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Model systems, nice reduction schemes but
how much can we trust them?    
Do they explain or fit the experiments?
Variational approach is always approximate
and no exact method exists for fermions in 
2D /3D strongly correlated systems. 
Still waiting for PEPS, MERA, Sign problem
solution in quantum Monte Carlo…

Motivations

Why do not we try to use the variational scheme
for realistic systems with full Coulomb e-e? 



Testing RVB theory:
assume RVB wave function is a correct and 
exhaustive description of correlation
reasonable agreement with experiments

Starting from 2003 still a lot of work to be done
Testing RVB on small molecules, comparison 
with existing quantum chemistry methods.

HTc: few preliminary results 
with huge computational resources…

Outline

RVB theory, short review on lattice models



Cuprates
Phase diagram: temperature 

vs. doping
quasi-2D structure
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Anderson’s  variational wavefunction for spin models
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Nodal point gapless

Hot point gap = BCSΔ

Best variational PBCS in Heisenberg model 

Energy of BCS excitations:



BCSΔ

The BCS d-wave variational parameter shows the
pseudogap feature observed in experiments

From Pamarekanti, 
Randeria, Trivedi, PRB ‘00



From RVB  to superconductivity

The presence of holes (empty sites) allows 
charge (super-) current and superconductivity

[ ] iN −=coherence) phase(,particles)#( θ



Instead the actual order parameter ~ x (doping)

This is the most important feature 
of an RVB superconductor
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Weak coupling theory and RVB are not in conflict
t-J(singlet attraction)-V,U(charge-repulsion):
V (nearest neigbour) U (on site)
Plehanov-Fabrizio-Sorella PRL ‘06



Rational behind High-Tc in Cuprates
M. Capone  et al., Science (2002).

We need antiferromagnetic fluctuations J as 
an electronic attractive channel for supercond.

On the other hand we need a small quasiparticle
weight Z (close to a Mott insulator) in order to 
overscreen the long range Coulomb repulsion:

V V Z2

J J

Pnictides, another way to have small Z?



Classification of the possible RVB insulators

Paired RVB, i.e.

with a gap in the mean field, 
and broken symmetry (e.g. AF)

RVB spin  liquid, gap but no kind
of order(dimer,magnetic,nematic…. 

gapped 0≠Δ BCS

Nodal RVB      
gapless 0≠Δ BCS

Spin liquid (algebraic)
Nodal fermions quasiparticles

Fermi RVB        

surface Fermi aon 
gapless 0=Δ BCS

Fermi gas spin properties:
e.g. finite susceptibility
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The Cooper pairing in an insulator:
2D   Hubbard model N=#sites

E. Plehanov F. Becca and S.S. PRB’05



Similar conclusions in Bulut, Scalapino, White, PRB’93

AF
D-wave
singlet

Half filled Hubbard model testing instabilities
λ~1  of the quasiparticles interactions
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TurboRVB : the RVB for real electrons
(see qeforge web page) 

More general than Hartree-Fock, the most important correlation is included for free

with a single determinant
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II) DMC:  the lowest energy state with the same nodes of the Variational wf
with pseudo: Old  i) often unstable, ii) non variational energy upper bound

New (M.Casula C.Filippi and S.S.) PRL05

LatticeRegularizedDiffusionMonteCarlo
Very stable variational upper bounds of the  pseudo Hamiltonian energy.

Key idea: on a lattice all interactions are nonlocal

I) Optimization of several ~10000 Variational parameters now possible

Using  the recent Hessian method : S.S. PRB ‘05, C. Umrigar PRL’05, 
C. Umrigar , J. Toulouse, C, Filippi, S.S. and R. Henning PRL ’07 
S. Sorella, M. Casula and D. Rocca JCP ‘07                

Technical achievements used for TurboRVB

III)  Very general parametrization of the Jastrow
factor, in principle complete (so vdW correct)



‘’Small’’ systems where electron 
correlation is very important and

TurboRVB was successful

• Hydrogen and benzene (JCP’08)
• Benzene dimer (JCP ‘05)
• Beryllium dimer  (Archive)
• Iron dimer (CPL ‘09)



Molecule Within 
RVB+LRDMC

Estimated
from Exp.

