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Point of View:  These regions are inter-related. 
Goal: To explain all universal properties in all three 
regions from one set of ideas, quantitatively where 
possible, and make specific verifiable predictions.  
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Region I: Not a Landau Fermi-liquid.
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Quantum Critical Spectra: Very unusual, independent of momentum: 
                        Local in real space, Singular in time.
But this hypothesis explained every almost every anomaly in this Region and
predicted several including ARPES. And there has been no alternative.
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Quantum Critical Spectra: Very unusual, independent of momentum: 
                        Local in real space, Singular in time.
But this hypothesis explained every almost every anomaly in this Region and
predicted several including ARPES. And there has been no alternative.

Region I: Not a Landau Fermi-liquid.
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Landau Fermi Liquid

Specific Heat ~ T

Imχ (k, ω)
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T ωωc

Scattering rate ∝ T

Marginal Fermi Liquid (1989)

Specific heat ~ T log T

The quantum criticality in heavy-fermions and possibly Pnictides in the same Universality Class.
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understood only as due to Quantum-critical
Fluctuations leading to a Marginal Fermi-liquid

The QCP suggests an unusual  Symmetry Breaking in
Region II and and a competing order parameter (1997). 

Broken Symmetry?
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Theory of the Loop Order

Model with three orbital per unit-cell, local interactions
 U and nearest neighbor interactions V:
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Theory of the Loop Order

Model with three orbital per unit-cell, local interactions
 U and nearest neighbor interactions V:

V ninj = −V/2
(
|Jij |2 + ni + nj).Use Operator identity:

Mean-Field theory with collective variables on the 8 links per unit-cell 
constructed from the          .  Look for phase which does not break 
Translational symmetry.

Jij = ic+
i cj + H.C. ∝ current operator in the link (i− j)

|Jij |2
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Closed Loop Variables in a unit-cell:

Ls Ld L=(Lx,Ly)

Organize links into irreducible representations of the lattice:

Theory of the Loop Order

Model with three orbital per unit-cell, local interactions
 U and nearest neighbor interactions V:

V ninj = −V/2
(
|Jij |2 + ni + nj).Use Operator identity:

Mean-Field theory with collective variables on the 8 links per unit-cell 
constructed from the          .  Look for phase which does not break 
Translational symmetry.

Jij = ic+
i cj + H.C. ∝ current operator in the link (i− j)

|Jij |2

Friday, August 7, 2009



Closed Loop Variables in a unit-cell:

Ls Ld L=(Lx,Ly)

Organize links into irreducible representations of the lattice:

Theory of the Loop Order

Model with three orbital per unit-cell, local interactions
 U and nearest neighbor interactions V:

V ninj = −V/2
(
|Jij |2 + ni + nj).Use Operator identity:

Mean-Field theory with collective variables on the 8 links per unit-cell 
constructed from the          .  Look for phase which does not break 
Translational symmetry.

Jij = ic+
i cj + H.C. ∝ current operator in the link (i− j)

|Jij |2

Construct F(L) in mean-field theory and suggest expts.
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Broken Symmetry in Underdoped Region.
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The phases produces specific magnetic Bragg spots in pol. 
neutron scattering,  and dichroism in ARPES. One of them has 
been found by now in 4 families of Cuprates. 
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The phases produces specific magnetic Bragg spots in pol. 
neutron scattering,  and dichroism in ARPES. One of them has 
been found by now in 4 families of Cuprates. 
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This Phase is characterized by a Time-reversal odd polar 
vector L which breaks all reflection symmetries except one.

L

Broken Symmetry in Underdoped Region.

The direction of moments not consistent with a purely Cu-O
planar model. Must take apical oxygen into account (Webber et al.)
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Experiments to look for time-reversal breaking in the pseudogap phase

Dichroism in Angle-Resolved Photoemission: Experiment by 
Kaminski et al. (2002) in underdoped BISCCO compounds 

Direct Observation by Polarized neutron Diffraction in    
underdoped YBaCuO  of proposed order:(Bourges et al. 2005)
 Repeated by Mook et al. (2008)

Exactly same order discovered in Underdoped single layer Hg-
Cuprates (Greven et al., 2008)
Same Order observed in LSCO (Mesot et al., preprint 2009)

Observation of Small ferromagnetic moment detected through Kerr effect in 
underdoped  YBa2Cu3Ox :(Kapitulnik)

 Thermodynamics Evidence for a Phase Transition at T*(x): 
Non-analytic Effect in magnetization even though no singularity in the
specific heat.  (Leridon, Monod and Colson).

