Dark Black Holes

Sarah Shandera

S. Shandera, D. Jeong, H.Grasshorn Gebhardt (1802.08206, PRL **120**, 2018)

R. Magee, A.S. Deutsch, P. McClincy, C. Horst, D. Meacher, C. Messick, S. Shandera, M. Wade (1808.04772, PRD **98**, 2018) (Chad Hanna's PSU group)

LIGO Scientific Collaboration, Virgo Collaboration and S. Shandera; (1808.04771, PRL **121**, 2018)

LIGO Scientific Collaboration, Virgo Collaboration and S. Shandera; (1904.08976 PRL **123**, 2019)

Dark Black Holes

Sarah Shandera

Work in progress: Michael Ryan, Divya Singh, Towsifa Akhter

Charles E. Kaufman Foundation

It is very early in the GW era

Where did LIGO's objects come from? What else is out there?

A recently (re-)popular question...

Could black holes (made of normal matter) be the dark matter?

Can (new particle) dark matter make black holes?

Can (new particle) dark matter make black holes?

Ask this question in the company of the right friends...

Can (new particle) dark matter make black holes?

Ask this question in the company of the right friends...

... Sure,

S. Shandera, D. Jeong, H.Grasshorn Gebhardt (1802.08206, PRL **120**, 2018)

Can (new particle) dark matter make black holes?

Ask this question in the company of the right friends...

... Sure, and LIGO could find them.

S. Shandera, D. Jeong, H.Grasshorn Gebhardt (1802.08206, PRL **120**, 2018)

Can (new particle) dark matter make black holes?

Ask this question in the company of the right friends...

... Sure, and LIGO could find them.

S. Shandera, D. Jeong, H.Grasshorn Gebhardt (1802.08206, PRL **120**, 2018)

see also: d'Amico et al 1707.03419 (SMBH) Choquette et al 1812.05088 (SMBH) Essig et al 1809.01144, 1812.07000, R. Foot

Shandera, KITP, Feb 6 2020

Three claims

- (0) LIGO can provide clean new constraints on dark matter physics (with LIGO/VIRGO 1808.04771, 1808.04772, 1904.08976)
- (1) No obvious obstruction to dark black hole formation by dissipative dark matter

(2) Back-of-the-envelope predicts populations accessible

by Advanced LIGO

S. Shandera, D. Jeong, H. Gebhardt 1802.08206

Shandera, KITP, Feb 6 2020

Shandera, KITP, Feb 6 2020

Shandera, KITP, Feb 6 2020

Could there be something there?

Data exists....doing the search takes time and resources

LIGO and Dark Matter

Detections do not depend on particle physics

Existence of the objects does

No background/ foreground/ systematics

figure by Ryan Magee

Sub-solar mass search

Data

PBH following Nakamura et al 1997

LIGO Scientific Collaboration, Virgo Collaboration and S. Shandera; (1904.08976 PRL 123, 2019)

R. Magee, A.S. Deutsch, P. McClincy, C. Horst, D. Meacher, C. Messick, S. Shandera, M. Wade (1808.04772, PRD **98**, 2018) (Chad Hanna's PSU group) Shandera, KITP, Feb 6 2020

So why do astrophysical black holes form?

Gravitational collapse has to be able to win over all sources of pressure

When does gravity win?

Minimal pressure is electron degeneracy pressure:

Chandrasekhar relation:

$$M \gtrsim 1.4 M_{\odot}$$

Okay, but astrophysical black holes:

Hmmm, nuclear physics is too complicated.... ...let's get rid of it

Primary obstacle to forming black holes from dark matter: it's zipping around in high virial temperature halos

(1) A dark matter scenario

Dark "electron

 m_L

Dark "proton" (a fundamental particle)

 m_H

Dark "photon"

$$\xi = \frac{T_{\tilde{\gamma}}}{T_{\gamma,CMB}}$$

Dark fine structure constant

 α_D

(1) A dark matter scenario

Dark "electron

 m_L

Dark "proton" (a fundamental particle)

 m_H

Dark "photon"

$$\xi = \frac{T_{\tilde{\gamma}}}{T_{\gamma,CMB}}$$

Dark fine structure constant

 α_D

"atomic dark matter"

- Ackerman et al 0810.5126
- Feng et al 0905.3039
- Kaplan et al 0909.0753, 1105.2073
- Fan et al 1303.1521,1303.3271
- Cyr-Racine et al 1209.5752, 1310.3278

