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Typical TaN film schematic

Si substrate

SiO2

TaN

Ta2O5

~5 nm

~1.5 nm

~1 nm

~0.3 nm
Interface roughness

Figure 2.1: Schematic layer diagram showing the typical structure and thicknesses of
a TaN film, based on x-ray reflectivity analysis.

target thickness of the film’s TaN layer was 5 nm, and the best-fit TaN thickness is

4.0 nm, with a roughness of 0.4 nm.

Table 2.2 shows the collected tantalum and tantalum nitride layer thicknesses,

densities, and surface roughness, for the films reviewed in this work; values come from

analysis of low-angle x-ray reflectivity spectra for each film comparable to those shown

in Fig. 2.2. For all of the ultra-thin samples, the presence of a surface tantalum oxide

layer improved the fitting results dramatically. The densities of the sputtered layer are

free parameters; for the pure tantalum film (2802) or the tantalum rich film (2468) the

extracted density is in good agreement with the density of pure tantalum, 16.7 g/cm3.

Densities of reactively sputtered, stoichiometric TaN are typically near 15 g/cm3, in

good agreement with the extracted film densities of films 2246 and 2803. Finally, films

2468 and 2247 have lower densities, despite being nitrogen-poor (2468) and nitrogen-

rich (2247) during sputtering. For film 2247, this is consistent with the higher nitrogen

partial pressure during growth (24 %), and suggests a tantalum-rich phase such as

Ta2N. In contrast, film 2468 is otherwise consistent with a nitrogen-doped tantalum

phase (often written Ta(N) in literature); the unexpectedly low density may indicate

the presence of vacancies in addition to nitrogen impurities in the tantalum phase.

2.3.2 X-ray di↵raction

We performed x-ray di↵raction measurements (high-angle ✓ � 2✓ scans) on all films

grown to extract information about the crystalline phases present. Figure 2.3 shows

the di↵racted intensity as a function of 2✓ for each film listed in Table 2.1, on both

linear (top panel) and logarithmic (bottom panel) scales.
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Motivation: 2 sets of experimental observations:

1) Self-duality near the SIT 2) metallic phases near the SIT

Are these phenomena related?  
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FIG. 1. (a) The R2 vs B isotherms (in semi-log scale) for
the film, showing B-driven SIT (Bc

⇠=2.07 T). The R2 scale
is shown in the unit of quantum resistance of Cooper pair
(RQ=h/(2e)2). The critical resistance (Rc) is almost equal
to RQ. (b) The R2(B) isotherms for w=0.2 µm wire in a
semi-log plot. The critical magnetic field, Bc is 3.03 T. At
Bc, the resistance is 1.18RQ. Same color legends for same T

as (a) is used. (Inset: Scanning electron microscopy image of
a 10 mum long wire.)

an oxygen atmosphere of residual pressure 1.5 e-5 Torr.
Apart from these wire devices, we prepare a film of size
50⇥165 µm, simultaneously under the same condition to
observe the finite size e↵ect on electronic transport, for
a:InO, as we reduce the width. All devices, wires and
film, were patterned on a single chip and fabricated si-
multaneously. The patterns were transfered using lift-o↵
process. For transport measurements, gold contact pads
were prepared by optical lithography followed by ther-
mal evaporation and lift-o↵. The wires and the film of
a:InO form a bridge between the contact pads. The chip
was mounted on a chip carrier, and 25µm Au wires were
used to bond for electrical connections between the de-

vices and chip carrier gold pad. The inset of Figure 1(b)
shows the scanning electron microscopy image of a wire,
used for the transport measurements.
The devices were cooled in a dilution refrigerator and
magneto-transport measurements were performed using
standard low frequency ac lock-in technique in two-
terminal configuration. The measurements were done in
a current bias condition, with an applied bias Iac=1 nA,
which is well within the Ohmic regime. The signal from
the sample was amplified by a home made di↵erential
pre-amplifier and measured using lock-in amplifiers. All
the devices studied in the present work, a particular trend
in the experimental result is observed and its not random
in anyway. The magneto-transport isotherms were also
found to be in appropriate way as observed previously
in numerous occasions and follow the theoretical argu-
ments perfectly. This systematics of the data suggested
that heating or external noise has no significant e↵ect
on the measurements. Magnetic field up to 12 T was
applied perpendicular to the surface of the devices. Re-
sistance mentioned here is the resistance per square, R⇤.
At room-T, and B=0 T, the film’s R2 is ⇠1.4 k⌦. The
wires’ R⇤, on the other hand, varies between 2.6-2.8 k⌦.
Prior to determine the R2, the contact resistance (⇠490
⌦) was subtracted. The subtracted resistance value was
then normalized with the number of squares in series (e.g.
0.1 µm wide wire has 100 squares) to get R2. The con-
tacts are identical for all the devices, and most of the
contact resistance originated from the connecting wires
on the probe.

III. RESULTS AND DISCUSSION

We begin to present our findings by showing R2(B)
isotherms obtained from our devices. Figure 1(a) and (b)
show R2(B, T ) of the film and 0.2 µm wide wire respec-
tively. The R2 values are given in the unit of quantum
resistance of Cooper pair (RQ=h/(2e)2=6.45 k⌦). Sim-
ilar data have been obtained from the wires with w=0.1
and 0.4 µm. The isotherms as shown in Figure 1, cross
each other at particular B, Bc, signifying B-driven SIT.
The critical R2, (R2 value at Bc) Rc, for the film is close
to RQ (1±0.05 RQ), which suggests a phase transition
driven by quantum phase fluctuations and Cooper pair
(de)localization expected within the bosonic description
of SIT26. For the wires, Rc is not very di↵erent from RQ;
e.g. Rc=1.18RQ for w=0.2 µm wire. The values of the
parameters for all the devices studied are summarized in
Table I.
To look at the nature of transport on both sides of the

SIT, we plot the T dependence of R2 for various B val-
ues. The data were extracted from the R2(B) isotherms
obtained for the Film and the 0.2 µm wire as shown ear-
lier in Figure 1. Figure 2(a) shows an Arrhenius plot
of R2 for 6 di↵erent ( B

Bc
) values ranging from the su-

perconducting to the insulating state for the film. At
B=0, (R2)Film decreases and appeared to go to zero as
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FIG. 1. Arrhenius plot of the zero bias resistance of the
sample R0 for six values of the applied magnetic field. The
straight solid lines demonstrate that the behavior is activated
in the high-temperature limit and then saturates at lower
temperatures, likely indicating MQTV. The apparent slight
minimum in the two lowest curves is real [12].

