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HIV Functional Cure

4|} PRESSWIRE

General Hospital Reveals Fourteen Years of HIV
Functional Cure: The Case of the "Toulon

Patient’

A man infected by HIV-1in 1998 was treated at the time of
acute infection with 4 antiretrovirals during 2 years and is
now still in remission.

TOULON, VAR, FRANCE. August 5, 2014



Modeling Post-treatment
Control (PTC)
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14 subjects were PTCs
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PTCs have two set-points

Pre-treatment average baseline viral load was
10° copies/ml and pts in Fiebig stage V
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Days following HIV-1 transmission

Post-treatment controllers, VL < 50 copies/ml.
VL<50 /ml is stable for yrs = new set-point, I.e.
bistabllity



Model with 2 set-points

source death
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Generalization of Bonhoeffer et al. AIDS 14:2313 (2000) and Adams et al. Bull Math Biol. 69:563 (2007)




Immune Exhaustion
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Model equations

A—dl — (1 —e)kVT

Target cells, T

Latently infected. L |
Productively infected, | (1—0)(1-£kVT — 81 +al —mEl
Virus, V 1V
Effector cells, E

(1 —e)kVT +(p —a—d; )L

Rate of killing of infected cells by effector cells
=mE (should be<1d1)
Have scaled effector cell levels so 0 = m £ 1.



Detalls

e Pre-therapy patient has high VL (varies)

e In model, treat with ART, VL decreases to <
50 cp/ml, latently infected cells decrease to
low level, L,, e.g. 1 — 100 /10° cells. Exact
level Is expected to vary among pts due to
initial level, treatment length and treatment
efficacy.

e After ART stopped, residual viremia and
activation of latently infected cells either
drives viral rebound or immune system
controls.




Initial conditions determined
by post-treatment L,

Detection
sholc
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Effector cells
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Detection
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-30 =20 —10

Months before treat. cess

Start with a range of initial conditions — but
trajectories quickly establish QSS with L(t)



Post-treatment predictions

L, =100 per 106 cells; m= 0.32 L, =1 per 10° cells; m=0.32
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Post-treatment control (PTC)
also depends on strength of immune response
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PTC depends on Lyand m
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Alternative Models

A—dTl' — (1 —¢)BVT

ar(l1—e)BVT — (a+dp)L +rL (1 — L)

L’rr] ax
(1 —ap)(1—¢)BVT — 461 +aL —mEI

j)I —cV

Rescaled viral load

\p + b IE'! IE FE " CTL Killing o H
AR + bp Kp i1 aE Ky 1= pL. CTL killing rate m




Alternative Exhaustion Model
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ar(1—¢)pVT + (p—a —dyp)L
(1 —ap)(l—e)pVT — 6l +aL —mEI
pl —cV

Ap L s E—¢&
E+ Hfiﬂ Iy s__r:

Rescaled viral load
N

[11

I _ -
= K7 —dQ. CTL killing rate m

Q=level of exhaustion; Johnson et al. J Virol. 2011
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Possible CTL strength
distributions
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Viral rebound

e Of the >100 study subjects in the Visconti study only
14 were PTCs; in the remaining the VL rebounded but
not immediately. Time to rebound reported for a
different French acute infection cohort.
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Time to rebound

e In our model time to rebound depends
on latent reservoir size, L.

e Do not know distribution of latent
reservolir sizes in Visconti pts, but In
Archin et al. PNAS 2012 reservoir sizes
measured after 1 yr of ART In 27 pts
treated within 45 days of infection.



Archin et al. PNAS 2012 data
fits a lognormal distribution

O Data
—— Lognormal fit
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Latently infected cells

Ner 106 CDA4+ resting cells

Pts put on therapy ~ 45 d after infection, treated ~ 1 yr
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Rebound time depends on latent reservoir
size and CTL strength distributions
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Model also predicts viral rebound time
when there is no control
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Rebound time can be quite long, e.qg.,
Mississippl baby

[atent reser_voir
(Log ]O(per 10° cells))




Immune Exhaustion

e Remove effector cell exhaustion model
not longer exhibits bistability — lose
cubic

e Question: Is Immune exhaustion
Important for post-treatment control?



Special Issue: Immunity and Cancer

Overcoming T cell exhaustion in
infection and cancer

Kristen E. Pauken and E. John Wherry

Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine,

421 Curie Blvd, Philadelphia, PA 19104, USA

Inhibitors of the Programmed Cell Death 1: Programmed
Cell Death 1 ligand 1 (PD-1:PD-L1) pathway, a central
regulator of T cell exhaustion, have been recently shown
to be effective for treatment of different cancers. How-
ever, clinical responses are mixed, highlighting the need
to better understand the mechanisms of action of PD-
1:PD-L1, therole of this pathway in immunity to different
tumors, and the molecular and cellular effects of PD-1
blockade. Here, we review the molecular regulation of T
cell exhaustion, placing recent findings on PD-1 blockade
therapies in cancer in the context of the broader under-
standing of the roles of the PD-1:PD-L1 pathway in T cell
exhaustion during chronic infection. We discuss the
current understanding of the mechanisms involved in
reversing T cell exhaustion, and outline critical areas of
focus for future research, both basic and clinical.