The minimum dark BH mass is

(while $m_H \gg m_L$)

$$M_{\rm Chand.}^{\rm Dark} \approx 1.4 M_{\odot} \left(\frac{m_p}{m_H}\right)^2$$

$$m_p = 0.938 \; \text{GeV}$$

 $\frac{\sigma}{m} \lesssim 0.5-1~{\rm cm}^2/{\rm g}\,,~~{\rm But~maybe} \frac{\sigma}{m} \neq 0~~{\rm helps~with~halo}~~{\rm structure~(cusp/core~problem)}$

 $\frac{\sigma}{m} \lesssim 0.5-1~{\rm cm^2/g}\,,~~{\rm But~maybe} \frac{\sigma}{m} \neq 0~~{\rm helps~with~halo}~~{\rm structure~(cusp/core~problem)}$

(assumes $\xi = 0.6$)

Boddy, Kaplinghat, Kwa, Peter, 1609.03592 also: Agrawal et al 1610.04611, etc

talk by Hai-bo You

Shandera, KITP, Feb 6 2020

 $\frac{\sigma}{m} \lesssim 0.5-1~\rm{cm}^2/\rm{g} \,, \quad \text{But maybe} \, \frac{\sigma}{m} \neq 0 \quad \text{helps with halo} \\ \text{structure (cusp/core problem)}$

Best for cores in massive halos

Boddy, Kaplinghat, Kwa, Peter, 1609.03592 also: Agrawal et al 1610.04611, etc

talk by Hai-bo You

(assumes $\xi = 0.6$)

Shandera, KITP, Feb 6 2020

 $\frac{\sigma}{m} \lesssim 0.5-1~{\rm cm^2/g}\,,~~{\rm But~maybe} \frac{\sigma}{m} \neq 0~~{\rm helps~with~halo}~~{\rm structure~(cusp/core~problem)}$

Best for cores in massive halos

Best for cores in low-mass halos

(assumes $\xi = 0.6$)

Boddy, Kaplinghat, Kwa, Peter, 1609.03592 also: Agrawal et al 1610.04611, etc

talk by Hai-bo You

Shandera, KITP, Feb 6 2020

Our benchmark model

Dark "electron"

Dark "proton"

Dark "photon"

Dark fine structure constant

$$m_L \sim 30 - 150 \; {\rm keV}$$

$$m_H \sim 10 - 100 \; {\rm GeV}$$

$$\xi = \frac{T_{\tilde{\gamma}}}{T_{\gamma, \text{CMB}}} = 0.02$$

$$\alpha_D = 0.01$$

These numbers come from considerations independent of the previous slide! Intriguing overlap...

A non-minimal dark matter scenario with distinct black holes

Dark "electron"

Dark "proton"

Dark "photon"

Dark fine structure constant

Interesting BH masses

A non-minimal dark matter scenario with distinct black holes

Dark "electron"

Dark "proton"

Dark "photon"

Dark fine structure constant

Interesting BH masses

Dark "hydrogen"

Cooling channels

A non-minimal dark matter scenario with distinct black holes

Dark "electron"

Dark "proton"

Dark "photon"

Dark fine structure constant

Interesting BH masses

Dark "hydrogen"

Cooling channels

Allows BHs to form dynamically from dark matter

Shandera, KITP, Feb 6 2020

Please Note:

1. The dark sector is very cold: how did it get that way?

$$\xi = \frac{T_{\tilde{\gamma}}}{T_{\gamma, \text{CMB}}} = 0.02$$

- 2. No comment about relic abundance (but asymmetric dark matter has always been a good idea)
- 3. No comment about couplings to the standard model (maybe none?)
- 4. Particle content is designer to make calculations easy.

Related/contrasting ideas: talks by Heckman, Long, Shelton....work by Adshead, Cui, Shelton; Pearce,...

A non-minimal dark matter scenario with distinct black holes

Dark "electron"

Dark "proton"

Dark "photon"

Dark fine structure constant

Dark "hydrogen"

Cooling channels

Interesting BH masses

Allows BHs to form dynamically from dark matter

We need to check:

 Can dark matter cool sufficiently to collapse into black holes?

We need to check:

 Can dark matter cool sufficiently to collapse into black holes?

We need to check:

- Can dark matter cool sufficiently to collapse into black holes?
- What are the masses of those black holes?

