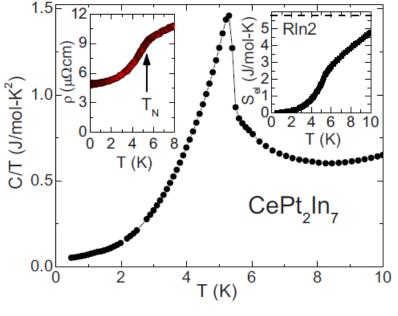

Unconventional Superconductivity and Nearby States in Correlated f-Electron Metals

E. D. Bauer¹, X. Lu^{1,2}, A. M. Mounce¹, N. Ni^{1,3}, T. Park^{1,4}, R. Ronning¹, H. Sakai^{1,5}, V. A. Sidorov^{1,6}, N. Wakeham¹, H. Yasuoka^{1,5} and JDT¹

¹Los Alamos National Laboratory, ²Zhejiang Univ., ³UCLA, ⁴Sungkyunkwan Univ., ⁵Advanced Science Research Center, JAEA, ⁶Inst. High Pressure Physics, RAS

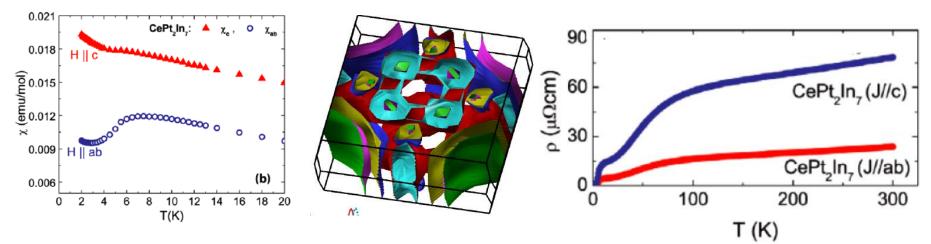
Outline: • introduction • CePt₂In₇ -- vis-à-vis CeRhIn₅ • U₂PtC₂ -- an old, new superconductor • summary


"Strong Correlations and Unconventional Superconductivity: Towards a Conceptual Framework", KITP, September, 2014

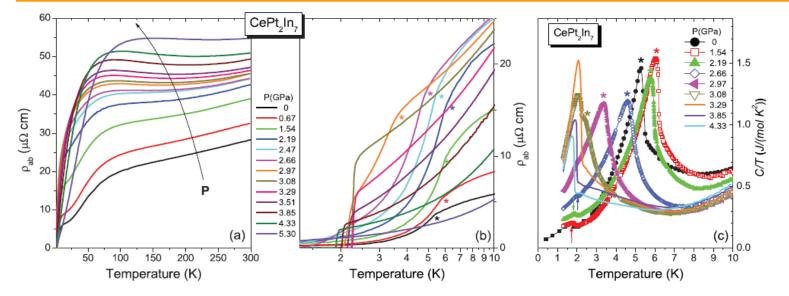
$CePt_2In_7$: a member of the $Ce_mM_nIn_{3m+2n}$ family

- 3 layered variants of Ce_mM_nIn_{3m+2n} with ground states highly tunable by pressure and M elements: Co, Rh, Ir, Pd, Pt
- CePt₂In₇ so far the only m=1, n=2 Ce member and in several respects similar to CeRhIn₅
- all strongly correlated, with superconductivity near an antiferromagnetic instability, and all with NFL states above T_c