6.291(7)eV 6.34(14)eV

59.06(2)eV 59.24(11)eV

2C

66HC

7

Binding energy of aromatic molecules

+



The Beryllium dimer

• The weakest bounded dimer (~0.1eV).
• Without vdW  unbounded (HF)
• LDA binds (it is  a luck?…)



Beryllium dimer: Beryllium dimer: 
a challenging moleculea challenging molecule



Realize that the chemical bond ~eV << Atomic energy ~10H

To have an accurate description of the chemical bond 
inter-atomic correlations are more important than 
intra-atomic correlations

The solution: The solution: 
a constrained energy minimizationa constrained energy minimization

n* = nHF (A)
A
∑ ≥ N /2

We constrain the energy minimization to have a number n* 
of molecular orbitals

V

r

JHF level of 
correlation

RVB resonance in the 
same active space

Valence bond energy consistent RVB



Start with a simple case:  the H dimer 

gσ1

uσ1

Bonding orbital

Antibonding orbital

A B

BA rrrr ee
rrrr

−−−− +

BA rrrr ee
rrrr
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At equilibrium                       , at large distance (strong correlation)                     25.0=λ :1→λ
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Beryllium dimerBeryllium dimer



Fluorine dimerFluorine dimer

F2 molecule S=0
F atom S=1/2

JAGPn* size consistent!
(bonding-antibonding resonance)

CEEIS-FCI: correlation energy extrapolation by intrinsic scaling - full CI  
L. Bytautas, T. Nagata, M. S. Gordon, K. Ruedenberg, J. Chem. Phys. 127, 164317 (2007)



Systematic tests on simple molecules

In several important molecules: all the first raw
dimers and the most difficult ones of the G1 set:
CN, LiH, SO and others (calculation in progress) 
the accuracy in the binding energy and bond length,
is from 4 to 10 times better than the previous best
DMC results on single Slater determinant 
(J. Grossman, JCP 2002, Toulouse, Umrigar, 2008)
Often the JRVB improves the accuracy of the 
chemical bond by an order of magnitude (e.g. F2): 
The resonance valence bond really works!



Consistent description of the spectrum of the Iron dimer
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From chemistry to solid state physics &HTc
Problems (NB sign problem is not in the list):
1)Pseudopotential for QMC are often not available

e.g. La is a problem.
2) Correlated periodic systems:

difficult to reach thermodynamic properties.
DFT simple Average over k vectors (linear).
QMC system large enough. #el^2 complexity

3) Error bar small enough for large systems…
e.g. condensation energy is ~10K/Cu
Error bar so far reached is 100K/Cu.

QMC huge computer time, next 5 years?



4x4 unit cell 64 atoms and 544electrons by QMC

2CaCuO the parent compund of HTc superconductors



Calculation details
DolgDolg--Filippi pseudopotentialsFilippi pseudopotentials

neon core
spd non local components

scalar relativistic corrections included 

Gaussian basis set for orbitals wave function Gaussian basis set for orbitals wave function 
Cu  (8s7p5d2f) 
O (4s5p2d2f)
Ca (6s6p2d1f)  

Total one particle basis: ~5000 gaussians.



4x4 supercell with antiperiodic boundary cond. 
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Characterizing the DFT orbitals 



One can classify the 8    degenerate DFT orbitals
in terms of point spatial group symmetries

1 s (x2+y2)             defined on A sublattice
1s  (odd x<->y)       =              B   = 
1d (xy)                     =             B
1d (x2-y2)                 =             A    =
2E (x+iy p-wave)   linear combination in A or B

Thus 4 molecular orbitals are in the A and 4 in B
Easy to build AF (4 up in A and 4 down in B)



A typical molecular orbital at the Fermi energy:
localized             character on the Copper.22 yxd

−



We use DFT orbitals and combine them
in an AF fashion to gain energy:

DFTkDFTk

RQki
k

ikR
k

Qkvku
eveu

+±→

±→ +

electrons Real
   model Lattice )(

We optimize all possible  uk vk and include
a Jastrow factor fully optimized and local

(analogous to Gutzwiller wavefunction).
Total of ~200 variational parameters.