We need to check:

- Can dark matter cool sufficiently to collapse into black holes?
- What are the masses of those black holes?
- How many of those black holes are in binaries?

We need to check:

- Can dark matter cool sufficiently to collapse into black holes?
- What are the masses of those black holes?
- How many of those black holes are in binaries?
- What is the merger rate today, detectable by LIGO?

We need to check:

- Can dark matter cool sufficiently to collapse into black holes?
- What are the masses of those black holes?
- How many of those black holes are in binaries?
- What is the merger rate today, detectable by LIGO?

Rosenberg and Fan, 1705.10341; Buckley and DiFranzo, 1707.03829

opacity limit arguments from 1970's

+

Pop III star literature;

- \propto (number of black holes) \times (fraction in binaries)
 - × (merger rate of those binaries today)

- - × (merger rate of those binaries today)

$$\sim \left[\frac{dP(T_{\rm merge})}{dT_{\rm merge}}\right]\Big|_{T_{\rm merge}\sim 10^{10}{\rm yr}}$$

- \propto (number of black holes) \times (fraction in binaries)
 - × (merger rate of those binaries today)

$$\sim \left[\frac{dP(T_{
m merge})}{dT_{
m merge}}
ight] igg|_{T_{
m merge} \sim 10^{10} {
m yr}}$$

Depends on parameters of the binaries

- \propto (number of black holes) \times (fraction in binaries)
 - × (merger rate of those binaries today)

$$\sim \left(\frac{M_{\rm DM} \times f_{\rm cool} \times f_{\rm form.\,eff.}}{M_{DBH}}\right) \times f_{\rm binary} \times \left[\frac{dP(T_{\rm merge})}{dT_{\rm merge}}\right]\Big|_{T_{\rm merge} \sim 10^{10} {\rm yr}}$$

Depends on parameters of the binaries

- \propto (number of black holes) \times (fraction in binaries)
 - × (merger rate of those binaries today)

$$\sim \left(\frac{M_{\rm DM} \times f_{\rm cool} \times f_{\rm form.\,eff.}}{M_{DBH}}\right) \times f_{\rm binary} \times \left[\frac{dP(T_{\rm merge})}{dT_{\rm merge}}\right]\Big|_{T_{\rm merge} \sim 10^{10} {\rm yr}}$$

Total DM mass available How much is in BHs?

Depends on parameters of the binaries

Why is it cooling? Example: collisional excitation

dark hydrogen

(fast) dark electron

Detailed rates calculated by Rosenberg and Fan, 1705.10341; BUT: molecular cooling should set minimum temperature of gas

Why is it cooling?

Example: collisional excitation

dark hydrogen

dark hydrogen excited state

(fast) dark electron

slower dark electron

Detailed rates calculated by Rosenberg and Fan, 1705.10341; BUT: molecular cooling should set minimum temperature of gas

Why is it cooling?

Example: collisional excitation

dark hydrogen

(fast) dark electron

dark hydrogen excited state

slower dark electron

dark hydrogen

Detailed rates calculated by Rosenberg and Fan, 1705.10341; BUT: molecular cooling should set minimum temperature of gas

$$\frac{dT}{dt}$$
 (cooling processes) > $\frac{dT}{dt}$ (kinematics in gravitational well)

Cooling is more efficient for smaller dark matter halos: can maintain "cold dark matter" success on large scales

Cooling dark matter

This plot + sub-halo mass function: $f_{\rm cool} \sim 0.01$

Plot: Henry Gebhardt

Star-to-gas ratio for Coma:

Star-to-gas ratio for Coma:

~2% of mass in stars

~10% of mass in gas Shandera, KITP, Feb 6 2020

Or, from literature on formation of first stars (in hydrogen gas, with a bit of helium):

$$f_{\rm form.\,eff.} \sim 10^{-3}$$

$$f_{\rm cool} \times f_{\rm form.\,eff.} \sim 10^{-5}$$

Optimistic:

$$f_{\rm cool} \times f_{\rm form.\,eff.} \sim 10^{-3}$$

Fraction of dark matter in black holes

What is the mass of black holes formed by collapse of "atomic" dark matter?