cells, which are protected by mechanisms that have evolved
to prevent recognition of self, including central tolerance,
ignorance or failure to become activated in the periphery, T
cell extrinsic regulation |e.g., regulatory T cells, myeloid-
derived suppressor cells, suppressive cytokines, such as
interleukin (IL)}-10, ete.], and T cell intrinsic dysfunction
uponinappropriate orexcessive antigen stimulation (anergy
and exhaustion) [15,17-19]. Antibodies targeting inhibitory
pathways including CTLA-4 and PD-1 are paving the way for
a new generation of cancer treatment approaches. These
‘checkpoint blockade’ strategies aim to relieve regulatory
mechanisms that restrain tumor-infiltrating T cells (TTLs)
114,16,20]. The first of these antibodies to gain US FDA
approval were ipilimumab in 2011 (anti-CTLA-4, Yervoy,
Bristol-Myers Squibb), pembrolizumab in 2014 (anti-PD-1,
Keytruda, Merck and Co.), and nivolumab in 2014 (anti-PD-
1, Opdivo, Bristol-Myers Squibb), and have all demonstrated

Trends in Immunology 36: 265 (2015)




doi:10.1038/nature07662
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Enhancing SIV-specific immunity in vivo by PD-1

blockade

Vijayakumar Velu"**, Kehmia Titanji"***, Baogong Zhu®*, Sajid Husain"?, Annette Pladevega®?, Lilin Lai"?,
Thomas H. Vanderford®, Lakshmi Chennareddi'?, Guido Silvestri’, Gordon J. Freeman’*, Rafi Ahmed'

& Rama Rao Amara'?

Chronic immunodeficiency virus infections are characterized by
dysfunctional cellular and humoral antiviral immune responses' ™.
As such, immune modulatory therapies that enhance and/or
restore the function of virus-specific immunity may protect from
disease progression. Here we investigate the safety and immune
restoration potential of blockade of the co-inhibitory receptor
programmed death 1 (PD-1)" during chronic simian immunodefi

ciency virus (51V) infection in macaques. We demonstrate that
PD-1 blockade using an antibody to PD-1 is well tolerated and
results in rapid expansion of virus-specific CD8 T cells with
improved functional quality. This enhanced T-cell immunity was
seen in the blood and also in the gut, a major reservoir of SIV
infection. PD-1 blockade also resulted in proliferation of memory
B cells and increases in SIV envelope-specific antibody. These
improved immune responses were associated with significant
reductions in plasma viral load and also prolonged the survival of
SIV-infected macaques. Blockade was effective during the early
(week 10) aswell as late (~week 90) phases of chronic infection even
under conditions of severe lymphopenia. These results demonstrate

PD-1 blockade was performed using an antibody specific to human
PD-1 that blocks the interaction between macaque PD-1 and its
ligands (PDLs) in vitro"”. Blockade was performed during the early
(10 weeks) as well as late (~90 weeks) phases of chronic SIV infection.
Nine macaques (five during the early phase and four during the late
phase) received the anti-PD-1 antibody and five macaques (three
during the early phase and two during the late phase) received an
isotype control antibody (Synagis, anti-respiratory syncytial virus
(RSV)-specific)'’.

PD-1 blockade during chronic SIV infection resulted in a rapid
expansion of SIV-specific CD8 T cells in the blood of all macaques
(Fig. 1a, b). We were able to study the CD8 T-cell responses to two
immunodominant epitopes, Gag CM9 (ref. 18) and Tat SL8/TL8
(ref. 19), using major histocompatibility complex (MHC) I tetra
meric complexes in seven of the anti-PD-1-antibody-treated and
three of the control-antibody-treated macaques that expressed the
Mamu A*01 histocompatibility molecule. Consistent with previous
data”, most (=98%) of the Gag-CM9 tetramer-specific CD8 T
cells expressed PD-1 before blockade (data not shown). After PD-1




Model with exhausted cells
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('7 =ar(l—€)BVT + (p—a—dg)L

dl

dVv
— =pl —cV
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= (1—ap)(1 —€)BVT =61 +alL —mEI

E T EC5 + Ab(t)

+ 7
Ab(t)

X= exhausted cells, Ab = checkpoint inhibitor Ab
e.g. anti-PD-1 or anti-PD-L1



Study Overview

Low
dose IR Viral load

SIv Start PD-L1 Stop rebound off
Infection blockade ARV ARV

| | L | !
mAb ARV-TI Post-Tl

treatments Day 1 Day 92
-6 weeks

Entry criteria: sustained SIV RNA =50 copies ml CD4+ > 500cells/ul

BMS-936559: 5 doses, 10mg/kg over 2 weeks (day 0, 4, 7, 11, 14)




Antibody PK measured-Ab(t) known for each monkey

P294
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Fitting the viral dynamics model
parameters from the viral load data