the straight line fits in Fig. 1. The dependence of the
activation energy UsHd on the applied magnetic field is
consistent with the form

UsHd ≠ U0 lnsH0yHd, with H0 ¯ Hc2

and U0 ≠ w2
0dy256p3l2, (1)

extensively observed previously in lower resistance films
[10,13] and expected in the collective creep regime [4]. In
this pinning regime, the motion of dislocations of the 2D
flux lattice dominates the sample resistance. Equation (1)
gives the energy necessary to nucleate a free dislocation-
antidislocation pair [14]. The creation of the pairs is the
rate limiting step: Once nucleated, the dislocations move
relatively freely since the energy required to overcome the
pinning of the unbound dislocations is substantially less
than that required to create the pairs initially [4]. The
dashed line in Fig. 2 is the best fit by Eq. (1) for the first
five points. The resulting best fit value for U0 is within a
factor of 2 of the predicted value—within the uncertainty
of the penetration depth of the sample l. The best fit value
for H0 is 8 kOe, somewhat below the critical field for the
S-I field-tuned transition for the sample Hc ≠ 12.45 kOe
and the mean-field critical field Hc2 estimated [10] to
be about 14 kOe. The theory, however, is heuristic and
neglects small factors of order unity in the derivation of
the argument of the logarithm and the prefactor in Eq. (1),
so the best fit value for H0 is entirely reasonable. The
breakdown of the physical justification for Eq. (1) as the
argument approaches unity together with the proximity to
the S-I transition presumably account for the deviation
above 7 kOe.
Equation (1) should be valid when the effective size

of a free dislocation Rd ; a2
0yj exceeds Rc, the Larkin

correlation length, where a0 is the intervortex spacing

FIG. 2. Activation energies derived from the slopes of the
solid lines in Fig. 1 shown on a semilogarithmic plot as a
function of magnetic field. The dashed line is a fit by Eq. (1)
and indicates that the sample resistance is governed by the
formation of free vortex lattice dislocations.

sa0 ≠ 1000 Å at H ≠ 2 kOed and j ¯ 150 Å [10] is the
vortex core size. Rc is the size of a region for which
the root mean square displacement of vortices from a
locally defined ideal lattice due to random pinning forces
is less than j, and is the length scale which determines
the critical current in the elastic collective pinning model
[15]. Our sample is in the limit of strong disorder,
and we expect Rc ¯ s1 2da0 [13]. The justification for
Eq. (1) in the limit when Rc is small is simple: The
strain field induced by a dislocation is not sufficiently
strong to displace vortices at a distance r . Rd from the
center of the dislocation into a different local minimum
of the disorder potential, i.e., dusr . Rdd , j. Thus,
beyond this distance, the intrinsic disorder dominates the
configuration of the flux lines and cuts off the long-range
mutual interaction of a dislocation pair at the finite value
U ¯ 2U0 lnsRdya0d. Substituting a0yj ¯

p
Hc2yH into

the definition of Rd yields Eq. (1) [4].
Rc, which is small for our samples, does not determine

the range of applicability of the elastic flux line lattice
model. The relevant elastic correlation length of the flux
lattice is the size of a region in which the cumulative
root mean square displacement of vortex lines from their
ideal lattice positions is less than the intervortex spacing
duS # a0 and is given by Rel ¯ Rcsa0yjdp with p . 1
[16]. Note that Rel $ Rd . Rc. Thus the description of
the vortex configuration in terms of a locally well-defined
lattice with dislocations is meaningful here.
The dislocation-antidislocation nucleation process de-

scribed above is well established. Our group has observed
this same behavior in numerous (less resistive) samples
and found excellent agreement between the theory out-
lined above and the experimental results, which have ap-
peared in print previously [10,13]. The point of the above
discussion is to show that the high-temperature behavior
is consistent with a simple theoretical model that has suc-
cessfully explained the vortex properties of a wide range
of highly disordered superconducting thin films [17].
The difference between the present data and our earlier
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In 2d, we expect a T=0 phase diagram like this:  
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Self-duality: experiment
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FIG. 1. (a) The R2 vs B isotherms (in semi-log scale) for
the film, showing B-driven SIT (Bc

⇠=2.07 T). The R2 scale
is shown in the unit of quantum resistance of Cooper pair
(RQ=h/(2e)2). The critical resistance (Rc) is almost equal
to RQ. (b) The R2(B) isotherms for w=0.2 µm wire in a
semi-log plot. The critical magnetic field, Bc is 3.03 T. At
Bc, the resistance is 1.18RQ. Same color legends for same T

as (a) is used. (Inset: Scanning electron microscopy image of
a 10 mum long wire.)

an oxygen atmosphere of residual pressure 1.5 e-5 Torr.
Apart from these wire devices, we prepare a film of size
50⇥165 µm, simultaneously under the same condition to
observe the finite size e↵ect on electronic transport, for
a:InO, as we reduce the width. All devices, wires and
film, were patterned on a single chip and fabricated si-
multaneously. The patterns were transfered using lift-o↵
process. For transport measurements, gold contact pads
were prepared by optical lithography followed by ther-
mal evaporation and lift-o↵. The wires and the film of
a:InO form a bridge between the contact pads. The chip
was mounted on a chip carrier, and 25µm Au wires were
used to bond for electrical connections between the de-

vices and chip carrier gold pad. The inset of Figure 1(b)
shows the scanning electron microscopy image of a wire,
used for the transport measurements.
The devices were cooled in a dilution refrigerator and
magneto-transport measurements were performed using
standard low frequency ac lock-in technique in two-
terminal configuration. The measurements were done in
a current bias condition, with an applied bias Iac=1 nA,
which is well within the Ohmic regime. The signal from
the sample was amplified by a home made di↵erential
pre-amplifier and measured using lock-in amplifiers. All
the devices studied in the present work, a particular trend
in the experimental result is observed and its not random
in anyway. The magneto-transport isotherms were also
found to be in appropriate way as observed previously
in numerous occasions and follow the theoretical argu-
ments perfectly. This systematics of the data suggested
that heating or external noise has no significant e↵ect
on the measurements. Magnetic field up to 12 T was
applied perpendicular to the surface of the devices. Re-
sistance mentioned here is the resistance per square, R⇤.
At room-T, and B=0 T, the film’s R2 is ⇠1.4 k⌦. The
wires’ R⇤, on the other hand, varies between 2.6-2.8 k⌦.
Prior to determine the R2, the contact resistance (⇠490
⌦) was subtracted. The subtracted resistance value was
then normalized with the number of squares in series (e.g.
0.1 µm wide wire has 100 squares) to get R2. The con-
tacts are identical for all the devices, and most of the
contact resistance originated from the connecting wires
on the probe.