I.

II.

III.

IV.
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Greven et al.

_  _  

Mook

Thursday, July 9, 2009

Greven et al.

et al.

Bourges
 et al.

     Kaminski et al., Nature (2002)

Dichroism in BISCCO

Thursday, July 9, 2009

BISCCO: Dichroic ARPES
Kaminksi et al., Nature(2000)

Also new polarized neutron results on LSCO: 
Mesot, Bourges et al.

1. Large magnitude Order,               /unit-cell at 
   the lowest doping.
2. Universality.
3. Direction of Moments not consistent with the simplest
   2 d model.

≈ 0.2µB
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Polarized neutron Scattering in single layer Hg-Cuprates:
                   Greven et al. (2008).
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H.A. Mook, Y.Sidis, B. Fauque, V. Baledent and P. Bourges, PRB 78, 020506 (R) (2008 )

Polarized Neutron scattering: YBCO 
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Other symmetry consequences of this form of order:

Magneto-electric tensor: x-ray dichroism (DiMatteo-cmv (2002)
                                   : SHG (Simon-cmv (2002)

L=(Lx,Ly)

This phase is magneto-electric: 
                 is an allowed term
in the Free-energy.
gijkEjHk

Mathematics of the Loop-current Order similar to the  Time-
reversal breaking in SU(3) models: Cabibo, Kobayashi- Masakawa
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where all properties change, and inquire about its consequences.
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Given the experiments, one may assume that this phase exists 
universally in Region II of the phase diagram setting in at T*(x) 
where all properties change, and inquire about its consequences.

First and most important question: 
Can one derive the specific form of Quantum-critical 
fluctuations necessary for the properties of Region I?
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Quantum-Critical Fluctuations : Aji-cmv PRL(07); PR-B(09)
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The critical modes are the fluctuations among the four 
configurations of observed order, i.e., among the four
orientations of the order parameter vector L.

2

One of the !’s corresponding to α = 1 of Eq. (9) of
Ref.(1c) is central to the new results in this paper. La-
beling unit-cells by i, the center of the square of Cu-ions
(i1, .., i4) with four oxygen atoms between them, half of
this term can be written as

C(ji) = ji(12) + ji(23) + ji(34) + ji(41), (4)

where ji(p p + 1) is the sum of the two Cu-O and O-Cu
current operators in the link (p, p + 1). Note that this is
the lattice equivalent of transforms as (r × p), where r
and p are the position and momentum vectors along the
links of the unit-cell.

CuO

(a)

(b)

FIG. 1: a: The four domains of the circulating current phase
are shown. They may be specified by the four orientations
of a vector shown in red. b: Schematic representation of the
current due to the operator C(ji)

Quantum Ashkin-Teller model: In the quantum fluctu-
ation regime, fluctuating flux and current patterns over
any region of space and time are generated by the ele-
mentary process of fluctuations between the four config-
urations, θi, of the unit-cells. The quantum AT model
is specified in terms of operators Li = eiθ̂i , whose eigen-
states are the four angles θi in each cell i :

Li |θi〉 = eiθi |θi〉 (5)

and operators Ui which are conjugate to Li and which
causes transition between |θ〉 and |θ + π/2〉 :

Ui |θi〉 = eıπ/4 |(θ + π/2)i〉 . (6)

Ui has the property of a rotation operator acting on com-
ponent of a vector J:

U+
i JxUi = Jy; U+

i JyUi = −Jx (7)

Ui has four eigenstates whose eigenvalues are eıφi with
φi = π/4, 3π/4, 5π/4 and 7π/4.

Quantum critical fluctuations : In the fluctuation
regime above the transition, the discreteness of the θi, φi

variables is a (marginally) irrelevant perturbation and a
continuous distribution of θi, φi gives the correct corre-
lation functions. The quantum AT and the classical AT

models are then equivalent respectively to the quantum
and classical rotor or xy models. In the quantum rotor
model, the QCF are the fluctuations of the local angular
momentum raising operator exp(iφ(r, t)) or equivalently
in the lattice model of the operator Ui(t). They have
been derived [7] to have the spectral function:

Imχ(q, ω) =

{
−χ0 tanh(ω/2T ), |ω| ! ωc;
0, |ω| " ωc.

