Raman scattering in detwinned BaFe$_2$As$_2$

A. Baum1, T. Böhm1, F. Kretzschmar1, B. Muschler1, J.-H. Chu2,3, I. R. Fisher2,3, R. Hackl1

1Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
3Geballe Laboratory for Advanced Materials & Dept. of Applied Physics, Stanford University, CA 94305, USA

Introduction

- Interplay of magnetic and structural order
- Vicinity of magnetic order and superconductivity

Open questions:
- Origin of the magnetic order?
- Driving force of the phase transition?

BaFe$_2$As$_2$

Raman spectroscopy

Anisotropy and detwinning

- Uniaxial pressure can detwin the BaFe$_2$As$_2$ crystals, facilitating access to anisotropic features

(a) Below the phase transition the A_g phonon appears in the tetragonal B$_{2g}$ phonon

(b) In detwinned crystals the phonon intensity shows a significant anisotropy between the afm and fm direction.

(c) The phonon intensity increases for shorter excitation wavelengths, showing a resonant behavior.

Conclusion

- Uniaxial pressure can detwin the BaFe$_2$As$_2$ crystals, facilitating access to anisotropic features

The A_g phonon shows a resonance at approximately 3.1 eV for polarizations along the afm and fm direction.

The widths of this resonance differ significantly for the afm and fm direction, indicating a strong influence of the band reconstruction along the afm ordered axis.

The E_g phonon at 125 cm$^{-1}$ splits into a B$_{2g}$ (afm) and B$_{1g}$ (fm) mode at the magnetic phase transition.