III. RESULTS AND DISCUSSION

We begin to present our findings by showing R2(B)
isotherms obtained from our devices. Figure 1(a) and (b)
show R2(B, T ) of the film and 0.2 µm wide wire respec-
tively. The R2 values are given in the unit of quantum
resistance of Cooper pair (RQ=h/(2e)2=6.45 k⌦). Sim-
ilar data have been obtained from the wires with w=0.1
and 0.4 µm. The isotherms as shown in Figure 1, cross
each other at particular B, Bc, signifying B-driven SIT.
The critical R2, (R2 value at Bc) Rc, for the film is close
to RQ (1±0.05 RQ), which suggests a phase transition
driven by quantum phase fluctuations and Cooper pair
(de)localization expected within the bosonic description
of SIT26. For the wires, Rc is not very di↵erent from RQ;
e.g. Rc=1.18RQ for w=0.2 µm wire. The values of the
parameters for all the devices studied are summarized in
Table I.
To look at the nature of transport on both sides of the

SIT, we plot the T dependence of R2 for various B val-
ues. The data were extracted from the R2(B) isotherms
obtained for the Film and the 0.2 µm wire as shown ear-
lier in Figure 1. Figure 2(a) shows an Arrhenius plot
of R2 for 6 di↵erent ( B

Bc
) values ranging from the su-

perconducting to the insulating state for the film. At
B=0, (R2)Film decreases and appeared to go to zero as
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while dashed vertical lines mark the Hall-crossing fields (see
text.)

measured in our laboratory up to 14 T, while sample 2
was also measured up to 32 T. We study samples that,
while still classified as strongly disordered, exhibit only a
moderate magnetoresistance peak at accessible temper-
atures, which in turn allows for accurate measurement
of Hall resistance with minimal longitudinal component
contamination. All samples measured have normal state
resistances comparable to h/e2, show critical resistance
at the SIT within 10% of the quantum of resistance,
h/4e2 [15], and exhibit scaling with exponent z⌫H ⇡ 2.5.
An example of the scaling analysis is shown in Fig. 2 for
sample 1, where the crossing isotherms down to the low-
est temperature exhibit z⌫H = 2.4±0.2 and crossing con-
stant electric field curves, which satisfy the scaling ansatz
[5] ⇢xx = ⇢c F(Y ) where Y = (H � Hc)/V 1/(1+z)⌫H

with (z + 1)⌫H = 4.4 ± 0.2. The electric field scaling
is performed at T = 200mK, which is low enough to
observe quantum critical behavior, but high enough to
avoid electron-phonon heating [26].

There are several important features that are observed
in Fig. 1. First, in addition to the hallmark crossing
point of ⇢xx at (Hc, ⇢c) marking the SIT, we also observe
at higher fields a crossing point of ⇢xy at (H⇤

c , ⇢
⇤
xy). H⇤

c

appears to roughly coincide with the field at which the
longitudinal magnetoresistance peaks, suggesting that it
is associated with a transition from Bose-dominated to
Fermi-dominated behavior. While forHc < H < H⇤

c , ⇢xy
is a decreasing function of decreasing T , this dependence
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FIG. 2: Scaling of isotherms (left) and constant electric field
curves (right) near the SIT for sample 1. Insets show the raw
resistivity isotherm and constant electric field data, with the
same vertical scale as in the main panel. Functional forms are
discussed in the text.

becomes increasingly weak the smaller T , suggesting that
⇢xy approaches a finite value as T ! 0.
Fig. 3 is the most striking plot we present in this

paper. We emphasize that the same plot has been re-
produced for four di↵erent samples. Calculating �xy =
�⇢xy/

�
⇢2xx + ⇢2xy

�
, we show in that figure linear extrap-

olations to ⇢xy(T = 0, H), and �xy(T = 0, H). Concen-
trating on the vicinity of the SIT, we clearly see that
the insulating phase proximate to the SIT (region-II in
the figure) exhibits �xx ! 0, �xy ! 0 and ⇢xx ! 1
(from Fig. 1), as T ! 0, but ⇢xy(T,H) approaches a fi-
nite limit, ⇢xy(H) - all hallmarks of a “Hall Insulator”
phase [18]. Similarly, in the superconducting phase be-
low SIT we observe ⇢xx ! 0 and ⇢xy ! 0, but �xy(T,H)
approaches a finite limit, �xy(H). These two features
suggest self-duality at the SIT [25]. Going beyond the
vicinity of the SIT, there appears to be a second critical
(or crossover) field H⇤

c > Hc at which a transition to a
“regular insulator” occurs, such that for H > H⇤

c , ⇢xy
( as well as ⇢xx) appear to grow as T ! 0. While the
T dependence of ⇢xx clearly suggests that it diverges as
T ! 0, the much weaker T dependence of ⇢xy, and our
limited temperature range, make it less clear whether for
H > H⇤

c it diverges or is simply extrapolates to its classi-
cal value, H/nec. We will further elaborate on this point
below. Finally, at the low field edge of the Hall insulating
regime, ⇢xy(H) ! 0 as H ! H+

c , but it grows monoton-
ically with increasing H, approaching its classical value
at the high field boundary of the regime.

The nature of the phases on both sides of the SIT is
reflected in the temperature dependence of the full resis-
tivity tensor. In the insulating phase, ⇢xx grows rapidly
as a function of 1/T ; over the limited range of tempera-
tures we have accessed, this dependence can be fit equally
well by an activated behavior or various forms of vari-
able range hopping, ⇢xx ⇠ exp[(T0/T )�] with � = 1,
1/2, or 1/3 [4]. However, it is not readily fit to any

J. Seidemann et al, arXiv1609.07105 Breznay et al., PNAS (2016)

Paalanen, Hebard, Ruel, PRL (1992)

Critical resistance: Rc = RQ =
h

(2e)2
⇡ 6.45k⌦
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data are field-antisymmetric.) Strongly disordered sam-
ples with ρN ∼ h/e2, which includes the two presented
here, all show critical resistance at the H-SIT within 10%
of the quantum of resistance, h/4e222, and exhibit good
scaling of the form of Eqs. 3 and 4. There are several

FIG. 1. (Color online) Longitudinal (ρxx) and Hall (ρxy)
resistances for two InOx samples. Solid lines mark the H-SIT
field Hc and critical resistivity ρc, and dashed lines mark the
Hall-crossing field H∗

c and resistivity ρ∗xy.

important features in the data of Fig. 1. First, in ad-
dition to the hallmark crossing point of ρxx at (Hc,ρc)
marking the SIT, we observe at higher fields a crossing
point of ρxy at (H∗

c , ρ
∗

xy). H
∗

c roughly coincides with the
field at which the longitudinal magnetoresistance peaks,
suggesting that it is associated with a crossover from
Bose-dominated to Fermi-dominated behavior. While for
Hc < H < H∗

c ρxy decreases with decreasing T , this
dependence weakens as T → 0, suggesting that ρxy ap-
proaches a finite value.