(8)

χ0 may be fixed from
∑

q

∫
dω[−Imχ(q, ω)] ≈ (2Φ0)2,

where Φ0 is the ordered flux defined after Eq.(2), in each
of the two Cu-O-O triangular plaquettes in each unit-
cell. Φ0 ≈ 0.1 flux quantum corresponds with the esti-
mate from experiments [3] of an ordered moment of about
0.1µB per triangular plaquette.

Coupling of fluctuations to fermions : To find the cou-
pling of the QCF to the fermions, we focus on a cell i with
a collective configuration |θi > and ask for the scattering
matrix of fermions when it rotates to the configurations
|θi ± π/2 > due to the operation of Ui,U+

i . This scat-
tering matrix must be a fermion operator with the same
time-reversal and point group symmetry as Ui,U+

i . In
the cond-mat archive version of this paper [? ], we show
in detail that C(ji) of Eq.(4), has the same symmetries
as the Hermitian operator −i[Ui − U†

i ]. To do this, one
only use the fact that in the space of single particle op-
erators (c1, c2, c3, c4) on a closed loop of sites (1, 2, 3, 4),
the operator P1234 ≡ i(c+

1 c2+c+
2 c3+c+

3 c4+c+
4 c1) act as a

rotation operator switching 1→ 2, ..., 4→ 1. P therefore
rotates all one-particle operators including current oper-
ator in the same manner as U. C(ji) is simply related to
P (1234) + H.C.. Writing |C(ji)|2 term in the Hamilto-
nian, Eq. (3), as a product of the fermion variables and
the collective variables in the standard way, the collective
variable is then identical to −i[Ui − U†

i ]. This gives an
effective coupling term in the Hamiltonian

Hcoup = V/8
∑

i

[−i[Ui − U†
i ]C(ji) (9)

This result can be seen as natural on grounds of sym-
metry. As noted earlier, the operator C(ji) is the lattice
equivalent of the continuum local angular-momentum op-
erator 1/2

(
r × −→p − r ×←−p

)
defined on a unit cell i. In

the continuum such an operator couples to the angular
momentum raising and lowering operator exp(±iφ(r, t)).
The lattice equivalent of the (hermitian operator made
from the) later is −i[Ui−U†

i ]. Such a coupling is therefore
the orbital-moment equivalent to coupling of fermions to
spin-moment fluctuations. A schematic picture of the
physics of the coupling is shown in Fig. 2.

To generate the coupling of conduction electron states
to the qcf, we project the operator C(ji) to the conduction
band operators c†σ(k) and cσ(k). In the simplest repre-
sentation of the band-structure(to zero order in oxygen-

Quantum-Critical Fluctuations : Aji-cmv PRL(07); PR-B(09)
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The lattice equivalent of the (hermitian operator made
from the) later is −i[Ui−U†

i ]. Such a coupling is therefore
the orbital-moment equivalent to coupling of fermions to
spin-moment fluctuations. A schematic picture of the
physics of the coupling is shown in Fig. 2.

To generate the coupling of conduction electron states
to the qcf, we project the operator C(ji) to the conduction
band operators c†σ(k) and cσ(k). In the simplest repre-
sentation of the band-structure(to zero order in oxygen-

In the fluctuations regime the vector L has the same critical 
spectra as a model with a continuous rotations of L, i.e. the
quantum- XY model. 

Quantum-Critical Fluctuations : Aji-cmv PRL(07); PR-B(09)
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       An effective Hamiltonian for the Loop-Current Order  
  with four states per unit-cell. (ASHKIN-TELLER MODEL)  

+ Constrained kinetic energy of fermions

+ Interactions of fermion currents linearly with 
   the                   operators.

(σ, τ)                    (1,1)     (-1,1)     (-1,-1)    (1,-1):

For relevant range of parameters, the Ashkin-Teller Model has a smooth specific heat at the 
Transition even though there is an order parameter singularity (Baxter, Sudbo).

+ +

++

-

-

-

-
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Quantum-Critical Fluctuations

Model is the quantum generalization of the dissipative
xy model. It has been analytically solved (Aji-cmv (07).