By considering the LDA molecular orbitals and 
optimizing the energy with  AF order and Jastrow
correlation we obtain (4x4 unit cell point):

LSDA HF LDA+U B3Lyp VMC RVB Exp

0.0 0.89 0.66 0.51 0.572±0.003 0.51±0.05

It is clear that the missing ingredient of LSDA
is the correct exchange energy.

) (  moment  Magnetic 2 BCaCuO μ



The spin density in CaCuO2 parent compound HTc

DFT-LDA no magnetic moment

QMC, takes into account electron correlation and
leads to AF order compatible with exp. ~0.51±0.05

4x4 unit cell 64 atoms and 544electrons by QMC

This is a promising result, probably the initial step
to understand HTc-superconducitvity by simulation



As in the one band HM can we gain energy
in the insulator by allowing            pairing?22 yxd

−

J(correlation)+DFT Slater Det

J(correlation)+ 22 yxd
−

J(correlation)+           +AntiFerro order22 yxd
−

~0.4eV/Cu
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Not accessible in realistic simulation too small
error bars. Probably with correlated sampling.

The true ‘’pairing’’ condensation energy is the 
BCS gain in energy with respect to the AF state



How the d-wave pairing looks like 
in a realistic calculation? 

CuO



Remark:

There is a clear energy gain to have a pairing
function with d-wave symmetry.  

This is clearly not a direct evidence of RVB HTc

But at least does not exclude this theory, as if no
d-wave energy gain RVB death.



Conclusions

From lattice model to realistic simulations:
A new accurate and ‘’cheap’’ method for physics/chemistry
RVB=JAGP  with constrained number of molecular orbitals:

It looks in all cases studied accurate  <0.1eV/Atom
and is ‘’cheap’’ because requires 1Det + QMC 

First consistent description of Iron dimer spectrum  (Chem. Phys. Lett.)

Accurate description of dispersive forces by 
means of a more accurately parametrized Jastrow

Application to HTc materials in progress, promising

The RVB wavefunction is a new paradigm for 
Mott insulators: paired, gapless, Fermi…
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The generalized Langevin dynamics



Discretization of the Langevin dynamics





The 16 H case with PBC, MD with friction

21RVB liquid phase possible at high pressure 



(a.u.) 0R 3.82(20)4.1 (1)3.721?

?Type 

299.7285(18)468?

Exp.RVBDFTHFMethod

)cm( -1
0ω

uΔ
7 −∑g

9 −∑g
9

A benchmark correlated dimer
2Fe

It is possible to explain  the 
photoemission spectrum in the anion         
Leopold JPC (1988) 

−
2Fe

22



DFT  occupation molecular orbitals 

23



The right  occupation is due to correlation

Confirmed also by recent CI, Hubner  JPC’02

higher  eV 0.7  is   
  wfour RVB Within

7
uΔ

−∑u
8

24

Explains the         exp.−
2Fe



Iron dimer (II)

9
g
−Σ

LRDMC equilibrium distance: 4.08(5)
(Indirect) experimental value: ~ 3.8 
Harmonic frequency: 284 (24) cm-1

Experimental value: ~ 300 (15) cm-1



Conclusions and Perspectives 

Final goal:
simulation of complex correlated electron systems

by Monte Carlo calculation  and beyond DFT 

-exploiting the RVB=BCS+J for molecular calculations
M. Casula and S. Sorella JCP ’01
M. Casula C. Attaccalite and S.S. JCP  ‘04  
The Iron dimer a successful test case relevant for biophysics   

-Possible stable low-temperature high-pressure  liquid phase for hydrogen

-d-wave superconductivity in strongly correlated models 

26



Lattice GFMC 

Green function:

Lattice hamiltonian: ∑∑ ++−= +
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Transition probability well defined? NO, for the fermionic sign problem
⇒ FN approximation

(see D.M.Ceperley et al. PRB 51, 13039 (1995))



From continuous to lattice
Kinetic term
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Separation of core and valence dynamics for heavier atoms 
and molecules  ⇒ two hopping terms in the kinetic part

)()()1()()( 2aOxpxpx ba +ΨΔ−+ΨΔ≈ΔΨ

p can depend on the distance from the nucleus
0)(    and    1)0(    , if =∞=< ppba

Moreover, if b is not a multiple of a, the random walk can 
sample all over the space! 