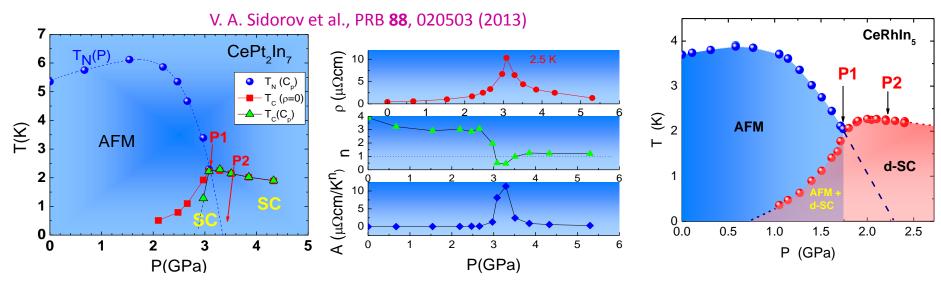
CePt₂In₇ – basic properties

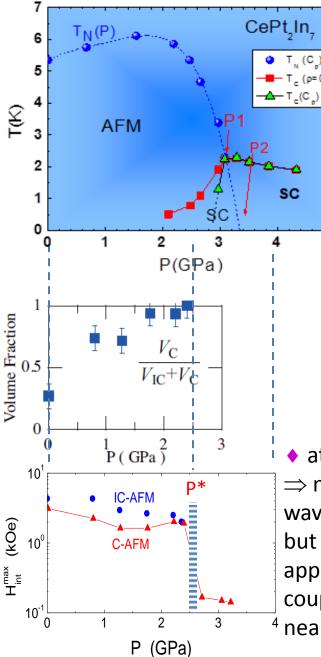


E. D. Bauer et al., PRB 81, 180507 (2010)


• antiferromagnetic order at 5.5K, above which estimate $\gamma \approx 350-400 \text{ mJ/molK}^2$ and well below which $\gamma_0 \approx 50 \text{ mJ/molK}^2 \Longrightarrow$ typical of correlated Ce antiferromagnets

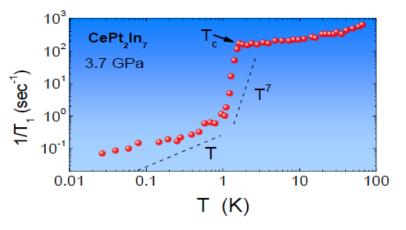
• entropy below $T_N \approx (0.3-.4)ln2 \implies T_K \ge T_N$ and little, if any, participation of 4f electrons in the Fermi volume implied from SdH measurements (M. Altarawneh et al. PRB **83**, 081103 (2011))


• modest anisotropy in $\chi(T)$ and $\rho(T)$, consistent with measured and calculated FS topology

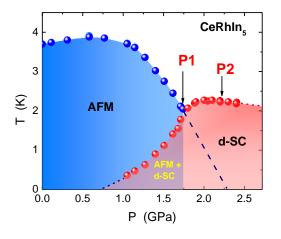

CePt₂In₇ response to pressure

• pressure-induced superconductivity with T-P phase diagram similar to CeRhIn₅, including similar T_c's but a narrower P-range of coexisting AFM and SC; resistive evidence for critical scattering when P1 < P < P2 Park et al., Nature **440**, 65 (2006)

magnetism and criticality in CePt₂In₇



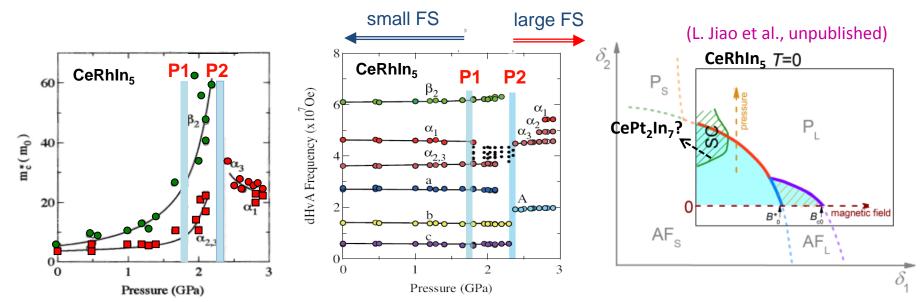
• complex magnetic order: commensurate AFM just below T_N followed at lower temperatures by coexisting incommensurate order; volume fraction of commensurate order $\approx 100\%$ at P* \sim 2.4 GPa <P1 (H. Sakai et al., PRB **83**, 140408 (2011))


• internal field produced by magnetic order collapses by over an order of magnitude at P* (< P1< P2) where v_Q also increases sharply \Rightarrow a 4f-localized/delocalized transition *in the ordered state* and approximately coincident with the emergence of bulk superconductivity (H. Sakai et al., Phys. Rev. Lett. **112**, 206401 (2014)); *expect change in Fermi volume at P** • maximum T_c near P1 = 3.07 GPa, not at the extrapolated (SDW??) critical point P2

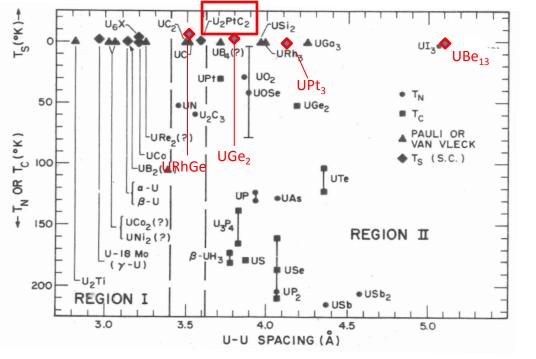
♦ at 3.1 GPa, 1/T₁ ∝ T³
⇒ nodal, possibly d-wave, superconductivity, but at 3.7 GPa > P2, apparently 1st order ⇒ coupling of SC to a new nearby state?