H = Lz
i
2/2I + J(L+

i L
−
j + h.c.) + Dissipative terms (α).
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This model was known to have a QCP at    
(Chakravarty, Kivelson, Ingold, Zimanyi).       is a function of doping x.

α = αc.
α
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This model was known to have a QCP at    
(Chakravarty, Kivelson, Ingold, Zimanyi).       is a function of doping x.

α = αc.
α

χ(r, t; r′t′) =< L(r, t)L(r′, t′) >= δ(r − r′)
1
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ωc =
√

2JIχ(q, ω) = tanh(ω/2T ), ω ! ωc

We calculate that at the QCP,
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Marginal Fermi-Liquid finally Derived from a Microscopic Model

Imχ (k, ω)
ω/T

T ωωc

This model was known to have a QCP at    
(Chakravarty, Kivelson, Ingold, Zimanyi).       is a function of doping x.
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1
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√

2JIχ(q, ω) = tanh(ω/2T ), ω ! ωc

We calculate that at the QCP,

Quantum-Critical Fluctuations
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Theory of Criticality

Singularities decouple in space and time

S =
∫

dτdrdr′Jρv(r, τ)ρv(r′, t)ln |r− r′|+
∫

drdτdτ ′αρw(r, τ)ρw(r, τ ′)ln |τ − τ ′|

2D XY model with dissipation

S =
∫

dτ
∑

〈ij〉 J cos (θi − θj) +
∫

dτ
∑

i
θ̇2

C +
∫

dkdωα |ω| k2 |θk,ω|2

Fluctuation  spectrum Imχ (k, ω)
ω/T

T ωωc

Exact Transformation in terms of two sets of orthogonal variables:
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Nature of fluctuations

Ordered State Disordered State

Warps

τ

Fluctuations

Vivek Aji and CMV, PRL 99, 067003 (2007); PRB 2009.

Vortex

O

C O

O

O
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General Remarks:

1. To get quantum-critical fluctuations of this kind, it is necessary to show that
   at criticality, the partition function can be expressed in terms
   of variables which are functions only of time and those that are
   functions of space alone.

2. These variables almost certainly always describe topological excitations.

3. Await Quantum-Monte-Carlo Calculations on this and related models to verify
   the results.

4. Besides the Cuprates and heavy-fermions (which have also closely related
   form of criticality) pnictides also seem to be only consistent in their properties
   with such criticality.

5. “High” Tc from electronic mechanisms is always near quantum-criticality 
   but ordinary criticality is bad for Tc.
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Next Important Question: How does       couple to Fermions? L±i
Aji, Shekhter and cmv (2009)
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Next Important Question: How does       couple to Fermions? L±i
Aji, Shekhter and cmv (2009)

          is odd in R and changes angular momentum in i-th
cell. Therefore coupling to the Fermions is 

L±i

g ψ+
i (ri × pi)ψiL−i + h.c.
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Next Important Question: How does       couple to Fermions? L±i
Aji, Shekhter and cmv (2009)

          is odd in R and changes angular momentum in i-th
cell. Therefore coupling to the Fermions is 

L±i

g ψ+
i (ri × pi)ψiL−i + h.c.

Orbital Moment Analog of the familiar coupling:

ψ′+
k σψk · SJ

This was used to prove that AFM fl. promote d-wave pairing.
Miyake, Schmitt-Rink, cmv (1986).

Fluctuations couple to the fermions by creating a 
circulating current in the Cu-O2 unit-cells: 
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In continuum limit, the coupling Hamiltonian has the form:

ig(k− k′)× (k + k′)ψ′+
k ψkL±(k−k′) + h.c.

Fermion-Fluctuation Coupling in Momentum space.

k

k’

i g(k X k’)γ(k, k′) =
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In continuum limit, the coupling Hamiltonian has the form:

ig(k− k′)× (k + k′)ψ′+
k ψkL±(k−k′) + h.c.

Fermion-Fluctuation Coupling in Momentum space.

k

k’

i g(k X k’)γ(k, k′) =

Note the preferential scattering at right angles and the factor i.
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In continuum limit, the coupling Hamiltonian has the form:

ig(k− k′)× (k + k′)ψ′+
k ψkL±(k−k′) + h.c.

Fermion-Fluctuation Coupling in Momentum space.

k

k’

i g(k X k’)γ(k, k′) =

Note the preferential scattering at right angles and the factor i.