Our choice: 2 1
1)(

r
rp

γ+
=

From lattice to pseudo lattice (dense continuum)



Comparison with the ‘’best’’ DMC 
(Umrigar,Nightingale,Runge ’93)

)(  aτΔ

electrons all atom   C



Non local pseudo possible!!!

1) No localization approximation employed
2) Still variational upper bound theorem holds

exactly as in the lattice fixed node
3) It works also without Jastrow optimization
4) The fixed node energy depends only on the 
nodal  structure and  weakly on the amplitudes

For heavy atoms Z>20  it is impossible to avoid them
(see L.Mitas PRB 49(6), 4411 (1994))



The disease of the localization approximation
core) ( electrons    withpseudoatom   24C



Why is that?

−
+

Nodal surface

non local move

+

By neglecting the allowed non local moves the 
localization approximation infinitely negative 
attractive potential close to the nodal surface. 
It  works only for very good trial function.



Targets

AIM
• look for Monte Carlo algorithms that can deal with atoms 
beyond the first row (all electrons)
• find a “good” trial wave function able to get correlation and 
to treat molecular bonds

The pseudo-lattice approach can improve the efficiency?
Possible  use of pseudopotentials within fully   variational 
DMC calculations even for heavier atoms? 



HF 38%

HF+J 14%

AGP+J 6.5%

DMC+AGP+J 1%

Accuracy in the total energy (~76Ry) of   C
as compared with the ionization energy 11.26eV

For poor accuracy also the HF is enough



1) For given  energy accuracy  per ion a  simple 
algorithm (N^3)  is enough: no (sign) problem

2) For correlation functions we need  an 
accuracy ~1/N (below the gap) unfortunately

3) I do not see any hope for this, so far any 
improvement (like DMC) reduces the 
energy accuracy by a factor at most.    

4) The realistic hope is the effective Hamiltonian



A short review of  fixed node approximation

2

( )
2
hH V x
m

= − Δ +

1) It works in configuration space x: electrons and spins given 

2) Given any wave function          an Hamiltonian  is found ( )G xψ

| |
   0  choice: ( )  ( )

|G G G
x H

H H H V x V x
x

ψ
ψ δ δ

ψ
= = + ⇒ = −

3) An effective hamiltonian is studied  ‘’closer’’ to H:
             ( )   with constraint x | 0eff

G GH H V xδ ψ= − >

Note: exact for bosons and in the classical limit 0h →



‘’Philosophy’’ of the approach
Assume there are physical Hamiltonian that describe  
a phase  and are therefore stable away from critical points:

H H Vδ→ +
The phase  remains stable  for physical perturbation  Vδ
With lattice fixed node we can simulate  H with several         Vδ

If           is stable than we can say that         may represent
a ground state of some stable hamiltonian (not necessarily H)  

Gψ Gψ

For practical purposes           is taken by minimizing the energy of H Gψ



Ground state Properties
of  stable HamiltoniansSolution of model Hamiltonians

Properties of ‘’reasonable’’
wave functions 

? ? ?

? ? ?

? ? ?

? ? ? ? ? ?

? ? ?



Effective hamiltonian approach for
strongly correlated lattice models           

Outline of the lecture:
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The Lanczos algorithm in QMC:
From lattice model  to continuous models?

)
4
1 ( ..  jijiji nnSSJchPccPtH −++−= ∑ +

σσ
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P             Strong correlation 

O



Lanczos with QMC on lattice models (L sites):
p+1

For p>1 Lanczos steps   #operation /MC ~ L

Always polynomial at fixed p.
Probably  improvement  to p! # operations

The question is how much computer effort is 
required for prescribed accuracy at given L.