5

CeRhIn₅: similar but different



maximum T_c at P2 where P,H-dependent specific heat and resistivity measurements find a QCP (T. Park et al., Nature 440, 65 (2006);
G. Knebel et al., PRB 74, 020501 (2006))

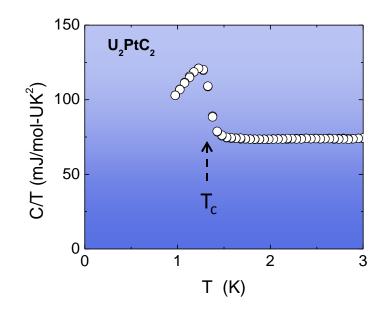

 as expected, diverging high field m* at P2 from dHvA BUT accompanied by a jump in dHvA frequencies at P2 (H. Shishido et al., JPSJ 74, 1103 (2005))

 consistent with an unconventional QCP (Kondo breakdown) where a 4f-localized /delocalized transition is coincident with a T=0 magnetic transition, unlike CePt₂In₇

P- and H-dependent responses appear to map onto 'global' phase diagram of unconventional criticality (Q. Si, Physica B 27, 378 (2006); P. Coleman et al, JLTP 161, 182 (2010)); CePt₂In₇?

$U_2 PtC_2$

superconductivity in U₂PtC₂ known already in 1969 (B. T. Matthias et al., PNAS
64, 459 (1969)) – long before UPt₃ and UBe₁₃ and other U-based heavy-fermion superconductors

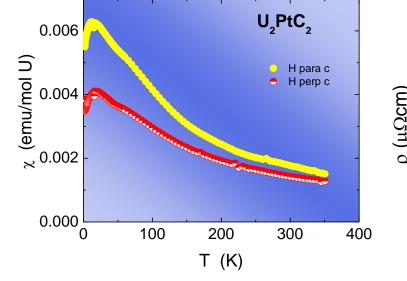

 in part instrumental in defining the 'Hill plot' which argued superconductivity at small U-U spacing and magnetic order at U-U > 3.6 Å

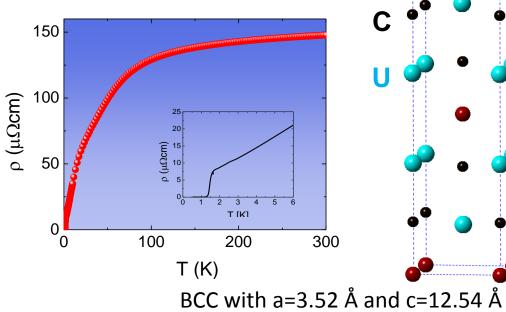
H. H. Hill, Plutonium 1970 and Other Actinides, p.2 (1970)

virtually unexplored, except briefly by Meissner et al. (G. P. Meissner et al., PRL 53, 1829 (1984)) and a few others

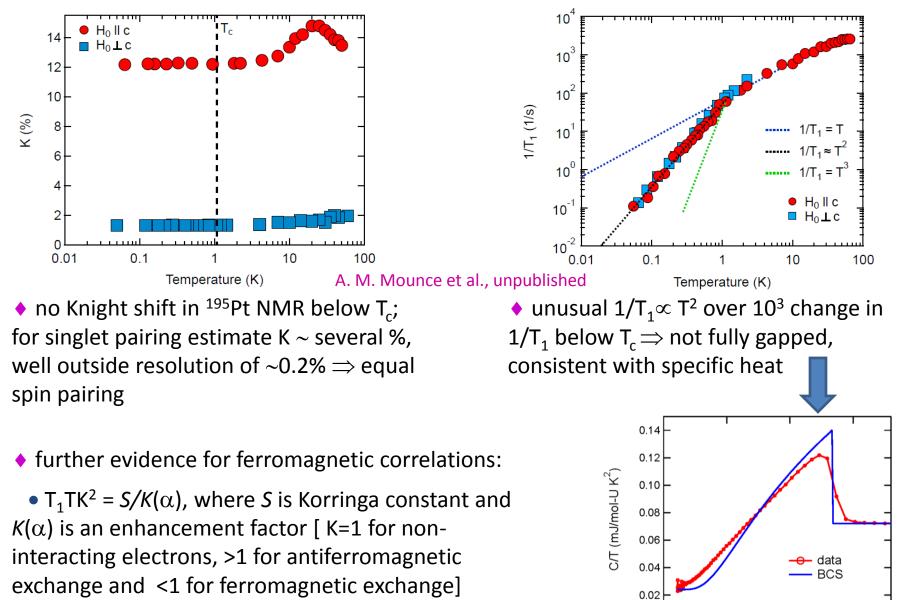
• subsequent discoveries of correlated ferromagnetic superconductors UGe₂ and URhGe with U-U spacing bracketing $U_2PtC_2 \Rightarrow$ revisit this old superconductor