A. Results extrapolated to T → 0

In order to obtain a more explicit understanding of
the nature of the different regimes above and below the
H-SIT, and what can be inferred about the T → 0 limit,
we analyzed the full set of data that determines the re-
sistivity tensor.
In Fig. 3 we present the T dependence of the resis-

tivity tensor of sample 1 at various fixed values of H .
Note that, having measured both, ρxx and ρxy, we can
calculate the off-diagonal term of the conductivity ten-
sor: σxy = −ρxy/

(

ρ2xx + ρ2xy
)

. Fig. 3 shows ρxx, ρxy,
and σxy of sample 1 for various fixed fields as a func-

FIG. 2. (Color online) Scaling of isotherms (left) and con-
stant electric field curves (right) near the H-SIT for sample 1;
temperature and applied bias voltages are indicated. Insets
show the raw resistivity isotherm and constant electric field
data, with the same vertical scale as in the main panel.

FIG. 3. (Color online) T dependence of the resistivity tensor
( ρxx in a) and ρxy in b) and σxy (in c) of Sample 1 in units
of the superconducting quanta for various values of H . For
this sample, Hc = 2.3 T, H∗

c = 7.0 T, Tc(H = 0) = 1.1K, and
ρN = 0.27h/4e2 .

tion of T , as well as sketching ways in which we infer
T → 0 values by extrapolation. We now distinguish sev-
eral field regimes describing the different behavior of ρxx
and ρxy as the magnetic field is increasing from low fields
to much above H∗

c . Figure 4 summarizes the ground-
state Hall response as a function of H based on a linear
extrapolation of the data to T = 0 (i.e. according to
the dashed lines in Fig. 3). Error bars reflect statistical
uncertainty in the extrapolation procedure. On the high
field side of the H-SIT (Hc < H < H∗

c ), where presum-
ably σxx → 0 and ρxx → ∞, ρxy approaches a finite limit
which is greater than 0 and less than its classical value
H/nec, while σxy → 0 - these are the defining features
of a “Hall Insulator” phase20 (The value of the Hall re-
sistance is taken from measurements at T > Tc(H = 0);
for sample 1, 1/nec = 1.2Ω/T , i.e. H∗

c /nec = 8.2Ω for
H∗

c = 7T .) At the low field edge of the Hall insulating
regime, ρxy(H) → 0 asH → H+

c , and it grows monotoni-
cally with increasing H , approaching roughly its classical
value at the high field boundary of the regime.
Conversely, in the low-field phase (H < Hc), ρxy → 0,

while σxy approaches a finite limit which tends to 0 as
H → H−

c . If we accept the identification of this phase as
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FIG. 1. Phase diagram for the field-tuned SI transition: H-T
dissipation strength diagram at finite disorder. ac marks the
point at which a finite range of metallic phase opens up.

bear on all QPT in two dimensions, as will be explained
below.
Continuing to use amorphous-MoGe films as our model

system, we have conducted further measurements to better
examine the low temperature temperature-independent be-
havior and dissipative coupling. These experiments were
performed on thin films grown by multitarget magnetron
sputtering on a SiN substrate with a Ge buffer layer. The
films were grown in the same sputtering runs as those
used in [3] and [7]; details of growth and characterization
are described elsewhere [10]. Most of the data reported
in this paper were taken on films with x ! 0.43, thickness
of 30 Å, and Tc ! 0.5 K. Previous studies have deter-
mined the films to be highly amorphous and homogeneous
over all relevant length scales. The films were patterned
into 4-probe structures, and measured in a dilution refrig-
erator using standard low-frequency lock-in techniques.
Care was taken to eliminate spurious noise and heating
effects. Measurement conditions were similar to those in
[3,7]; however, for the current experiments, an improved
dilution refrigerator allowed us access to lower tempera-
tures and greater stability. A typical set of resistance vs
temperature for increasing magnetic field data is given in
Fig. 2. Similar results were obtained for all films includ-
ing those reported in [3,7]. A main feature of these results
is that upon lowering the temperature the activated behav-
ior of the resistance changes to a temperature independent
resistance as the temperature approaches zero, as can be
seen in the log R! vs 1"T inset of Fig. 2. In [7] the low
temperature saturation value of the resistance obeys the
empirical form

R#H$ ! R0ec# h̄"e2R!$H"Hc2 , (1)
with R! being the resistance per square of the sample
and c % 2 is a constant. This unusual behavior was ex-
plained by Shimshoni et al. [11] using dissipative quan-
tum tunneling of vortices from one “insulating” puddle
to its neighbor. The source of dissipation was assumed
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FIG. 2. Set of resistance vs temperature curves for B ! 2,
1.3, 1.23, 1.18, 1.1, 1.0, 0.75, 0.70, and 0 T. Inset: logR! vs
1"T for B ! 0, 0.6, 0.7, 0.75, 1, 1.18, and 1.21 T.