"opacity limit" argument (Rees; Lynden-Bell, 1976)

$$M_{
m J,min} \propto \left(\frac{m_p}{m_H}\right)^{9/4} \left(\frac{T}{10^3 K}\right)^{1/4} M_{\odot}$$

Coefficient? Pop III star literature for proto-star masses:

$$M_{\rm DBH,min} \sim \left(\frac{m_p}{m_H}\right)^{9/4} \left(\frac{T}{10^3 K}\right)^{1/4} 10^3 M_{\odot}$$

What is the spectrum of birth masses of these black holes?

$$dP_m \propto m^{-b} \qquad b = 0.17$$

up to two orders of magnitude above the minimum:

Stacey and Bromm, 2013

What are the binary parameters?

How many binaries?

$$f_{\text{binary}} = 0.26$$

Stacey and Bromm, 2013

Mass ratio in binaries?

$$P_q \propto q^{-0.55} dq$$

 $q = m_{\text{light}}/m_{\text{heavy}}$

Distribution of eccentricities?

$$dP_e \propto ede$$

Semi-major axis?

$$dP_a \propto x^{-1/2} dx$$

 $x = Log_{10}(a/a_*)$

Hartwig et al, 2016

For example:
$$0.06 < a < 2400 \text{ AU}$$

$$M_{\rm min} = 0.054 \, M_{\odot}$$

Are these black holes merging today?

$$T_{\text{merge}} = \frac{(3 \times 10^9 \text{yr}) M_{\odot}^3}{m_1 m_2 (m_1 + m_2)} \left(\frac{a}{0.01 \text{ AU}}\right)^4 (1 - e^2)^{7/2}$$

The spectrum of those that are:

Shandera, KITP, Feb 6 2020

Estimated LIGO rates

m_X	m_c	$M_{ m Chand.}^{ m dark}$	$M_{ m DBH}$	Rates per year				$m_1 < 1.4$	$m_1, m_2 < 1.4$
[GeV]	[keV]	$\left[10^{-5}M_{\odot} ight]$	$[M_{\odot}]$	raw (MWEG ⁻¹)	aLIGO (current)	aLIGO (full)	Einstein T.	[%]	[%]
62	31	33	0.0068 - 0.68	$2.0 \times 10^{-6} (10^{-4})$	0.0012 (0.12)	0.020 (2.0)	60 (6000)	100%	100%
48	47	56	0.016 - 1.6	$1.3 \times 10^{-6} (10^{-4})$	0.0065 (0.65)	0.11 (11)	330 (33k)	99%	79%
32	70	125	0.054 - 5.4	$6.6 \times 10^{-7} (10^{-5})$	0.068 (6.8)	1.1 (110)	3500 (350k)	53%	9.3%
16	140	500	0.43 - 43	$1.9 \times 10^{-7} (10^{-5})$	0.89 (89)	22 (2200)	92k (9200k)	9.8%	0.14%

To Do

- 1. Keep looking...(O3 results...)
- 2. Improve the particle physics to black hole modeling (H₂ cooling, KROME)
- Put existing results together for LIGO constrains
- 4. Connect to larger-scale structure
- 5. Explore particle models more broadly

Shandera, KITP, Feb 6 2020

Summary

Summary

- Enough DM to make significant number of objects
- No obstruction for a simple example
- LIGO constrains cooling rate (chemistry!) of dark sector

Summary

- Enough DM to make significant number of objects
- No obstruction for a simple example
- LIGO constrains cooling rate (chemistry!) of dark sector

$$M_{\rm Chand.}^{\rm Dark} \approx 1.4 M_{\odot} \left(\frac{m_p}{m_H}\right)^2$$

Cosmology with extra cold dark matter

Relativistic degrees of freedom not very constraining:

$$\left[g_{*\mathrm{Dark}}\xi^4\right]|_{\mathrm{CMB}} \le \frac{7}{4} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\mathrm{eff}}^{BBN}$$

Far fewer dark photons per dark baryon vs SM:

$$\eta_{D,10} \approx 2 \times 10^5$$
 $\eta_{D,10} = 10^{10} n_{Db} / n_{\tilde{\gamma}}$

Dark recombination and decoupling is early:

$$z_{\rm dec} \approx 32,000$$
 $X_{De}^{\rm freeze} \approx 5 \times 10^{-8}$

Damping scale is larger than DAO scale:

$$k_{\rm d}^{-1} \sim 0.24 \; {\rm Mpc} > d_{\rm DAO} \approx 0.02 \; {\rm Mpc}$$