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t is very early in the GW era

GraceDB — Gravitational-Wave Candidate Event Database

| HOME | PUBLICALERTS | SEARCH | LATEST | DOCUMENTATION |

LOGIN

LIGO/Virgo O3 Public Alerts

Detection candidates: 48

SORT: EVENTID (A-2) "

Event ID

$200129m

5200128d

Possible Source

(Probability)

BBH (>99%)

BBH (97%),

Terrestrial (3%)

uTC

Jan. 29, 2020
06:54:58 UTC

Jan. 28, 2020
02:20:11 UTC

GCN

GCN Circulars

Notices | VOE

GCN Circulars

Notices | VOE

Location

FAR

1 per
4.7313e+23

years

1 per 1.9238

years

Comments
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Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

LIGO-Virgo | Frank Elavsky | Northwestern
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Masses in the Stellar Graveyard

in Solar Masses

A

LIGO-Virgo | Frank Elavsky | Northwestern

Where did LIGO’s objects come from?

What else Is out there”

Shandera, KITP, Feb 6 2020




A recently (re-)popular
guestion....

Could black holes (made of normal matter) be the dark
matter?

See talks by Dror, Kusenko, Profumo Shandera. KITP. Feb 6 2020



A different question....

Can (new particle) dark matter make black holes”
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Three claims

(0) LIGO can provide clean new constraints on dark matter
physics (with LIGO/VIRGO 1808.04771, 1808.04772, 1904.08976)

(1) No obvious obstruction to dark black hole formation by
dissipative dark matter

(2) Back-of-the-envelope predicts populations accessible
by Advanced LIGO ] ———

M g= 48 GeV
L2F mmmmp= 32 GeV
M= 16 GeV

S. Shandera, D. Jeong, H. Gebhardt
1802.08206 l
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(0) Clean new physics discovery
space
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(0) Clean new physics discovery
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(0) Clean new physics discovery
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(0) Clean new physics discovery
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Could there be something there?
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Data exists....doing the search takes time and resources
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| |GO and Dark Matter
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Sub-solar mass search
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SO why do astrophysical
black holes form®

Gravitational collapse has to be able to win over all
sources of pressure

Shandera, KITP, Feb 6 2020



When does gravity win”

Minimal pressure Is electron degeneracy pressure:

Chandrasekhar relation:

M > 1.4M,

Shandera, KITP, Feb 6 2020



Okay, but
astropnysical black holes:

Sun-like Star . - |
‘. Masswe Star Red

\ n 8 to 10 times the mass of our Sun) Superglant
Protostars Mion,
.

Star- Formmg ' | ool
Nebula

Neutron Star Supernova

Planetary Nebula > # .
White Dwarf Black Hole

NASA and Night Sky Network Shandera, KITP, Feb 6 2020



HMMmMmMm, nuclear physics IS too
complicatead....
..let’'s get rid of it

Primary obstacle to forming black holes from dark matter: it's
zipping around in high virial temperature halos

Shandera, KITP, Feb 6 2020



(1) A dark matter scenario

Dark “electron mr
Dark “proton” (a fundamental particle) mHu

15
Dark “photon § = T onp
Dark fine structure constant D
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(1) A dark matter scenario

Dark “electron mr
Dark “proton” (a fundamental particle) mHu

15
Dark “photon § = T onp
Dark fine structure constant D

“atomic dark matter”

- Ackerman et al 0810.5126

- Feng et al 0905.3039

- Kaplan et al 0909.0753, 1105.2073

- Fan et al 1303.1521,1303.3271

- Cyr-Racine et al 1209.5752, 1310.3278 Shandera, KITP, Feb 6 2020



The minimum dark BH mass Is

(while mp > my)

2
Mk, ~ 14Mo (22

m, = 0.938 GeV

Shandera, KITP, Feb 6 2020



Constraints on parameter space”

<0.5—1cm®/g, But maybe - —#£0 helps with halo
structure (Cusp/Core problem)

Boddy, Kaplinghat, Kwa, Peter, 1609.03592

also: Agrawal et al 1610.04611, etc
talk by Hai-bo You Shandera, KITP, Feb 6 2020
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Constraints on parameter space”
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Our benchmark model

Dark “electron” mr ~ 30 — 150 keV

Dark “proton” mg ~ 10 — 100 GeV
1 ) — 5/ — 0.02

Dark “photon S T ovn

Dark fine structure constant ap = 0.01

Shandera, KITP, Feb 6 2020



A non-minimal dark matter
scenario with distinct black holes

Dark “electron”

Dark “proton” * Interesting BH
Dark “photon” Masses

Dark fine structure constant

Shandera, KITP, Feb 6 2020
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Dark “electron”

Dark “proton” * Interesting BH
Dark “photon” Masses
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Dark “hydrogen”
= (Cooling channels
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A non-minimal dark matter
scenario with distinct black holes

Dark “electron”

Dark “proton” * Interesting BH
Dark “photon” Masses

Dark fine structure constant

Allows BHs to

“ ) form
Dark “hydrogen » dynamically
= (Cooling channels from dark matter

Shandera, KITP, Feb 6 2020



Please Note:

