## Metallic Criticality in the Charge Transport of $\mathrm{BaFe}_{2}\left(\mathrm{As}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}\right)_{2}$

Ian M. Hayes, Nicholas Breznay, Nikola Maksimovic, James G. Analytis
UC Berkeley and Lawrence Berkeley National Laboratory
Arkady Sheckter, Ross D. McDonald, Mun K. Chan, Brad Ramshaw
NHMFL Pulsed Field Facility, Los Alamos National Laboratory


## Outline

- Phenomenology of Quantum Critical metals
- T-linear resistivity, 1/T Hall effect
- Fan-like critical region
- High Field Magnetoresistance in Ba-122
- T-linear/B-linear MR
- Scaling between $T$ and $B$, with the same exponent
- Phenomenology of $R_{H}$
- 1/T enhancement at low temperatures
- Reduction of $R_{H}$ at high fields and cut-off at high dopings


## Brought to you by:

NHMFL collaborators Arkady Shechter, Ross McDonald, Mun Chan \& Brad Ramshaw


Colleagues at Berkeley Nicholas Breznay, Toni Helm, Nikola Maksimovic \& James Analytis


## T-linear Resistivity in Quantum Critical Metals



Bruin et al, Science (2013)


## (Nonmagneto-)Transport in High- $\mathrm{T}_{\mathrm{c}} \mathbf{s}$


N.E. Hussey, Journal of Physics: Condensed Matter (2008)

K. Hashimoto et al., Science (2012)

Y. Ando, PRL (2004)


Kasahara et al., Phys. Rev. (2010)

## (Nonmagneto-)Transport in High- $\mathrm{T}_{\mathbf{c}} \mathbf{s}$


N.E. Hussey, Journal of Physics: Condensed Matter (2008)


Hg-1201, from Barisic, et al, PRL (2016)


## $\operatorname{BaFe}_{2}\left(\mathrm{As}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}\right)_{2}$



- Signs of strong correlations/criticality are seen in a number of probes: Quantum oscillations, heat capacity, penetration depth, NMR, charge transport.
- Normal state at optimal doping is (barely) accessible at low temperatures: $\mathrm{H}_{\mathrm{c} 2} \sim 45$

P. Walmsley, et al, Phys. Rev. Lett. (2013)

Y. Nakai, et al., Phys. Rev. Lett. (2010) Tesla


## Ultra-High Magnetic fields: NHMFL Pulsed Field Facility at Los Alamos National Lab


http://www.lanl.gov




## Low-T magnetotransport



## Low-T magnetotransport



## Low-T magnetotransport



## Low-T magnetotransport




## Low-T magnetotransport



## Low-T magnetotransport



## Low-T magnetotransport




## Low-T magnetotransport



## $B / T$ Scaling in the magnetotransport



## $B / T$ Scaling in the magnetotransport



## Intercepts and slopes




## Intercepts and slopes



Within a few percent Alpha = Beta in:

$$
\rho \propto \sqrt{\left(\alpha k_{B} T\right)^{2}+\left(\beta \mu_{B} B\right)^{2}} \equiv \Gamma
$$

## Intercepts and slopes



Within a few percent Alpha = Beta in:

$$
\rho \propto \sqrt{\left(\alpha k_{B} T\right)^{2}+\left(\beta \mu_{B} B\right)^{2}} \equiv \Gamma
$$

Intercepts at T = 0 or B = 0 are equal.

## Magnetotransport across the phase diagram



## Quantum Critical Magnetoresistance?


$\rho \propto \sqrt{\left(\alpha k_{B} T\right)^{2}+\left(\beta \mu_{B} B\right)^{2}}$

There is a magnetic analogue to the $T$ linear resistivity at optimal doping and low temperatures.

T and $B$ have the same exponent and therefore the same scaling dimension.

## Hall Effect in Ba-122



Low Field (3 Tesla)

## $R_{H}$ across the phase diagram



Low Field (3 Tesla)

## $R_{H}$ across the phase diagram



## $R_{H}$ across the phase diagram



## $R_{H}$ across the phase diagram



$R_{H} \sim A(x) f(T)$

## High Field Hall Effect in Ba-122




High Field Hall Effect in Ba-122




## High Field Hall Effect in Ba-122



## High Field Hall Effect in Ba-122




## High Field Hall Effect in Ba-122

(

High Field Hall Effect in Ba-122



$$
\begin{aligned}
& R_{H}=R_{\text {HBackground }}(T)+\frac{1}{T} f(B / T) \\
& T\left(R_{H}-R_{\text {HBackground }}(T)\right)=f(B / T)
\end{aligned}
$$

## High Field Hall Effect in Ba-122



MR curves collapse for T < 150 K , where the $R_{H}$ upturn is pronounced.

$$
\begin{aligned}
& R_{H}=R_{\text {HBackground }}(T)+\frac{1}{T} f(B / T) \\
& T\left(R_{H}-R_{\text {HBackground }}(T)\right)=f(B / T)
\end{aligned}
$$

## High Field Hall Effect in Ba-122



## High Field Hall Effect in Ba-122



$R_{H}$ versus $T$ at high fields closely resembles $R_{H}$ versus T at low fields and higher doping.

## High Field Hall Effect in Ba-122


$R_{H}$ versus $T$ at high fields closely resembles $R_{H}$ versus T at low fields and higher doping.

64 Tesla ~ 40K cut-off using the scale factor from the B-linear scaling

## Summary and Outlook

- $\mathrm{Rho}_{\mathrm{xx}}$ in $\mathrm{Ba}-122$ shows scaling between B and T with both T - and B -linear resistivity, consistent with the interpretation that both tune a cut-off energy scale for charge relaxation.
- $\mathrm{R}_{\mathrm{H}}$ shows a steep upturn at low temperatures similar to what is seen in cuprates and HF superconductors. The upturn is cut-off at successively higher temperatures as one moves away from optimal doping. $R_{H}$ is reduced at highfields as well as high temperatures
- It is a open question why field behaves as both a tuning parameter and a scaling parameter in the Hall Channel