to be the electrons in the core of the vortex, suggesting
the use of Bardeen-Stephen [12] expression for the vis-
cosity in the Euclidian action governing the tunneling. If
the vortex tunneling is mediated by coupling to a dissi-
pative bath, then finite diffusion appears which explains
the flattening of the resistance as T approaches zero. This
model produces an excellent fit to the experimental data
(e.g., the theoretical model, using Bardeen-Stephen dissi-
pation gives c % 1.6 for the prefactor). Since the super-
conducting phase is obtained in this model by percolation
of couplings of superconducting puddles, this model also
explains the exponent n % 1.35 found in all field-tuned
transitions by many groups, since the correlation-length
exponent in 2D classical percolation is 4"3.
To check the scaling and flattening of the resistance in

the MoGe films, we extended the temperature range by
measuring down to 20 mK from low field through the pre-
sumed SI transition. A blowup of the transition region
is shown in Fig. 3. Here we observe that as we go to
low temperatures, all curves, whether initially decreasing
or increasing, flatten. This affects scaling in a dramatic
way. Following [5] we fit isotherms for T $ 100 mK to
R ! RcF &#H 2 Hc$"T1"zn'. The scaling function F #x$
displays two branches, for positive (“insulating”) and nega-
tive (“superconducting”) arguments. A best fit to the scal-
ing function for high temperature isotherms gives zn !
1.33 6 0.05, as shown in the upper part of Fig. 4. The
dotted and dashed lines in the figure show the deviation
of the 20 and 50 mK lines from the other scaled curves.
This deviation, which evinces the breakdown of scaling
with respect to the critical point, is amplified in the lower
part of Fig. 4. We believe that this low temperature de-
viation from scaling and flattening of resistance manifests
that the isolated metallic point at Hc “opens up” to a re-
gion of metallic behavior as a function of some parameter
that becomes relevant at low temperatures. Adding the hy-
pothesis of vortex tunneling in a dissipative medium, we

5342

VOLUME 76, NUMBER 9 P HY S I CA L REV I EW LE T T ER S 26 FEBRUARY 1996

FIG. 1. Arrhenius plot of the zero bias resistance of the
sample R0 for six values of the applied magnetic field. The
straight solid lines demonstrate that the behavior is activated
in the high-temperature limit and then saturates at lower
temperatures, likely indicating MQTV. The apparent slight
minimum in the two lowest curves is real [12].

the straight line fits in Fig. 1. The dependence of the
activation energy UsHd on the applied magnetic field is
consistent with the form

UsHd ≠ U0 lnsH0yHd, with H0 ¯ Hc2

and U0 ≠ w2
0dy256p3l2, (1)

extensively observed previously in lower resistance films
[10,13] and expected in the collective creep regime [4]. In
this pinning regime, the motion of dislocations of the 2D
flux lattice dominates the sample resistance. Equation (1)
gives the energy necessary to nucleate a free dislocation-
antidislocation pair [14]. The creation of the pairs is the
rate limiting step: Once nucleated, the dislocations move
relatively freely since the energy required to overcome the
pinning of the unbound dislocations is substantially less
than that required to create the pairs initially [4]. The
dashed line in Fig. 2 is the best fit by Eq. (1) for the first
five points. The resulting best fit value for U0 is within a
factor of 2 of the predicted value—within the uncertainty
of the penetration depth of the sample l. The best fit value
for H0 is 8 kOe, somewhat below the critical field for the
S-I field-tuned transition for the sample Hc ≠ 12.45 kOe
and the mean-field critical field Hc2 estimated [10] to
be about 14 kOe. The theory, however, is heuristic and
neglects small factors of order unity in the derivation of
the argument of the logarithm and the prefactor in Eq. (1),
so the best fit value for H0 is entirely reasonable. The
breakdown of the physical justification for Eq. (1) as the
argument approaches unity together with the proximity to
the S-I transition presumably account for the deviation
above 7 kOe.
Equation (1) should be valid when the effective size

of a free dislocation Rd ; a2
0yj exceeds Rc, the Larkin

correlation length, where a0 is the intervortex spacing

FIG. 2. Activation energies derived from the slopes of the
solid lines in Fig. 1 shown on a semilogarithmic plot as a
function of magnetic field. The dashed line is a fit by Eq. (1)
and indicates that the sample resistance is governed by the
formation of free vortex lattice dislocations.

sa0 ≠ 1000 Å at H ≠ 2 kOed and j ¯ 150 Å [10] is the
vortex core size. Rc is the size of a region for which
the root mean square displacement of vortices from a
locally defined ideal lattice due to random pinning forces
is less than j, and is the length scale which determines
the critical current in the elastic collective pinning model
[15]. Our sample is in the limit of strong disorder,
and we expect Rc ¯ s1 2da0 [13]. The justification for
Eq. (1) in the limit when Rc is small is simple: The
strain field induced by a dislocation is not sufficiently
strong to displace vortices at a distance r . Rd from the
center of the dislocation into a different local minimum
of the disorder potential, i.e., dusr . Rdd , j. Thus,
beyond this distance, the intrinsic disorder dominates the
configuration of the flux lines and cuts off the long-range
mutual interaction of a dislocation pair at the finite value
U ¯ 2U0 lnsRdya0d. Substituting a0yj ¯

p
Hc2yH into

the definition of Rd yields Eq. (1) [4].
Rc, which is small for our samples, does not determine

the range of applicability of the elastic flux line lattice
model. The relevant elastic correlation length of the flux
lattice is the size of a region in which the cumulative
root mean square displacement of vortex lines from their
ideal lattice positions is less than the intervortex spacing
duS # a0 and is given by Rel ¯ Rcsa0yjdp with p . 1
[16]. Note that Rel $ Rd . Rc. Thus the description of
the vortex configuration in terms of a locally well-defined
lattice with dislocations is meaningful here.
The dislocation-antidislocation nucleation process de-

scribed above is well established. Our group has observed
this same behavior in numerous (less resistive) samples
and found excellent agreement between the theory out-
lined above and the experimental results, which have ap-
peared in print previously [10,13]. The point of the above
discussion is to show that the high-temperature behavior
is consistent with a simple theoretical model that has suc-
cessfully explained the vortex properties of a wide range
of highly disordered superconducting thin films [17].
The difference between the present data and our earlier
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In 2d, we expect a T=0 phase diagram like this:  
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Instead, experiments suggest a phase diagram like this:
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rating curve marks the SIT, defining a critical resistance Rc
and magnetic field Hc. Isotherms of resistance versus mag-
netic field around this point all cross at Hc with a critical
resistance Rc marking a zero-temperature quantum SIT phase
transition. Assuming a magnetic field-tuned transition, the
correlation length diverges at the transition as !!H"" #H
−Hc#−#. The dynamics of the system are characterized by the
relation between the correlation length and a vanishing fre-
quency $ through $"!−z. At a finite temperature, %$ is cut
off by kBT, defining a length LT for the cutoff of quantum
fluctuations: kBT$LT

−z. This leads to a scaling relation for the
resistance which is commonly written as2

R!H,T" = RcFT!!H − Hc"/T1/z#" . !1"

Figure 2 shows the resistance isotherms in a perpendicular
magnetic field for two InOx samples, one with weak disorder
%Fig. 2!a"& and one with very strong disorder %Fig. 2!b"&.
Similar types of samples were introduced earlier.5 For the
sample in Fig. 2!a", the critical resistance is $4.1 k$, very
close to the normal state resistance before superconductivity
sets in, and the magnetoresistance peak is weak. Further-
more, the critical field is $12.6 T, very close to Hc2!0"
'14 T calculated for this sample. Thus, this sample is very
similar to the MoGe samples previously reported.6,7 Scaling

of this sample, as well as all previously reported MoGe
samples, typically fails at the lowest temperatures. However,
in a finite temperature range, scaling yields exponents similar
to classical percolation !in particular, #'1.35".