1. The dark sector is very cold: how did it get that way?

~

— T —=0.02
f T%CMB

2. No comment about relic abundance (but asymmetric
dark matter has always been a good idea)

3. No comment about couplings to the standard model
(maybe none?)

4. Particle content is designer to make calculations easy.

Related/contrasting ideas: talks by
Heckman, Long, Shelton....work by

Adshead, Cui, Shelton; Pearce,... .... Shandera, KITP, Feb 6 2020



A non-minimal dark matter
scenario with distinct black holes

Dark “electron”

Dark “proton” * Interesting BH
Mmasses

Dark “photon”

Dark fine structure constant

Allows BHs to

“ ) form
Dark “hydrogen * dynamically
=» (Cooling channels from dark matter

Shandera, KITP, Feb 6 2020



Still, can we form enough dark
BHSs for this to be interesting”?

We need to check:

e Can dark matter cool
sufficiently to collapse into
black holes?

Shandera, KITP, Feb 6 2020
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We need to check:

e Can dark matter cool
sufficiently to collapse into
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e \\Vhat are the masses of those
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e How many of those black
holes are in binaries?
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detectable by LIGO?
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Still, can we form enough dark
BHSs for this to be interesting”?

We need to check:

e Can dark matter cool Rosenberg and Fan,
Co : 1705.10341; Buckley and
sufficiently to collapse into DiFranzo. 1707 03829
black holes”

e \\Vhat are the masses of those

black holes”
opacity limit arguments from
e How many of those black 1970's
holes are in binaries”? +

Pop Il star literature;

e \What is the merger rate today,
detectable by LIGO?

Shandera, KITP, Feb 6 2020



Parameterizing the
coalescence rate

X (number of black holes)x (fraction in binaries)

x (merger rate of those binaries today)

S. Shandera, D. Jeong, H. Gebhardt 1802.08206 Shandera, KITP, Feb 6 2020



Parameterizing the
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X (number of black holes)x (fraction in binaries)

x (merger rate of those binaries today)

% f % dP(Tmerge)
~ binary
i dTmerge d 1 Therge~1010yr
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Parameterizing the
coalescence rate

X (number of black holes)x (fraction in binaries)

x (merger rate of those binaries today)

> f % dP(Tmerge)
~ binary
L dTmerge d 1 Therge~1010yr

Depends on

parameters of the
binaries
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Parameterizing the
coalescence rate

X (number of black holes)x (fraction in binaries)

x (merger rate of those binaries today)

AP (Therge)
L dTmerge

(MDM X fcool X fform.eff.
MppH

) X fbinary X

- TmergeN]-OlOyr

Depends on

parameters of the
binaries
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Parameterizing the
coalescence rate

X (number of black holes)x (fraction in binaries)

x (merger rate of those binaries today)

AP (Therge)
L dTmerge

(MDM X fcool X fform.eff.
MppH

) X fbinary X

- TmergeN]-OlOyr

. Depends on
TOI_tlal DM m;ags .anil_lakf?le parameters of the
OW mucn IS In S ! binaries

S. Shandera, D. Jeong, H. Gebhardt 1802.08206 Shandera, KITP, Feb 6 2020




How much dark matter can
cool?

Why is it cooling?  Example: collisional excitation

dark hydrogen

‘)'

(fast) dark electron

Detailed rates calculated by Rosenberg and Fan, 1705.10341;

BUT: molecular cooling should set minimum temperature of gas
Shandera, KITP, Feb 6 2020
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® ‘\

(fast) dark electron slower dark electron

Detailed rates calculated by Rosenberg and Fan, 1705.10341;
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How much dark matter can
cool?

Why is it cooling?  Example: collisional excitation

dark hydrogen

dark hydrogen excited state ~ dark hydrogen

‘f

(fast) dark electron slower dark electron N

Detailed rates calculated by Rosenberg and Fan, 1705.10341;

BUT: molecular cooling should set minimum temperature of gas
Shandera, KITP, Feb 6 2020



How much dark matter can

cool?
dl’ | dl’ e .
E(Coolmg processes) > E(kmemaﬂcs in gravitational well)

Cooling is more efticient for smaller dark matter halos:
can maintain “cold dark matter” success on large scales

Buckley and DiFranzo, 1707.03829 Shandera. KITP. Feb 6 2020



How much dark matter can cool?

