Nematic Phases

Kai Sun

University of Michigan, Ann Arbor

Nematic Order

- \triangleright Spontaneous breaking of rotational symmetry (down to C_2)
- No translational symmetry breaking

Mechanism

Interrupt a long-range strip order

- Quantum/ thermal melting
- Disorder
- Frustrations

Nematic phases in Fe-based superconductors and high-Tc cuprates

Without the assistant of translational symmetry breaking

- **❖** Pomeranchuck instability
- Lattice systems can be enhanced by:
 - □ van Hove singularity
 (Hae-Young Kee 2004
 ...).
 - ☐ Quadratic band crossings (Vafek and Yang, 2010 KS, Yao, Fradkin, Kivelson,

Nematic quantum Hall phase

Mechanism

Interrupt a long-range strip order

- Quantum/ thermal melting
- Disorder
- Frustrations

Nematic phases in Fe-based superconductors and high-Tc cuprates

Without the assistant of translational symmetry breaking

- **❖** Pomeranchuck instability
- Lattice systems can be enhanced by:
 - □ van Hove singularity
 (Hae-Young Kee 2004
 ...).
 - ☐ Quadratic band crossings (Vafek and Yang, 2010 KS, Yao, Fradkin, Kivelson, 2009

Nematic quantum critical point

Challenge: fermionic low-energy excitations coupled with critical modes

Part of a bigger problem: quantum criticality in itinerant systems

- Hertz-Millis: mean-field scaling
 - ❖ Nematic z=3 mean-field (Oganesyan, et. al., PRB 2001)
 - ❖ Smectic z=2 mean-field
 - non-Fermi liquid
- Beyond Hertz-Millis:
 - Contributions from non-Fermi liquid
 - Deviations from Hert-Millis can arise (Chubukov, Lee, Sachdev, Senthil, ...)
- Recent sign-problem free QMC:
 - q=0 (nematic): deviations from Hertz-Millis, possible anomalous dimensions
 - Finite q (smectic): very nice agreement with Hertz-Millis (Berg, Hong, Meng, ...)

Interplay with other phenomena in complex materials

> Superconductivity and Pseudo gap:

Fradkin and Kivelson, 2012

Interplay with other phenomena in complex materials

> Topological Order

Samkharadze, et. al., Nat. Phys., (2016)

Interplay with other phenomena in complex materials

Common in both systems:
Interplay between nematic order and pairing

Could there be some possible connections between these two seemingly unrelated systems?