Starting from the crossing point and increasing the mag-
netic field toward the magnetoresistance peak, we note in
Fig. 2 that the resistance increases with decreasing tempera-
ture, at an increasing rate. At some field, this rate is maxi-
mum %denoted by lines !A-B"& and we can calculate an acti-
vation energy through this magnetic field cut !(Hp, also see
Ref. 5". To evaluate the trend of the samples, we also need a
measure of the disorder. For each sample, we take the maxi-
mum normal-state resistance at zero magnetic field, before
superconductivity sets in, as such measure, denoted as R!

max.
In Fig. 3, we plot Hc and Hp versus R!

max, and we clearly
identify three regimes: below the crossing point, the phase is
superconducting with resistance decreasing with decreasing
temperature; at very high fields, above the field of maximum
activation energy, the system is expected to be dominated by
Fermi physics; in between the two sets of points, the system
behaves as a Bose insulator.2 The two solid lines, drawn as

FIG. 1. !Color online" Phase diagram including all samples,
using reduced axes. The open circles !Ref. 21" and squares !Ref.
20" are for MoGe films. The full circle is for thin Ta films !Ref. 22".
The diamonds are for InOx !Refs. 18 and 19"; full triangles and
squares are for new InOx data, from two batches. The error bars
give a measure of the difficulty in determining Hc2!0"; the solid line
is a guide to the eye. The & denotes a possible critical point be-
tween a transition to a Bose insulator and a transition to a metal !see
text". The bottom shaded area denotes the region for which the
conductance is smaller than h /e2. Samples “a” and “b” are dis-
cussed further, in relation to Fig. 2. The different regimes of the
diagram as related to the data are explained in the text. The inset
shows the low temperature part of the generic phase diagram as
proposed in Ref. 2; the crossover line between the Bose and Fermi
insulators is terminated before reaching zero disorder and does not
reflect the possible emergence of a quantum metallic state. FIG. 2. Resistance isotherms for the two samples marked in Fig.

1. Note the different scales of the vertical axes. The arrows point to
the critical fields of Hc=12.6 T for sample “a,” and Hc=0.83 T for
sample “b.” Lines A-B denote the fields at which the activation
energy !as determined from the resistance vs temperature at a fixed
field" is maximum.

BRIEF REPORTS PHYSICAL REVIEW B 77, 212501 !2008"

212501-2

Steiner, Breznay, Kapitulnik, PRB (2008).



Basic ideas



Superconducting order parameter:
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Superconducting order parameter:

 = | |ei✓

{ {
Maekawa, Fukuyama (1981) 
Finkelstein (1987) 
Belitz (1989)

Basic framework:  
particle-vortex duality + dirt 

MPA Fisher (1989, 1990,…) 
Wen, Zee (1990) 



= +

vortex dual charge

Particle-vortex duality

Jµ =
1

2⇡
✏µ⌫�@⌫a� jµ = � 1

2⇡
✏µ⌫�@⌫A�

2⇡

~J

~e

Aµ :

aµ :

External gauge field (electromagnetism)

Emergent gauge field (2d photon)

Peskin, Halperin, Dasgupta, Fisher, Lee 
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vortex dual charge

Particle-vortex duality

Jµ =
1
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Peskin, Halperin, Dasgupta, Fisher, Lee 

j0 = � 1
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Particle-vortex duality

Phases

Linear response:

�̂v =

✓
1

2⇡

◆2

�̂�1

Vortex conductivity Electrical resistivity

1) Superconductor: Cooper pair condensate, gapped vortices

2) Insulator: vortex condensate (Higgs), gapped Cooper pairs
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What about the critical point (SIT)?  
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Superconductor (H << Hc) Insulator (H >> Hc)

Condensate of mobile 
Cooper pairs

Condensate of mobile 
vortices

What about the critical point (SIT)?  

Disorder: most of the Cooper pairs are localized (frozen).



Self-duality at the SIT

Duality:

�̂v =

✓
1

2⇡

◆2

�̂�1

Self-duality: �̂v = �̂T

Consequence: R2
xx

+R2
xy

= R2
Q

Requirement for self-duality:  Cooper pairs and vortices both have 
the same response Lagrangian

RQ =
h

(2e)2
⇡ 6.45k⌦

[~ = c = 2e = 1]



Disorder: most of the Cooper pairs are localized (frozen).

2e
2e

2e

2e

2e2e

2e

Superconductor (H << Hc) Insulator (H >> Hc)

Condensate of mobile 
Cooper pairs

Condensate of mobile 
vortices



Our proposal for the SIT with self-duality

2e
2e

2e

2e

2e2e

2e
2e =  A fermion

Self-dual SIT (H = Hc)

Finite resistance at the SIT due to emergent fermions

(composite vortex)



Analogous story: integer quantum Hall-insulator transition (QHIT)

electron boson

= +

flux 
quantum

4

Thus both ⇢

xx

and �

xx

vanish, raising the question of how one should think about this situation.

The key point is that it is dissipationless, since current density is transverse to the electric field.

C. Landau levels in the presence of disorder

To get a basic understanding of the experiment, we start by postulating that the nature of

single-particle states for charged particles moving in two dimensions with a magnetic field and

disorder that is not too strong is as illustrated. We will come to the justification for this later.

extended

E

(E)ρ

localised

On this picture, disorder both broadens the Landau levels and gives states varying character

as a function of energy within each Landau level: states in the Landau level tails are localised

in space, while those at the Landau level centre extend through the sample.

How does localisation explain plateaus? If the chemical potential for electrons lies between

Landau level centres, then we can change the filling factor by a small amount without changing

the occupation of current-carrying states, hence leaving the Hall conductance constant. Also,

dissipation requires excitation between occupied and empty current carrying states, so is ther-

mally suppressed at low temperature.