All coolinggmechanisms
ol myg = 16.0 GeV, ap = 0.01

1012

1010

0 Plots: Henry Gebhardt

~
~
~
~
~
\\
~

a
]
a
]
L]
]
L]
L]
L]
]
L]
L
L]
L]
]
L
L
o
o
L]
L]
a
a
L]
]
]
L
L
]
]
L]
L]
L]
]
L
L]
L]
]
L]
]
L]
L
T
L]

Rosenberg and Fan,
1705.10341; Buckley and

DiFranzo, 1707.03829 Shandera, KITP, Feb 6 2020



Cooling dark matter

All coolinggmechanisms

my = 16.0 GeV. ap = 0.01
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Plot: Henry Gebhardt

Rosenberg and Fan, 1705.10341;
Buckley and DiFranzo, 1707.03829

This plot
+
sub-halo mass
function:

fcool ~ (.01
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How much of the dark matter that
can cool ends up Iin black holes”
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How much of the dark matter that
can cool ends up Iin black holes”

Star-to-gas ratio for Coma:
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How much of the dark matter that
can cool ends up Iin black holes”

Star-to-gas ratio for Coma:

~2% Of mass in stars ~10% of mass in gas
Shandera, KITP, Feb 6 2020



How much of the dark matter that
can cool ends up Iin black holes”

Or, from literature on formation of first stars (in
hydrogen gas, with a bit of helium):

cool X Jform.eff. ™~ 10_5 .
ot o

dark matter

IN black

Opt|m|8t|C fcool X fform.eff. ~ 10_3 holes

Shandera, KITP, Feb 6 2020




What is the mass of black holes formed
by collapse of "atomic” dark matter?

“‘opacity limit” argument (Rees; Lynden-Bell, 1976)

Shandera, KITP, Feb 6 2020



What is the spectrum of birth masses
of these black holes”

dP, oc m™? b=0.17

up to two orders of magnitude above the minimum:
Stacey and Bromm, 2013

4

S R B | PR B P P P B
1072 101 10° 10!
Dark black hole mass Mppy /M

—Myg=62 GeV
- —— M pg =48 GeV

—_
)
o

AN

Mass function dP/dIn(Mppu/Ms)
=

—_
=
[\V]
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What are the binary

parameters’?

How many binaries? fbinary = 0.26 stacey and Bromm
Mass ratio in binaries? q = Miight/Mheav:
striAg It L 0l<e<l1

Distribution of eccentricities?

A - —1/2
Semi-major axis? AP, o<z 2dx| g enal 2016

r = Logyg(a/ax)

For example: 0.06 < a < 2400 AU~ Mpuyin = 0.094 Mg
Shandera, KITP, Feb 6 2020



Are these black holes merging
today”?

T o = (3 X ]_OgyI‘)Mg) ( a )4 (1 B 62)7/2
5 mlmz(ml -+ mz) 0.01 AU

1.4F mmmmg= 62 GeV
g =48 GeV
L2 mmmmpy= 32 GeV
M pg=16 GeV

1.0F
=
The spectrum of |
= 061
those that are:
04F

-20 -—-15 —-1.0 —-0.5 0.0 0.5 1.0 1.5
Chirp mass log;, M
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Estimated LIGO rates

mx | me | MEE 4 MpsH Rates per year my <ldimy,my <14
(GeV] | [keV]|[107° M) (M)] raw (MWEG ") |aLIGO (current) |aLIGO (full)| Einstein T.| [%)] (%]

62 | 31 33  |0.0068 — 0.68] 2.0x10°5(10"%) | 0.0012 (0.12) | 0.020 (2.0) | 60 (6000) | 100% 100%

48 | 47 56 0.016 — 1.6 | 1.3x10°°(10"%) | 0.0065 (0.65) 0.11 (11) | 330 (33k) 99% 79%

32 | 70 125 0.054 — 5.4 [6.6 x 10°"(107°)| 0.068 (6.8) 1.1 (110) |3500 (350k)| 53% 9.3%

16 | 140 500 043 -43 [1.9x10°7(107°) 0.89 (89) 22 (2200) |92k (9200k)| 9.8% 0.14%

Shandera, KITP, Feb 6 2020




1o Do

1. Keep looking...(O3 results...)
mprove the particle physics to black
nole modeling (Hz cooling, KROME)
3. Put existing results together for LIGO

10 -

Bkalll constrains
4. Connect to larger-scale structure
5. Explore particle models more broadly
) 1.4F mmmam = 62 GeV
102

g = 48 GeV
L2F mmmmpy= 32 GeV
pmmyg=16 GeV

10! 10V 10} 102
M (Mg)

-20 —-15 -10 =05 0.0 0.5 1.0 1.5

Chirp mass log;y M
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summary
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summary
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summary

—nough DM to
make significant
number of objects

No obstruction for
a simple example

LIGO constrains
cooling rate
(chemistry!) of
dark sector

I‘III T LILELBLAL

aLIGO (current)
aLIGO (designed sensitivity)

Einstein telescope
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space
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Cosmology with extra cold dark matter

e Relativistic degrees of freedom not very constraining:

7 (4\"?
[g*Darkgﬂ |CMB < Z (ﬁ) ANngN

e Far fewer dark photons per dark baryon vs SM:

N0 ~ 2 x 107 np.10 = 10'"npy/n5

eDark recombination and decoupling is early:
Zdec ~ 32,000 Xgieze ~5 x 1078

eDamping scale is larger than DAO scale:
k;l ~ 0.24 Mpc > dpao ~ 0.02 Mpc

Shandera, KITP, Feb 6 2020



