BaFe₂As₂: A Model Platform for Unconventional Superconductivity

David Mandrus, Oak Ridge National Lab.

"Og discovered fire, and Thorak invented the wheel. There's nothing left for us."

Correlated Electron Materials Group

David Mandrus

Brian Sales

Rongying Jin (now at LSU)

Michael McGuire Wigner Fellow

Athena Sefat Wigner Fellow

Collaborators

ORNL: A. Christianson, M. Lumsden, S. E. Nagler (neutrons); J. Howe (electron microscopy); A. Payzant (X-rays); D. Christen (flux dynamics); M. Pan (tunneling); D. J. Singh (theory)

NHML/FSU: Larbalestier group, Tozer group

UCSD: Maple group (pressure), Basov group (IR)

McMaster: Imai group (NMR), Y. Mozharivskyj (crystallography)

Julich/Liege: R. Hermann (Mossbauer)

UTK: Keppens group (elastic properties), Mannella group (X-ray spectroscopy, ARPES), Egami group (PDF), Plummer group (STM)

LANL: F. Ronning, R. Movshovich, E. D. Bauer, J. D. Thompson

Houston: S. Pan group

LSU: Plummer Group, Zhang group, Jin group

UIUC: L. Greene group

Pnictides are the Missing Link Between Cuprates and HFs

Chemically very different, but evidence points to similar SC mechanism

Great Similarity of Phase Diagrams

J. Zhao, et al. Nature Materials **7**, 953 (2008)

H. Luetkens, et al. Nature Materials **8**, 305 (2009)

Universal Behavior of Spin Resonance

Evidence points to a common mechanism underlying HF, Pnictide, and Cuprate SC

Focus on materials-specific properties

Work toward a predictive understanding

Doping studies are important in this regard

122 Materials show great chemical flexibility

Some of Known Fe compounds (Before 1991) with the ThCr₂Si₂ Structure

Crystals with $ThCr_2Si_2$ Structure (BaFe_{1.84}Co_{0.16}As₂)

BaFe₂As₂ Basic Properties

M. Rotter, et al. PRL 101, 107006 (2008)

 $ThCr_2Si_2$ structure *I4/mmm*

Layers of edge-sharing FeAs₄ tetrahedra

Coupled SPT-AFM transition ~140 K

Magnetic Order

Managed by UT-Battelle for the Department of Energy

BaFe₂As₂ Properties

BaFe₂As₂ is not very anisotropic

 $\rho_c/\rho_{ab} \approx 5$

M. A. Tanatar, et al. PRB 79, 134528 (2009) (Canfield group)

Surface of BaFe₂As₂

T = 4.3 K

In collaboration with E. W. Plummer group & S.H. Pan group

Cleaved surface of BaFe2As2 is As terminated

Ba layer destroyed, some random
Ba atoms observed on surface

No surface reconstruction

 Some evidence of orbital order since only one DOS of one type of As was detected

Bulk As-Fe and As-Ba interlayer distances are 1.3437 A and 1.8926 A respectively

Superconductivity at 38 K in the iron arsenide $(Ba_{1-x}K_x)Fe_2As_2$

Marianne Rotter, Marcus Tegel and Dirk Johrendt*

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München,

Butenandtstrasse 5-13 (Haus D), 81377 München, Germany

(Dated: June 2, 2008)

PRL 101, 107006 (2008)

Phase Diagram

Ba_{1-x}K_xFe₂As₂

M. Rotter, et al. Angew. Chem. I nt. Ed. 47, 7949 (2008) J. T. Park, et al. PRL 102, 117006 (2009) Stuttgart group—Keimer, Hinkov

Electronically phase separated on a scale of ~65 nm

Superconductivity at 22 K in Co-Doped BaFe₂As₂ Crystals

Athena S. Sefat, Rongying Jin, Michael A. McGuire, Brian C. Sales, David J. Singh, and David Mandrus Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA (Received 25 July 2008; published 11 September 2008)

- Electron rather than hole doping
- Superconductivity robust to in-plane disorder
- Evidence for s symmetry superconducting state
- Very "clean" system experimentally—crystals quite homogeneous