Before examining the pairing channel, let us calculate single-
particle spectra in the normal state.
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Effect of Fluctuations on Single-particle    
Spectra measured in ARPES 15

 Predicts Linewidth proportional to      for                 
 and constant beyond. Factor of ~ 2 mom. dependence.
        

ω ! ωcω

ImΣ(ω, k) ∝ λ(k)
∫ ω

0
dω′Imχ(ω′) λ(k) =

∑

k′

|γ(k, k′)|2
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Recent  ARPES Experiments to High Energies.  
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OP Bi2201  Nodal , Meevasana et al.
OP-Bi2212  Nodal,   Lanzara et al.
LSCO OP,   Nodal , Chang et al.
LSCO  Nodal underdoped, Chang et 

X
o

Recent  ARPES Experiments to High Energies.  
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OP Bi2201  Nodal , Meevasana et al.
OP-Bi2212  Nodal,   Lanzara et al.
LSCO OP,   Nodal , Chang et al.
LSCO  Nodal underdoped, Chang et 

X
o

This is an experimental  proof of the existence of a distinct 
spectrum of fluctuations with a well-defined cut-off frequency.
This is what couples to fermions at just above Tc.   

Recent  ARPES Experiments to High Energies.  
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Single-Particle Spectra in Cuprates measured by ARPES
throughout the funnel shaped Quantum-critical region 
in all Cuprates (underdoped, optimally doped, 
overdoped) that have been measured have a width 

For all data available

0.8 < λ < 1.1

0.4 < ωc < 0.5 eV.

Linear in T resistivity and optical conductivity in the Strange 
Metal Region understood by the same parameters to +/-30%.

= (π/2)λ ω, for ω ! ωc

= constant, for ω ! ωc
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x  Q
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Antiferromagnetism

d-Wave Superconductivity ?

 Pseudogapped 
metal

Marginal 
Fermi liquid

Fermi liquid

T

x  (doping)

T*
Crossover

CPQ

Broken Symmetry

I
II

III

Next must Prove that the derived QCF spectra couples 
to Fermions to favor d-wave superconductivity and with 
right magnitude of parameters. 
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Pairing

Pairing Vertex: 
(
ı!k × !k′

)2
"χ

(
!k × !k′

)2
= 1

2

[(
k2

x + k2
y

) (
k

′2
x + k

′2
y

)
−

(
k2

x − k2
y

) (
k

′2
x − k

′2
y

)
− (2kxky)

(
2k′

xk′
y

)]

Arpes data yields ωc ≈ 0.4eV,λs ≈ 1 Tc ~ 100 K

k

k’

ı!k × !k′

-k

-k’

Tc ≈ ωc exp(−1 + λs

λd
)

Friday, August 7, 2009



Two special aspects of Tc for D-waves.

Friday, August 7, 2009



Two special aspects of Tc for D-waves.

1. Normal Self-energy is different from pairing self-energy.
     Incorporated in McMillan type Tc formula:

Tc ≈ ”ωc” exp
(
− 1 + λs

λd

)

So any analysis of data with just one angular mode of 
fluctuations is not valid. 
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Two special aspects of Tc for D-waves.

1. Normal Self-energy is different from pairing self-energy.
     Incorporated in McMillan type Tc formula:

Tc ≈ ”ωc” exp
(
− 1 + λs

λd

)

So any analysis of data with just one angular mode of 
fluctuations is not valid. 

2. Inelastic Scattering leads to depairing unlike s-wave case:  
        is reduced by Fluctuations below an energy of about 
                         .  (Millis, Sachdev, cmv (1988)).Tc exp (λs/λd)

Tc
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Two special aspects of Tc for D-waves.

Physics is that for s-wave superconductors low energy 
scattering does nothing (Anderson’s theorem). But not so for
d-wave superconductors. 
Corollary : When Tc is of order 100K in d-wave, phonon are generally pair-breaking.

1. Normal Self-energy is different from pairing self-energy.
     Incorporated in McMillan type Tc formula:

Tc ≈ ”ωc” exp
(
− 1 + λs

λd

)

So any analysis of data with just one angular mode of 
fluctuations is not valid. 