1T
Y N7 — (1 — BT
dt
1L
= ar(1—€)BVT + (p—a—dp)L
dt
[
% =(1—ap)(1 —¢e)pVT —6I +al —mEI
p
dV
& pl—ev
dt b ‘
dE I I Ab(t)
& Np b F—dp—— B — pE + kot X
ai e T T T T M T e e T A
X I Ab(t
‘ E—dyX — ke iy

—dp—— N
dt ~ FRp+1 ECs + Ab(t)

Using fitted PK parameters for the anti-PD-L1 dynamics
Ab(t) = cre™ M1t 4 gy k2t

‘ Indicate parameters to fit from data

Viral dynamics

1 x 10* cells/mL/day

B 1.5 x 108
‘ mL/virus/day
‘ ) 1.0 /day

N 3500

1 oN

c 23 /day

€ 0.9

Target cell production rate
Target cell death rate
Mass-action infectivity
Infected cell death rate

Burst size

Viral productionrate, p = 6N

Viral clearance rate

Drug efficacy

Latent cell dynamics

a 1x 1073 /day
d, 4x1073/day
p 4.5x 1072 /day

@ 1x107¢

Latent cell activation rate
Latent cell death rate
Latent cell proliferation rate

Probability of a newly infected cell becomes latent

Effector cell dynamics

m 0.12 ul/cell/day
Ag 1.0 cell/uL/day

m)
)
)
m) o
=)
)

1.0 /day
dg 2.0 /day
u 2.0 /day
Ky 0.1 cells/mL
Kp 5.0 cells/mL

Exhausted cell dynamics

Effector cell killing rate

Effector cell basal production rate

Effector cell activated proliferation coefficient

Effector cell activated exhaustion coefficient

Effector cell basal death rate

Saturation parameter for activated effector cell production

Saturation parameter for activated effector cell exhaustion

ks 1.0/day

ECso 0.04%

dy 0.5u /day

Exhaustion reversal coefficient

Exhausted cell death rate




Viral load data fitting
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VL simulations
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the simulation



Simulations using fitted parameters: Removing Ab from treatment group

Responders
log10 Viral RNA copies/mL
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4
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Non-responders
log10 Viral RNA copies/mL
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- ==+ VLdata VL at t,in the data — VLsimulations = = = Steady state VL in the simulation



the killing rate of infected cells (mE)

tted parameters:
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Fewer doses of Ab
for responders

M568

P295

P310

P604

* One dose is not

enough to switch
the fixed point.
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Model reduction.

First, use quasi-steady approximation V = pl /c

T = A—drT—(1—¢€)kTpl/c

L = (IL(I—S)A’TPI/C—}—(,O—(I—SL)L
I = (1—oy)(1—¢e)kTpl/c+al— 86— mEI
. | IE IE Ab(t)
E = Ag+b —d — LE + ke

EOE 1 FRyr M TN B S ab(r)
: IE Ab(t)
X = d — pdy X — ke

Cgor1 MR e Ab ()

and then (non-traditionally) T = cA / [cdr + p(1 — €) BI].

L = OILU—S)kplf/((?d?“—f—ﬁ)(l—S)ﬁ”—f—(p—ﬂ—SL)L
I = (1—op)(1—e)kpAl/(cdr+p(1—¢€)BI)+al— 61 —mEI
IE IE Ab(1)

—d —UE +k,.
“E H “UECs0+ Ab(1)

E = Ag+b
ETPE R T TRKR




(a)

Comparison of Dynamics of reduced and full
models
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Phase Plane Analysis, P310 parameters with a0 = 0.0353

10

Effectors
L‘:‘&. M -I‘-‘- (@)} iCo

0 5 10 15
Rescaled viral load

Nullclines: indicated by the green (horizontal) and red (vertical) lines.
Equilibria: green dot is the control, stable state: blue the rebound, stable state; and
black the unstable saddle point.

Basin of attraction: Stable manifold of the saddle point forms the boundary of the
stable equilibria basin of attraction: yellow = control, white = no control. Unstable
manifolds of the saddle point are also included, leading to the control and rebound
equilibria respectively.



Full Model Dynamics on Phase Plane

» Simulate model and track progress of (/, E) from full model simulation
on reduced model phase plane.

» Use P310 parameters with alL.0 = 0.0353.

» ATI at day 42.

15+ Ab conc.<10°° ng/mL
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» ATI at day 44.

Ab conc.<10° ng/mL
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» ATI at day 0.

25 _
20t | KAb conc.<10° ng/mL

92

| -

S 15|

o

+ 10| =

LLJ :
~_Start Ab infusions,
e stop ART

0 5 10 15
Rescaled viral load



Model suggests that infusion of an anti-
checkpoint inhibitor, e.g. anti-PD-1 or anti-
PD-L1, may be able to convert someone
who normally would exhibit viral rebound
into a post-treatment controller.

Clinical trials needed to examine this
prediction.



One (out of 10) chonically HCV infected
patients given a single infusion of anti-PD1 at
a dose of 10 mg/kg was cured of infection.
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