Ba(Fe_{1-x}Co_x)₂As₂ Phase Diagram

C. Lester, et al. PRB 79, 114523 (2009) I.R. Fisher, S. M. Hayden groups

D. K. Pratt, et al. Cond-mat 0903.2833 P. C. Canfield, R. J. McQueeney groups

week ending 13 MARCH 2009

Two-dimensional resonant magnetic excitation in BaFe_{1.84}Co_{0.16}As₂

M. D. Lumsden,¹ A. D. Christianson,¹ D. Parshall,² M. B. Stone,¹ S. E. Nagler,¹ G. J. MacDougall,¹ H. A. Mook,¹ K. Lokshin,³ T. Egami,^{1,2,3} D. L. Abernathy,¹ E. A. Goremychkin,^{4,5} R. Osborn,⁴ M. A. McGuire,¹ A. S. Sefat,¹ R. Jin,¹ B. C. Sales,¹ and D. Mandrus¹

Resonance in Single Crystal BaCo_{0.16}Fe_{1.84}As₂

Neutron Scattering on Underdoped BaFe_{1.92}Co_{0.08}As₂

Drop in intensity of Bragg Peak below Tc

Resonance obeseved at 4.5 meV = 4.7 k_BTc

Spectral weight transferred from Bragg peaks to resonance?

Scattering is 3D vs. 2D in optimally doped

A. D. Christianson, et al. Cond-mat 0904.0767

Veerle Keppens

National Laboratory

BaFe₂As₂

The role of striction at magnetic and structural transitions in iron-pnictides

Victor Barzykin and Lev P. Gor'kov*

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310

We discuss the role of striction in the intertwined magnetic and structural phase transitions in the underdoped iron-pnictides. The magneto-elastic coupling to acoustic modes is then derived and estimated in framework of the multiband spectrum for itinerant electrons with nesting features. We argue that the 1-st order character of the magneto-elastic phase transition originates from the lattice instabilities near the onset of spin-density wave order introducing, thus, a shear acoustic mode as a new order parameter. Taking non-harmonic termis in the lattice energy into account may explain the splitting of the structural and magnetic transitions in some oxypnictides. Fluctuations of the magnetic order parameter show up in the precursory temperature dependence of the elastic moduli.

PHYSICAL REVIEW B 77, 224509 (2008)

Ś

Theory of electron nematic order in LaFeAsO

Chen Fang,¹ Hong Yao,² Wei-Feng Tsai,^{2,3} JiangPing Hu,¹ and Steven A. Kivelson²
¹Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
²Department of Physics, Stanford University, Stanford, California 94305, USA
³Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
(Received 26 April 2008; published 20 June 2008)

We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large S and large N methods, we show that this model exhibits a sequence of two phase transitions: from a high-temperature symmetric phase to a narrow region of intermediate "nematic" phase, and then to a low-temperature spin ordered phase. Identifying phases by their broken symmetries, these phases correspond precisely to the sequence of structural (tetragonal to monoclinic) and magnetic transitions that have been recently revealed in neutron-scattering studies of LaFeAsO. The structural transition can thus be identified with the existence of incipient ("fluctuating") magnetic order.

DOI: 10.1103/PhysRevB.77.224509

PACS number(s): 71.27.+a, 71.10.-w, 74.25.Ha

Hall effect and resistivity study of the magnetic transition, carrier content and Fermi liquid behavior in $Ba(Fe_{1-x}Co_x)_2As_2$

F. Rullier-Albenque,¹, D. Colson,¹ A. Forget,¹ and H. Alloul²

¹Service de Physique de l'Etat Condensé, Orme des Merisiers, CEA Saclay (CNRS URA 2464), 91191 Gif sur Yvette cedex, France ²Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, 91405 Orsay, France (Dated: march 30th 2009)

E_F is only 20-40 meV above the bottom of the electron bands

Usual assumption that k_BT << E_F is not valid

Sharp Features in the DOS and a variable carrier concentration can give you a susceptibility that increases with T

D. Mandrus, et al. PRB 51, 4763 (1995)

This simple model, with only somewhat unreasonable parameters, can describe Hall, Seebeck coefficient, and susceptibility as a function of T and doping.

 $N_0 = 1.4 \times 10^{21}/cm^3$ $E_H = 250 K$ $m_e^* = 17 m_0$ $m_h^* = 30 m_0$

B. C. Sales, et al. Cond-mat: 0906.2134

Concluding Speculation

J. G. Checkelsky, et al. 0811.4668 (Ong group)

Lumsden, et al. PRL 102 107005 (2009)

1) What causes the structural and magnetic transitions to separate in Ba(Fe_{1-x}Co_x)₂As₂

2) How do we explain the temperature dependence of the susceptibility?

3) Are spin fluctuations causing the elastic constants to soften?

