Locating the Missing Superconducting
Electrons in the Overdoped Cuprates (and
cyclotron resonance!)
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High-T. cuprates: Conventional Wisdom

\ e.g. Emery, V. & Kivelson, S.
A

Nature 374, 434-437 (1994)
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* small n, <-->small Jg

* susceptible to phase fluctuations

* no mean-field description --> not BCS

overdoped

* large n, <--> large Jg
* rigid phase
 mean-field description --> BCS

Is n, actually large for overdoped cuprates?



The puzzle of the missing superconducting electrons in
overdoped cuprates
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(1) Where are the missing SC ‘
electrons?

(2) Why do they fail to condense?
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Time Domain THz Spectroscopy
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THz optical conductivity x = 0.23 Laz.xSrxCuOa thin film (T. = 27.5 K).
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Residual and normal state real conductivity

Determine S,, and S,, using THz conductivity
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Residual and normal state real conductivity

Determine S,, and S,, using THz conductivity
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Determine S5 using mutual inductance
on the same films
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Uncondensed superconducting electrons — why?

1) Pair-breaking scattering due to impurities which
smears out d-wave node ( )

2) Gross e.g. macroscopic normal
regions of the sample.

3) Other effects e.g. of various kinds,
Inelastic scattering.
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Expectations for dirty d-wave
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Expectations for dirty d-wave
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Drude width as a function of temperature
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Optical conductivity of overdoped cuprate superconductors: application to LSCO
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Radiation induced disorder/defects

Constraints on Models of Electrical Transport in Optimally
Doped La,_,Sr, CuQOy4 from Measurements of Radiation-Induced
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Low-T uncondensed carrier conductivity

Original T.=19.5 K, plotsatT ~ 1.6 K
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Effect of disorder on T
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Scattering rate analysis

Original T, = 19.5 K
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Uncondensed superconducting electrons — why?
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Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La,_,Sr,CuQO,
single crystals

Yue Wang, Jing Yan, Lei Shan, and Hai-Hu Wer’

v(0) ( mJmol'K?)

National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,
Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People’s Republic of China

Yoichi Tanabe, Tadashi Adachi, and Yoji Koike
Department of Applied Physics, Graduate School of Engineering,
Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

14} e N ] 14 Very large residual fermonic heat
@ @ 1 . .
12 ® ® o J12 capacity in overdoped LSCO.
10| o« 77.{ 110
I 1% %
®1 - .
8 2 1?3 For overdoped samples with Tc~ 20 K
or 1° 2 the heat capacity coefficient was
e = 1" = roughly 70% of the normal state and
L m - .
z-A a0 @ 2 reached essentially 100 % by Tc ~ 7 K.
1) E R —— R B---41.0 _
- m Presentwork Interpreted in terms of large scale
08Fm W t al. 40.8 i :
| A N:hnafaZtal. v Inhomogenelty
06| ¥ Ohsugietal. ™ dos =
| & TI2201 v* z
A y 1742 See also work by Barisic and Greven
ozf = 5 ° 0 1% (dc, magnetization) that interprets data
L A . . -
ool e o0 in terms of percolative transition.
0.15 0.18 021 024 027 030

doping x



Uncondensed superconducting electrons — why?

1) Pair-breaking scattering due to impurities which
smears out d-wave node ( )

2) Gross e.g. macroscopic normal
regions of the sample.

3) Other effects e.qg. of various kinds,
inelastic scattering.



Superfluid phase stiffness

vo, --> measure of Jg over different length/time scales
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Uncondensed superconducting electrons - why?

Quantum phase fluctuations - Debye-Waller factor

Bragg scattering

thermal/quantum vibration of atoms, u
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Uncondensed superconducting electrons - why?

Quantum phase fluctuations
Quantum Debye-Waller factor
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Renormalization of the SC phase
stiffness
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Time-domain THz spectroscopy --> superfluid phase stiffness

Prominent role of quantum phase fluctuations for overdoped La,_Sr,CuO,



Locating the missing superconducting electrons
in overdoped cuprates

Wanted to explain the small overdoped superfluid density of Bozovic et al. (missing
electrons)

We find deep into the superconducting state, proportion of
uncondensed electrons increases with over doping.

Large width, much in excess of T¢, but with linear in T superfluid density

A number of explanations are possible:
Open questions whether or not the “dirty d-wave” (

bring open questions about whether Born scattering
model is consistent with totality of data.

Interesting correlations found in the generalized sf density demonstrating the
possible relevance of on the approach to the OD critical point.






Cyclotron resonance

Semiclassical Lorentz force

< Fe e Fc = mv2/r = evB;

W= eBz/m
V
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Time domain spectroscopy in large pulsed magnetic field
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Time domain spectroscopy in large pulsed magnetic field

Frequency (THz)



What do we know about cyclotron resonance?

Inverse time to complete a Fermi surface orbit = parameterize as w=eB/m; but what m?

- Galilean invariant system — mass independent of interactions (Kohn 1961)

- Non-interacting system — M, — —— ——
T 2rOFE | Es

- Effective Galilean invariance; low density systems e.g. 2DEG Ar >>a — mer = mp

- Deviations from Galilean invariance (disorder, nonparabolicity, Umklapp scattering etc.) cause
e-e and e-p interactions to manifest in m¢r (Kallin and Halperin, MacDonald and Kallin, Kanki and
Yamada) — interactions manifest differently than in other masses!

for some part of the Fermi surface the backflow term has
. R the opposite effect from that in Galilean invariant sys-
on the Basis of the Fermi Liquid Theory tems. Then a kind of effective mass, corresponding to the

ratio of momentum to the actual mass flow, is enhanced

Theory of Cyclotron Resonance in Interacting Electron Systems

< 3 ' y 1 . . .
Kazuki KANKI and Kosaku YAMADA from even the thermodynamic mass of the quasiparticles.




Simple models for cyclotron resonance
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Cyclotron resonance as a function of field
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How does cyclotron resonance mass compare with ARPES?
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The band structure and Fermisurface of LSCO
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LSCO tight binding calculation of the cyclotron mass
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Density of states (eV )

Doping dependence will be interesting
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Conclusions

Large pulsed magnetic field coupled to time-domain THz
spectroscopy — many opportunities for charge and spin systems

Cyclotron resonance observed despite broad line shape
Measured mass mer~ 4.9 me
Similar to values from ARPES and heat capacity (at this doping)

No signs of field driven Fermi surface reconstructions