What happens between plateaus? If the chemical potential moves through the energy of ex-

tended states, we can understand that �
xy

moves between quantised values, since the occupation

of extended states has changed. Also, it is expected that �
xx

> 0 within this transition, since

when the chemical potential lies close to the energy of extended states, dissipation is no longer

suppressed.

N(E)

J. Chalker Lecture notes

S.-C. Zhang, T. Hansson, S. Kivelson

Bosonic 
description:

= +

hole vortex flux 
quantum

= +
= +



Integer QH Insulator 

Condensate of mobile 
Composite bosons

Condensate of mobile 
vortices of comp. bosons

(⌫ = 1) (⌫ = 0)



Integer quantum Hall - Insulator transition (QHIT)

=  A fermion

QHIT with particle-hole symmetry

Finite resistance at the QHIT due to emergent fermions

(composite fermion)



Particle-hole symmetric QHIT

Integer QH (⌫ = 1)

Insulator (⌫ = 0)

(⌫ = 1/2)

QHIT SIT

Superconductor

Insulator

Self-dual SIT

In both cases the critical point involves composite fermions

Dictionary



Slightly more quantitative discussion



LA = |DA�|2 � V (|�|) + dirt

LB = |Da�|2 � Ṽ (|�|) + 1

2⇡
adA+ dirt0{

✏µ⌫�aµ@⌫A�

Cooper pairs:

Vortices:

� :
� :

Cooper pair
Vortex

SIT: vortices at unit filling           .(⌫ = 1)

) Composite vortex metal

2e =  A fermion

2e
2e

2e

2e2e2e

2e



This can be implemented with flux attachment

Vortex        (boson))
Composite vortex 2e

flux attachment

(fermion)

The SIT then maps onto the problem of a half-filled Landau level

M. Mulligan and SR, PRB 2016

2 choices for theoretical description of composite vortex metal:

1) Halperin-Lee-Read (HLR) composite Fermi liquid

2) D. Son: Dirac composite Fermi liquid

M. Mulligan and SR, PRB 2016

M. Mulligan, PRB 2017

From Dan Arovas’ PhD thesis



QHIT: HLR theory seems to lack particle-hole 
symmetry

SIT: HLR theory for composite vortices seems to lack 
self-duality

QHIT: Son theory manifestly preserves particle-hole 
symmetry

SIT: Son theory for composite vortices is manifestly self-
dual M. Mulligan, PRB 2017



LB = |Da�|2 � Ṽ (|�|) + 1

2⇡
adA+ dirt0

Vortices:

LA = |DA�|2 � V (|�|) + dirt

Cooper pairs:

composite vortices: l

l

LC = �̄ /Dc�� 1

8⇡
cdc� 1

2⇡
cdA� 1

4⇡
AdA+ dirt0

2nd-3rd Lines: make use of a conjectured (and recently well-
established) boson-fermion duality

“Modern” discussion of self-dual theory
M. Mulligan, PRB 2017



Boson-fermion “duality” (t < 2015)

Polyakov (1988), 
Zhang, Hansson, Kivelson (1989), 
Chen, Fisher, Wu (1993), 
Fradkin, Kivelson (1996),
Barkeshli, Mcgreevy (2014)



Boson-fermion duality (t > 2015)

Karch, Tong (2016), 
Seiberg, Senthil, Wang, Witten (2016),
Kachru, Mulligan, Torroba, Wang (2016),
Metlitski,  Vishwanath,  Xu (2016),
Mross, Alicea, Motrunich (2017),
Chen, Son, Wang, SR (2017),
…



Exact Boson-Fermion Duality on a 3D

Euclidean Lattice

Jing-Yuan Chen1, Jun Ho Son1, Chao Wang1 and S. Raghu1,2

1Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA

2SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

Abstract

The idea of statistical transmutation plays a crucial role in descriptions of the frac-

tional quantum Hall e↵ect. However, a recently conjectured duality between a critical

boson and a massless 2-component Dirac fermion extends this notion to gapless sys-

tems. This duality may shed light on highly non-trivial problems such as the half-filled

Landau level, the superconductor-insulator transition, and surface states of strongly

coupled topological insulators. Although this boson-fermion duality has undergone

many consistency checks, it has remained unproven. We describe the duality in a

non-perturbative fashion using an exact UV mapping of partition functions on a 3D

Euclidean lattice.

(a)
(b)

(c)

Figure 1: (a) The various terms that arise on a link nµ in the exact expansion of Grassmann fields

in ZW . From top to bottom, the contributions are: hopping �̄n+µ̂
��µ�1

2

�n, hopping �̄n
�µ�1

2

�n+µ̂,

double hopping plus interaction (1 + U)
�
�̄n

�µ�1

2

�n+µ̂

� �
�̄n+µ̂

��µ�1

2

�n

�
. (b) In a Grassmann in-

tegral, each fermion component must appear exactly once. Consider a conjugate pair of fermion

components, say �n" and �̄n". They either appear together in a mass term, or appear separately

in two link terms. So the link terms always form closed loops. If this condition is not satisfied as

in (c), the contribution vanishes by Grassmann algebra. Thus, all contributions to ZW manifestly

satisfy Gauss’s law. (The lattice is 3D. We drew a 2D lattice for clarity.)

under any background Anµ configuration. This again manifests the point that the fermion

 is the bound state formed by the boson ei✓ and the fermion � due to the mediation of the

gauge field b. Note that ei✓� is invariant under the U(1)b gauge transformation of b, as  

should be.

4 UV Boundary Conditions

In the previous section, we have shown that the 3D XY model coupled to a massive interact-

ing Wilson fermion � can be exactly mapped in the UV to another (generically massive and

interacting) Wilson fermion  . In order to realize the conjectured IR duality, we will need

to adjust the parameters of the UV theory, so that � is massive and can be integrated out

before the gauge field b to implement a level-1 CS, 4 while  has a free massless Dirac fermion

mode in the IR. For concreteness, to realize the IR behavior of  , we can set M 0 = 3, U 0 = 0,

so that the Dirac mode near lattice momentum kµ = 0 becomes massless, while the other 7

Dirac modes contribute a level-1/2 CS for the background field A (see appendix). From Eq.

4This can be viewed as defining what the strongly interacting “boson+CS” Lagrangian in continuum

actually means, since a continuum Lagrangian is generally not meaningful without proper regularization

conditions.