2. Inelastic Scattering leads to depairing unlike s-wave case:  
        is reduced by Fluctuations below an energy of about 
                         .  (Millis, Sachdev, cmv (1988)).Tc exp (λs/λd)

Tc
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Inversion of ARPES in the normal and superconducting
states being carried out to discover the spectrum of the
glue for d-wave pairing.

Near Tc, in the quantum-critical regime of x, 
it is predicted that the spectrum is of the proposed form.

But how will we know that the physics of the spectrum
is that of the fluctuations of the discovered loop-current
order?
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Fluctuations couple the four states which are odd in R and 
transform as             . i(x± y)

Therefore Fluctuations must transform as 
i(x∂/∂y − y∂/∂x)

 
which occurs in experiments in combination with other 
channels, for example B1g. 
I suggest experiments isolating the A(2g) symmetry.

This is A(2g) symmetry in Raman Scattering. 
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F. Slakey et. al. PRB 43, 3764 (1991)

              I.  Raman Spectra in Optimally doped Cuprates

Direct observation of a Quantum critical fluctuations spectra of the derived form: 
                            

Experimental Evidence of the Derived Spectra
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Conclusions:
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Following the observations of the predicted order in 
underdoped Cuprates, we have worked to

1. Derive the Quantum-critical Fluctuations to get the Marginal Fermi-liquid State.

2. Calculated the coupling of these fluctuations to fermions to show the coupling 
    is the orbital analog of the coupling to spin-fluctuations with an interesting 
    momentum dependence.

3. Shown unambiguously that pairing in d-wave channel is promoted.

4. Used normal state ARPES to deduce parameters of the QCF’s and their coupling to
    Fermions.

5. Working on inversion of ARPES in the superconducting state with evidence 
   that this method may work if used with care.

6. Working on properties in Region II>

Conclusions:
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Cu Knight shift in the 123 and 248 layers of  Y(2)Ba(4)Cu(7)O(15)
                       Stern et al. Phys. Rev B 50, (1994).
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Fermi-Arc Phenomena 
with arc length decreasing as Temperature decreases:.
Data consistent with a gap everywhere except at four points in the 
“normal” Phase in underdoped Cuprates.

Kanigel et al. (2006)

Zhu and cmv (2006)
based on cmv (1999).

If Pseudogap state in the Loop-current phase has 
4 fermi-points for T=0.  It is Consistent with Schubnikov DeHaas with small 
pockets. But  
Separation between Landau levels predicted to be             
with absolute magnitude more than an order of magnitude larger than eB/mc.

∝ B2/3
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Significance of Fermi -points

There are strict rules in condensed matter Physics about when a gap in the 
spectrum can occur.
a. Bloch rules: mix degenerate states at k and k+ G leading to gaps at zone-boundaries.
   i.e. gaps related to translational symmetry.
b. BCS: mix states of                                 to produce gaps at chemical potential.(k,σ) and (−k,−σ)

Another Possibility

Infinite Range forces: Fermi-surface cannot be stable
      For example: Fermi-velocity diverges (i.e. there is a gap) 
      for unscreened Coulomb interactions.

      Also if there is a photon like mode interacting with electrons
     

with “effective” fine-structure constant of order unity.
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Ls Ld L=(Lx,Ly) as ad

(8 phase variables)/cell - (3 sites)/cell =   (5 physical fields)/cell

Ls Ld L=(Lx,Ly) and transverse part of 
Physical Fields

Only Fields L and a are relevant for cuprates

At each site in a unit-cell, a gauge transformation is allowed

are necessary to describe the flux in 
regions of space not covered by the 
cu-o-o triangles

◦ R+x+y•

!!
!!

!!
!!

!

b3(r+x+y) !!
!!

!!
!
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""

""
"
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'' a4(r)

R
•

R+x
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!!!!!!!
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can order but                          cannotL=(Lx,Ly)

a = (ax, ay)

a = (ax, ay)

a = (ax, ay)

a = (ax, ay)
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is a Gauge field, just like an external electromagnetic potential.

The total free-energy can be derived 
from microscopic theory starting with

1
v2

|curla|2 + e2

−J · a− a · J + a2ne2/2mv + K.E.

What is v? or what is the fine-structure constant of the theory: 

α ≈ V/t rather than 1/137.

F(L)+

[ei,aj ] = iδij

a = (ax, ay)

+curl(L) · curl(a) + ...

∑

i

∑

links(i)

|Jlinks(i)|2 + K.E.

F     =
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