0.0 0.5 1.0 1.5 2.0 2.5

-1.17

-1.16

-1.15

Exact

4 holes 26 sites J/t=1

 

 
En

er
gy

 p
er

 si
te
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 Variational
 Fixed node
 Stochastic Reconf.

Variational energy for various QMC vs.  variance by 
VMC wavefunction with p=0,1,2 Lanczos iterations

The improvement in energy for both fixed node and 
present method (best) is irrelevant as far as energy ….



On a 6x6 (not possible exactly) SR convergence is evident for p=2

2 4 62 4 6

-0.005

0.000

0.005

0.010 From ΔBCS-->0

 

 

From optimal ΔBCS

 p=2   p=3 VMC  p=1

 

 

Manhattan Distance=|x|+|y|
SR p=3  pairing   consistent within  3% (error bars)
FN+2LS   ============             20% 
VMC + 2LS    =========            70%   



Lanczos method for continuous models?

Unfortunately for the first Lanczos step:

TT

TT

HH
HHH
Ψ++Ψ
Ψ++Ψ

)1)(1(
)1()1(

αα
αα

0      and 3
T →⇒+∞→ΨΨ αH

tHe Δ−Only a statistical  method known with
Caffarel & Ceperley  … or 

‘’backflow wavefunctions’’ (poor scaling)



Projected BCS wave function on triangular lattice

GP-BCS BCSP=

: ground state of BCS Hamiltonian

: projected BCS state
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Marshall sign rule (W.Marshall, Proc.R.Soc.London 
Ser. A 232,48 (1955))

,
ij i j

i j
H J S S= ⋅∑

uur uur
0ijJ ≥
0ijJ ≤

: if i and j on the same sub-lattice
: if i and j on the different sub-lattice

i
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Fixed node approximation
(D.F.B.ten Haaf et al., PRB 51, 13039 (‘95))

Effective Hamiltonian with no negative sign problem

( )

eff

sf

                         if  0 and 

                   if  0 and 

+ 1+ ( )    if  

x x x x

x x x x x x

xx

H H x x

H H H x x

H x x x

γ

γ ν

′ ′

′ ′ ′

⎧ ′< ≠
⎪⎪ ′= − > ≠⎨
⎪ ′ =⎪⎩

x
( ) ( )G Gx x x xH x H x′ ′′≡ Ψ Ψ

( )G Gx xΨ ≡ Ψ
x xH x H x′ ′≡: spin configurations : matrix elements

: variational (guiding) wave function

A standard Green function MC for effective Hamiltonian

γ : positive constant

( ) ( ) ( )eff eff
init G 0

n
nx G x xϕ →∞⎯⎯⎯→Ψ Φ

eff
0Φ : ground state 

of effHeff eff
x xx x x xG Hδ ′′ ′= Λ −



Fixed node approximation (II)

1. same phase as 

2. variational state for      better than ( )eff
0 xΦ

( )G xΨ

H

eff eff eff eff
0 0 0H EΦ = Φ

0 0 0H EΦ = Φ

eff eff eff
G G 0 0 0 0H E H EΨ Ψ ≥ ≥ Φ Φ ≥

( )eff
0 xΦ

( )G xΨ



1D limit (J’=0)
Projected BCS wave function: 
|BCS>: ground state of BCS Hamiltonian

GP-BCS BCSP=

up to 3rd neighbors, 
Ground state properties well described (Gros et.al.)
Low-lying excited states (spinon): †

G ,k BCSkP γ ↑=

( )

( )

†
BCS , ,

, ,

† † † †
, , , ,

1

h.c.

        h.c.

i j
i j

L

l i i l i i l
i l

H t C C

C C C C

σ σ
σ

↑ + ↓ ↓ + ↑
=

= − +

⎡ ⎤+ Δ − +⎢ ⎥⎣ ⎦

∑

∑ ∑

lΔ 3l ≤
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RVB variational wavefunction for lattice models
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iN rrfAAGPBCSP