modestly correlated and anisotropic




• nicely Fermi-liquid-like with γ = 75 mJ/mol-UK² above T_c= 1.47 K

• difficult to prepare—no crystals – but aligned powder with $\chi_c > \chi_a$ and RRR > 25

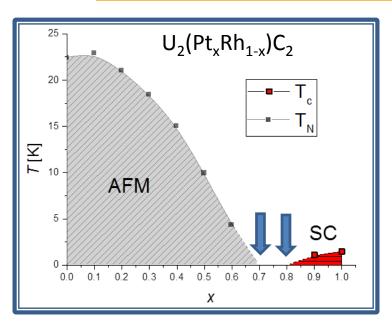

♦ first hint of something interesting: Wilson ratio $R \approx$ 4.5 and $H_{c2}(0) = 8-10T >> Clogston field <math>\approx 2.7T \Rightarrow$ ferromagnetic correlations

Pt

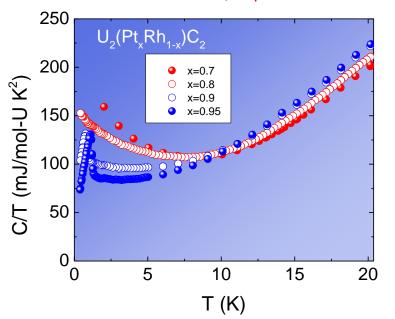
evidence for unconventional superconductivity

0.00

0.5


1.0

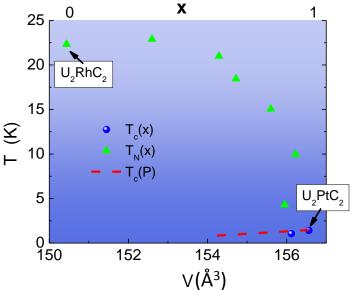
T (K)


1.5

• find K=0.03, comparable to nearly ferromagnetic TiBe₂ (K=0.032)

nearby magnetic order?

N. Wakeham et al., unpublished



Rh substitution for Pt: suppresses
superconductivity and induces AFM (but also removes one d-electron/Rh)

• near x=0.7, where $T_N \rightarrow 0$, strongest divergence in C/T and still pronounced upturn at x=0.8 \Rightarrow antiferromagnetic fluctuations detrimental to U_2PtC_2 superconductivity?

 probable spin-triplet SC relatively robust against impurities, but suppression of SC more rapid with doping than with applied pressure

perhaps
nearby
ferromagnetic
order if cell
volume of U₂PtC₂
expanded?

summary

 unconventional superconductivity in correlated Ce-based compounds commonly found near an antiferromagnetic QCP – CePt₂In₇ another example, but more complex/interesting

- field-induced small-to-large Fermi volume change at P=0
- collapse of ordered moment in its H=0 AFM state and coincident with onset of bulk SC at P*
- evidence for quantum critical behavior at $P > P^*$ where $T_N(P) \rightarrow 0$
- qualitatively similar but quantitatively different than CeRhIn₅

possibility that T=0 P,H phase diagrams of CePt₂In₇ and CeRhIn₅ map onto 'global' phase diagram predicted for unconventional (Kondo-breakdown) quantum criticality and that superconductivity should be considered part of the diagram (J. K. Pixley et al., arXiv:1308.0839)

- evidence from H_{c2}(0), Wilson ratio, Knight shift and T₁ that U₂PtC₂ is a nodal, spin-triplet superconductor near a ferromagnetic instability but its nearby ferromagnetic state not found yet
- if spin-triplet, superconductivity somewhat surprisingly robust against disorder