The
frequency splitting between the peaks decreases with doping,
like the single particle gap. The red curves are for the normal
state. The lower frequency peak present in the supercon-
ducting state disappears and the next peak moves to higher
frequency with doping. In all the figures Lorentzian broaden-
ing is 0.125t, U = 8t, t′ = −0.3t, t′′ = −0.08t, t = 1, ! = 1,
for La2−xSrxCuO4.

namely t′ = −0.17t for nearest-neighbor and t′′ = 0.08t
for next-nearest-neighbor hopping. CDMFT with U = 8t
then leads to superconductivity in the doping range ob-
served experimentally [23]. The anomalous self-energy
Σ′′

an is defined as minus the off-diagonal part of the in-
verse Green function in Nambu space. Numerical results
are presented in energy units where t = 1. For all differ-
ent dopings, the positions of the first two peaks in the
spin fluctuations (black dots on middle panel) are just
shifted down with respect to the corresponding peaks in
Σ′′

an (black dots on top panel).
In Eliashberg theory for the electron-phonon interac-

tion, the first two peaks in the phonon density of states
are shifted down with respect to those in Σ′′

an by the

BCS gap [7]. Similarly, the down shift of peaks in χ′′

seen in Fig. 1b increases as we underdope, like the single-
particle gap. For U = 12t and realistic band structure for
YBa2Cu3O7−x the shift is very weakly doping dependent
[26].

In Migdal-Eliashberg theory, the real part of the self
energy Σ′

an times the quasiparticle renormalization fac-
tor is the gap function. We find that this function, has
no static (frequency independent) contribution, [26] con-
trary to what was found in the t − J model. [7, 24].

To identify the energy scales relevant for the pairs, we
introduce the function

IG (ω) ≡ −

∫ ω

0

dω′

π
Im FR

ij (ω′) . (2)

FR is the retarded Gork’ov function defined in imaginary
time by Fij ≡ −〈Tci↑(τ)cj↓(0)〉 with i and j nearest-
neighbors. The infinite frequency limit of IG (ω) is equal
to 〈ci↑cj↓〉 which in turn is proportional to the T = 0
d-wave order parameter (it changes sign under π/2 ro-
tation). It was shown in Ref. [24] that 〈ci↑cj↓〉 scales
like Tc. For all these reasons, IG (ω) is useful to esti-
mate the frequencies relevant for binding. Its meaning is
illustrated by the d-wave BCS result in Fig. 2a). The
function IG (ω) rises monotonically until it reaches the
sharp BCS cutoff frequency ωc above which no binding
occurs. IG (ω) extracted from the Eliashberg calculation
[30] for lead is also displayed in Fig. 2a). The maximum
is reached at a frequency just above the largest phonon
frequency.

IG (ω) is plotted in Fig. 2b for underdoping δ = 0.4,
optimal doping δ = 0.16 and overdoping δ = 0.26. The
asymptotic large frequency value of IG (ω) indicated by
horizontal lines gives the order parameter that, as a func-
tion of doping, has the dome shape dependence [23]. The
functions IG (ω) cross their respective asymptotic values
at progressively lower frequencies as doping increases.
The spin fluctuations that dominate at the lower frequen-
cies come from wave vectors around (π, π) , as illustrated
in Fig. 2c for an underdoped case. The maximum of
IG (ω) is more pronounced in the underdoped regime.
The form of IG (ω) in the overdoped regime is closer to
the BCS limit with just a sharp cutoff. Our calculations
are less precise at high frequencies, but nevertheless they
suggest that, in all cases, IG (ω) undershoots very slightly
its asymptotic value and then recovers at frequencies that
are of order U/2 where the upper Hubbard band opens
new scattering channels [7]. This has no analog in ordi-
nary superconductors.

In Fig. 3 we focus on the low-frequency behavior. On
the top panel, IG (ω) crosses its asymptotic value for
the first time near its maximum. This crossing point
shown by vertical lines follows the first peak in the corre-
sponding χ′′ in the bottom panel. By studying the cases
U = 8, 12, 16 we have verified that these features scale
with J . Clearly, if we wished to design an approximate

Imφd(ω)

Imχ(ω)

The frequency dependence of the gap depends on the
frequency dependence of the magnetic susceptibility.



It remains to be seen how these threads will
be tied together for the real materials.


