Overview and Implications of Existing Experimental Constraints

Hadronic Parity Nonconservation March 15-16, 2018: KITP, Santa Barbra

David Bowman

Oak Ridge National Laboratory

Goal

- Test NC predictions of
 - pionless EFT
 - meson-exchange scheme

measurements to consider

- n-p spin rotation
- n-p circular polarization ...
- n-d A_γ
- p-d A₁
- p-³He A_L
- $n-\alpha$ spin rotation

Pionless EFT N_c classification. Schindler and Springer

$$C^{(^{3}S_{1}-^{1}P_{1})} \sim N_{c},$$

$$C^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=0)} \sim N_{c},$$

$$C^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=1)} \sim N_{c}^{0} \sin^{2}\theta_{W},$$

$$C^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=2)} \sim N_{c},$$

$$C^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=2)} \sim N_{c},$$

$$C^{(^{3}S_{1}-^{3}P_{1})}_{c} \sim N_{c}^{0} \sin^{2}\theta_{W}.$$
(33)

As before, the two isoscalar terms are not independent at LO in the large- N_c counting, but up to $1/N_c^2$ corrections are related by

$$C^{({}^{3}S_{1}-{}^{1}P_{1})} = 3 C^{({}^{1}S_{0}-{}^{3}P_{0})}_{(\Delta I=0)}.$$
(34)

5-1 independent parameters. 4 experiments are needed to determine the 4 C's and compare with N_c predictions

Test N_c predictions of EFT

Pionless EFT can be applied to 4 experiments

$$\vec{n} + p \rightarrow d + \gamma A_{\gamma}$$

done

$$\vec{n} + p \rightarrow d + \gamma P_{\gamma}$$

not done

$$\vec{n} + p$$
 spin rotation

not done

$$\vec{p} + p$$
 longitudinal asymmetry

done

from

$$A_{\gamma} = (-3.0 \pm 1.4)10^{-8}$$

$$C^{\binom{3}{5_1}-3P_1}/C_0^{\binom{3}{5_1}} = (-7.4 \pm 3.5)10^{-11} \text{ MeV}^{-1}$$

Essential steps to test pionless EFT

- Measure
 - n-p spin rotation
 - One of
 - n+p->d+ γ γ circular polarization
 - γ+d photodisintegration
 - Calculate $\Delta I=2$ on the lattice
- The low-energy 2-body system is well controlled theoretically. The above campaign will yield an unambiguous set of C's

Meson-exchange picture

- 7 couplings correspond to the 7 P-odd rotational invariants that can be constructed from the momenta, isospins, and spins of the interacting pair of nucleons
- $h_{\pi,1}$, $h_{\rho,0}$, $h_{\rho,1}$, $h_{\rho,1}$, $h_{\rho,2}$, $h_{\omega,0}$, $h_{\omega,1}$
- PV observables are written as sums of meson couplings and dimensionless expansion coefficients

Existing experiments and their meson-exchange coefficients

i	Ехр	Value	err	$h\pi,1$	$h\rho$,0	$h\rho,1$	$h\rho$,2	hω,Θ	$h\omega$,1
1)	(ppl4Al)	(-0.98)	(0.2)	(0	0.0532	0.0532	0.0217	0.0488	0.0488
2	pp45Al	-1.57	0.23	Θ	0.0953	0.0953	0.0389	0.0896	0.0896
3	pp220Al	0.84	0.34	Θ	-0.0293	-0.0293	-0.0119	0.0089	0.0089
4	pαAl	-3.34	0.93	-0.55	0.1132	0.0484	Θ.	0.0909	0.0776
5	18F	Θ.	4042.	3850.	Θ.	-338.8	Θ.	Θ.	-543.2
6	19H-	-735.	148.	-94.2	19.3881	8.2896	Θ.	15.5687	13.2908
7	npΑγ	-0.3	0.14	-0.1105	Θ.	-0.0007	Θ.	0.	0.002
8	181Ta	-52.	5.	-8.25	1.698	0.726	Θ.	1.3635	1.164
9	175Lu	550.	50.	93.5	-19.244	-8.228	Θ.	-15.453	-13.192
10	41K	200.	40.	25.85	-5.3204	-2.2748	Θ.	-4.2723	-3.6472
11 /	n3He	0.1	0.1	-0.1892	-0.0364	0.0193	-0.0006	-0.0334	0.0413

All expressions use AV18 potential 4, 6, 8, 9, and 10 determine the same combination Same for 1 and 2 There are 6 independent quantities and 6 couplings.