General: 

metal (no pairing)   
Band Insulator 

Superconductor  

)( Fkkf εε <Θ=

Fkf εε ~   0 k≠

dispersion particle  Single =kε

JAGP = J x AGP RVB    
Fkf εε ~   0 k≠

But insulator

New phase
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ji
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<
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Definition of spin liquid

A spin state with 

no magnetic order (classical trivial)
no broken translation symmetry (less trivial):

no Dimer state
(Read,Sachdev)

is a spin liquid

Neel



Experiments from:
Coldea et al (PRL ’01)

PRB ‘03

J’/J=1/3 
J=0.375meV

“J” between planes ~1K



κ −

2 2 3(ET) Cu (CN)κ −

Spin Liquid ?

Shimizu et al. PRL ‘03

/ 1.8J J′ ≈/ 0.9J J′ ≈

J=250K !!!



Methods

0,
,,,∑

=
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↓

+
↑

ji
jiji CCf

eBCS

Variational quantum Monte Carlo (QMC) method
Projected BCS wave function: 

: GS of BCS Hamiltonian

Resonating valence bond states from PBCS 
QMC with Fixed node appr., (D. ten Haaf et al. PRB’95)
to study the stability of the spin liquid state.

GP-BCS BCSP=

(S. Sorella, PRB 64, ‘01)
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ji
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2D with J’/J=0.33

Gapless excitations
S=1/2 

Fractionalization in 2D!
see e.g. X.G. Wen or M. Fisher

Bogoliubov QP spectrum:

k kξ ε μ= −

2 2
k k kE ξ= + Δ

No particular d-wave or s-wave symmetry due to anisotropy



Isotropic triangular lattice with J’/J=1.0

Green function Monte Carlo
Spin correlation function:

( ) ( ) ( )i Z Z iC l S r S r lτ= +
r urv

Spin liquid state unstable 
toward classical Neel state

8

18x18



Spin structure factor for J’/J=1.0

max/ 0.351 0.003m m = ±

Order parameter:

Starting from a spin liquid :

?

Exp. ~0.45 (organic) at J’/J=1.8

Linear spin wave 0.4773
GFMC [1] 0.41(2)

[1] Capriotti, Trumper, SS, PRL 82, 3899 (‘99)

Starting from ordered state :

GFMC



Spin structure factor for J’/J=0.7

Incommensurate 
peaks at Q*=(q*,0)

No long range order

5



Stability against dimerization



Summary
Possible spin liquid (SL) state in 2D
Two different SL? 
Gapless vs. gaped?



Correlation plays a  crucial role:

1) No way to have superconductivity in a model
with repulsive interaction. 

HTc  not explained, HeIII,  spin liquid (organic)

We should optimize the RVB wavefunction
in presence of its Jastrow.
QMC only for correcting the HF is meaningless

12

2) No way to obtain insulating behavior with 
a model with 1el/unit cell (Mott Insulator).

This is instead possible with correlated Jastrow



Why RVB wavefunction should 
work for molecules? 

Van der Waals  forces are included  by Jastrow

In a complex system the molecular orbitals 
are often nearly degenerate 
Resonance Valence Bond approach  OK 

13

A molecule has a gap ‘’insulator’’
Why not RVB insulator ?



Computational complexity now N^4

In QMC for given accuracy (e.g. Kcal/Mol)
Cost=  N^4 ,  as sampling length=M~N.

 N^2dimension linear  has      where    
:solve  tohas One
sfsx =

N^6 ???  

),~(   where  s 
: thatand grad. conj.exploit  can  One !!No!

2NNMMMM == +



DMC on the lowest energy JAGP wf.