6
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LB = |Da�|2 � Ṽ (|�|) + 1

2⇡
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Vortices:

composite vortices:
l

LC = �̄ /Dc�� 1

8⇡
cdc� 1

2⇡
cdA� 1

4⇡
AdA+ dirt0

Another dictionary

Superconductor:

Vortices: composite vortices:

insulator insulator

Insulator: condensate Integer QH

Self-dual SIT: ???
composite 
vortex metal



LC = �̄ /Dc�� 1

8⇡
cdc� 1

2⇡
cdA� 1

4⇡
AdA+ dirt0

Self-duality = time-reversal for composite vortices

ct equation of 
motion:

Self-duality when hr ⇥ ~ci = 0

h�†�i = 1

4⇡
hr ⇥ ~ci+ B

2⇡

Note: hJ0i = � 1

2⇡
hr ⇥ ~ci � B

2⇡

hj0i = � B

2⇡
} Mismatch between number of 

Cooper pairs and vortices = 
flux for composite vortices
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Self-duality = time-reversal for composite vortices



Metallic phases

Guess: composite vortex metal broadens into a phase

Composite vortex metal 
(non-Fermi liquid)

⇡
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i
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Insulator
⇢ = 1

Superconductor
⇢ = 0

Self-dual



A prediction based on composite vortices

Borrow an old QHE trick:

Composite vortices “see” a beff << B 

Huge magnetic length >> mean-free path 
Therefore, very large cyclotron radii in the metal. 

cleaner systems: quantum oscillations depend on beff , not B.  



What we don’t (yet) understand

1) Metallic phases have zero cyclotron resonance.
2) Metallic phases have zero Hall effect (previous talk). 
3) Neighboring insulating phases: Hall insulator?  
4) Analogous phenomena in quantum Hall context?  



Metallic phases

The existence of 2d metallic phases and neighboring 
transitions: challenging problem of effective field theory

Important consistency checks:

1) Stability of such metals to disorder?

2) Can they exhibit  T=0 SC-metal transitions?  



Metallic phases

The existence of 2d metallic phases and neighboring 
transitions: challenging problem of effective field theory.

Important consistency checks:

1) Stability of such metals to disorder?

Yes in certain cases

P. Goswami, H. Goldman, SR, PRB (2017)

A. Thomson, S. Sachdev, PRB (2017) 

M. Mulligan, SR, G. Torroba, M. Zimet (unpublished)

} Perturbative

328 METAL-INSULATOR TRANSITION IN A HALF-FILLED LANDAU LEVEL Vol. 102, No. 4 

Fig. 1. Longitudinal pxr and transverse pv magnetoresis- 
tance measurements for Vg = 0 V. 

We have studied gated Hall bars made from a high- 
mobility GaAs/A10.33Gaa.67As heterostructure, with the 
magnetic field B directed perpendicular to the interface. 
At gate voltage Vg = 0, the carrier concentration of the 
2DEG is i= 1.0 X 10” me2 with a mobility of 
300 m2 Vs-’ without illumination. Experiments were 
performed in a 3He cryostat at 0.3 K using standard 
four-terminal a.c. phase-sensitive techniques. By chan- 
ging Vg, we can vary the carrier density and hence 
effectively the disorder in our system. Three samples 
showed similar characteristics and measurements taken 
from one of these are presented in this paper. 

2 3 4 5 6 7 8 
B U-3 

Fig. 2. Magnetoresistance measurements p,(B) for var- 
ious V,. From left to right: Vg = - 0.3 V to - 0.08 V in 
0.02 V steps, Vg = - 0.04 V and Vg = 0 V, respec- 
tively. The inset shows p=(B) for Vg = - 0.34 V, 
-0.38 V, -0.412 V and -0.413 V, respectively. The 
positions of Y = l/2 are indicated by arrows. 

I: (b) 

0.3 0.4 0.5 0.6 0.7 0.8 
T 6) 

Fig. 3. (a) ag((T) at Y = l/2 for V = - 0.34 V. (b) ag((T) 
at v = l/2 for Vg = - 0.38 V. ifhe straight line fits are 
discussed in the text. The inset shows a schematic global 
phase diagram illustrating that in a highly disordered sys- 
tem, as the magnetic field is increased, at v = l/2 the 
systems can enter an insulating (I) phase rather than a 
metallic (M) phase and the fractional quantum Hall state 
v = l/3 may be no longer observable as shown by the 
dotted line. 

Figure 1 shows the four-terminal longitudinal pxx and 
transverse pq magnetoresistance for Vg = 0. The minima 
in pxx coincide with the quantum Hall plateaux, indicat- 
ing that the carrier density n, in our wafer is uniform. 
There is a good fit n, = (2.136 X 101’V, + 9.124 X 
1014)me2 over the measurement range -0.38 V5 
Vg 5 0 V. Thus n,(V,) in our system can be described 
by a simple capacitor plate model with a distance 
0.322 pm between the surface Schottky gate and the 
underlying 2DEG, in close agreement with the intended 
as-grown depth of 0.3 pm. 

Figure 2 shows the magnetoresistance measurements 
at various V,. At V, = 0, PMR around Y = l/2 is 
observed. As V, is made more negative and hence the 
amount of disorder within the system is increased, pu at 
v = l/2 increases and PMR centred around v = l/2 
gradually diminishes as indicated by arrows. At 
Vg 5 - 0.22 V, PMR around Y = l/2 is no longer obser- 
vable and p,(B) increases with magnetic field, as shown 
in Fig. 2 and the inset. The linear rising background px* 
[17] may mask the magnetoresistance around v = l/2, 
excluding the possibility of testing the theoretical pre- 
diction of a PMR/NMR crossover [4]. For Vg = - 0.34 

�

⇡

Non-Perturbative

(see posters) Sol.St.comm. 102, 327 (1997)



Metallic phases

The existence of 2d metallic phases and neighboring 
transitions: fundamental conceptual problem.

Important consistency checks (effective field theory):

1) Stability of such metals to disorder?

2) Can they exhibit  T=0 SC-metal transitions?  

Yes.

� (BCS coupling)

��

v
v

v
v

v
v

v
v

BCS beta function for Fermi surface + U(1) gauge field

Metal
SC-Metal
transition
(T=0).



Summary

superconductor

IQHE of fermions

Insulator

Fermi insulator

SIT/metallic phases

Composite Fermi 
liquid (NFL)

µ µ µ

m,r⇥ c > 0 m,r⇥ c = 0 m,r⇥ c < 0