Error in h_i from experiment i is $\sigma_i/a_{i,i}$

Test Phillips N_C predictions

- Determine meson couplings from least squares fits to data
- Compare ratios of couplings to Phillips' N_C predictions

$$h_{\rho,0}$$
 and $h_{\rho,2} \sim N_c^{1/2} = 1.7$
 $h_{\omega,0} \sim N_c^{-1/2} = .57$
 $h_{\rho,1}$ and $h_{\omega,1} \sim \text{Sin}(\theta_W)^2 N_c^{1/2} = .38$
 $h_{\pi,1}$ and $h_{\rho,1} \sim \text{Sin}(\theta_W)^2 /N_c^{1/2} = .13$

Note that heavy meson couplings are suppressed by hard core while π coupling is not

Small errors in theory or measurement of large ΔI =0 and 2 couplings will impact the small ΔI =1 couplings.

Note 2 tiers for $\Delta I=1$ and $\Delta I=0$.

Fit experiments to 6 parameters (h_{01}') not included because no published evaluation exists)

m/
$$\Delta$$
I value error
$$\begin{pmatrix} f\pi \\ f\rho 0 \\ f\rho 1 \\ f\rho 2 \\ f\omega 0 \\ f\omega 1 \end{pmatrix} \begin{pmatrix} 2.37885 \\ -35.9852 \\ 20.4385 \\ -25.649 \\ 20.9751 \\ -11.3571 \end{pmatrix} \begin{pmatrix} 1.10002 \\ 8.40715 \\ 20.9224 \\ 39.6392 \\ 10.491 \\ 8.30543 \end{pmatrix}$$
 $\chi 2/DOF = 6.99745/6$

The large coupling, $h_{0.0} = -36$, is well defined. Then we expect $h_{0.1}$ '~ $h_{0.1}$ ~8 and $h_{\pi,1}$ ~ $h_{0,1}$ ~3 The unexpectedly large and poorly defined couplings may be caused by excluding $h_{0,1}$ or systematic uncertainties. To stabilize the fits, set $h_{0.1}=0$.

11

Fit experiments to 5 parameters ($h_{\rho 1}$ ' and $h_{\rho 1}$ excluded)

m/
$$\Delta$$
l value error
$$\begin{pmatrix} f\pi \\ f\rho 0 \\ f\rho 2 \\ f\omega 0 \\ f\omega 1 \end{pmatrix} \begin{pmatrix} 1.54267 \\ -31.9448 \\ 11.3833 \\ 15.7963 \\ -4.71565 \end{pmatrix} \begin{pmatrix} 0.690903 \\ 7.31933 \\ 11.583 \\ 9.05287 \\ 4.77057 \end{pmatrix} \chi 2/D0F = 7.95173/7$$

The large coupling, $h_{\rho,0} = -36 -> -32$, has not changed. $h_{\pi,1}$ has not changed.

However, the uncertainties in $h_{\omega,0}$, $h_{\omega,1}$, and $h_{\rho,2}$ are large. How to reduce them?

Which new measurements will have the largest impact?

- Add new measurements one at a time. Perform fits to the pseudo data and see how the uncertainties in $h_{\rho,2}$, $h_{\rho,1}$, $h_{\omega,0}$, and $h_{\omega,1}$ are reduced.
- [1.3] indicates that the value of the observable determined from the fit to existing data is 1.3 10^{-7}

As σ np σ r [1.3] is reduced, the σ h_{ρ ,2} is reduced by 5 Most of the gain occurs before σ = 1.

As σ np σ r [1.3] is reduced, the σ h_{ω ,1} is reduced by 2 Most of the gain occurs before σ = 1. No other couplings show much improvement.

As σ npCP [.8] is reduced σ h_{ρ ,2} is reduced by 5. The reduction occurs before σ = .05

As σ n $\alpha\sigma$ r [1.7] is reduced σ h $_{\omega,1}$ is reduced by 2. The reduction occurs before σ = .07 (very small)

As σ ndA γ [17] is reduced the uncertainty in $h_{\omega,0}$ improves by 2. The improvement occurs before σ = 2.

Why is the uncertainty in hw,0 improved by measuring $n+d->t+\gamma$?

Expt	$ah_{\omega,0}/ah_{ ho,0}$	Expt	$ah_{\omega,0}/ah_{ ho,0}$	
pp14Al pp45Al pp220Al pαAl	0.917293 0.940189 -0.303754 0.803004	npCP ndAγ npσrt nασrt	-0.376471 0.32 0.95122 0.803004	
18F 19H-	Indeterminate 0.803004	pd15Al	0.75	
npΑγ 181Ta 175Lu	Indeterminate 0.803004 0.803004			
41K n3He	0.803004 0.917582			

Conclusions

- In order to test pionless EFT np spin rotation and np circular polarization, nd photodesintigration, or $\Delta I=2$ on the lattice are necessary
- The above are also the crucial measurements to test the N_c treatment of the meson-exchange scheme
- Theoretical calculations should include $h_{\rho 1}{}'$ and consistently use the AV18 potential

More Conclusions

• Few-body calculations of $n\alpha$ spin rotation and $p\alpha$ A_L may demonstrate that the 1-body potential is not valid leading to better control of the 4 Δ I=1 couplings