Old technique non variational (often unstable)
with nonlocal pseudopotential

New (M.Casula C.Filippi and S.S.) PRL05

LatticeRegularizedDiffusionMonteCarlo

Very stable variational upper bounds of the 
pseudo Hamiltonian energy.
Key idea: on a lattice all interactions are nonlocal



Linus Pauling: the concept of resonance is old

6 6Benzene    C H

+

z  valence electrons occupy the 2p  orbital
then strong correlation   Heisenberg model→ ≈
6

2 2

              a,b  nearest Carbon sites
1                          = ( ) ( )
2 z z

a b

a b
p p

H JS S

r r a bψ ψ

= ⋅

⎡ ⎤ ⎡ ⎤′↑↓ − ↑↓ + ↔⎣ ⎦⎣ ⎦

r r



In the old formulation RVB was  expensive

1) Use of non orthogonal configurations
2) The number of VB grows exponentially
with  the number of atoms 

The molecular orbital approach won…but

Now (after Htc) we have a better tool



On a given electron  configuration:

{ }1 2 3 1 2 3, ,   , ,x r r r r r r↑ ↑ ↑ ↓ ↓ ↓=

The pairing function can be computed:

With a single determinant  N/2 x N/2, N=# el.
even when RVB  = many Slater Determinants

7

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,
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r r r r r r

r r r r r r

r r r r r r

f f f

x RVB f f f AGP

f f f

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

= =
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Mapping to a simple  model: the 2-site Hubbard U

We use the Singlet-Triplet gap and  the optimized 
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The crucial  difference between 
an Htc superconductor and a RVB insulator is: 

The long distance Jastrow factor 1/R or log(R)



Phase Diagram of Hydrogen

LogT 
[K]
4 

3
2

Electron Proton Plasma

Electron
Proton
Liquid

Molecular
Liquid

Molecular Solid Proton Solid

Clustered liquid

1         2        3 LogP[GPa] Superconductivity?
Ashcroft Nature 2004
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Indications of an anomalous melting line 
S.A. Bonev, ..,G. Galli Nature 2004

Another quantum T=0 liquid phase? 



Energy per H at  high-pressure (Hartree) 

Simple test case:  solid-metal (bcc)                31.1=sr

length bond  2Hrs ≈

18
(b) C. Pierleoni at al. PRA 2002
(a)

2 Gaussians per protons (Det)                  
1 Gaussian   per proton (Jastrow)

Comparison with previous works



Forces  can be computed efficiently with VMC
we use Caffarell et al. JCP 2000
Optimization of the electronic VMC parameters:

1s Gaussian for Geminal and Jastrow
~200  parameters for 16 H 

We use Hessian, much progress done in QMC:
C.Umrigar & C. Filippi PRL (2005), S.S. PRB (2005) , 

C. Umrigar et al (also SS) PRL, (2007)

At each step we move ions with MD and 
VMC parameters (with hessian), ab initio

The basic steps for moving atoms



New ab-initio Molecular-dynamics with QMC

Proton Classical

Internal energy 
decreases at 1300K!!!

With RVB wf 
QMC possible for 
~100 atoms

1step =
QMC  opt.
~10000 par.!

fst 1=Δ
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Why MD can be so efficient for QMC?

The simulation at finite T requires some 
external noise to the forces e.g.  Langevin dynamics

)(2)()(  with  '' ttTttfR −>=<+= δηηη
rrrr&r

But the noise is given for free within QMC!!!

Expected at least a factor N speed-up improvement 

Compared with methods based only on energy
we use 3N entries (forces) with the same cost.
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Snap-shot of the protons at the last iteration
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Optimization with the s-wave constraint

Our energy is below any published one for the solid



HTc  in Hydrogen at 300Gpa ? 

J at the broad peak of g(R) is about 10000K
In Copper Oxide J is 1500K, Tc~100K

2 4 6
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100000
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200000

Tc >  Room temperature ?

At rs=1.31 the solid phase simple hexagonal 
is competing in energy (Natoli et al. PRL ’93)
…under current investigation.
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Conclusions

The Jastrow+RVB (AGP) gives an accuate 
description of the chemical bond.

It is described by a single determinant and is
computationally convenient for QMC.  
Reproduced several experiments on simple molecules, 

benzene and its dimer, water, C2….
Due to important achievements in the energy     

optimization. Realistic MD with most of the correlation 

HTc physics in hydrogen at 300Gpa?
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 800
 1600
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The drawback of many VMC parameters….

‘’Sick’’ when #parameters > # QMC Samples



The Berillium dimer: a challenging molecule



The F2 molecule and the problem of size-consistent results
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