

M. Elvis, N. Brickhouse, B. Wilkes.

AGN outflows: Why now?

- Newly recognized as semi-universal
- Dynamically important m_{dot} >~ m_{dot} (acc)
- Pulls together all atomic absorption features in AGNs?
- > physical quantities
- Qualitative advance in undertsanding AGNs

'Warm Absorbers'

- OVIII, OVIII edges in ROSAT, ASCA highly ionized gas (U~1)
- **Photoionized**
- UV absorbers blueshifted → outflow
- Chandra & XMM: 1000 km/s outflow (as predicted by Mathur et al. models)
- WA have potential to deliver much physics

Fully characterized plasma

- Density n: recombination/ionization time lag to continuum changes
- Radial distance r: n, ionization parameter, L •
- Size dr. N, n
- Temperature T: amplitude of response to continuum change
- Pressure P: n, T
- Mass outflow rate m_{dot}: n, velocity v

Mathur et al. 1995---2001

Warm Absorber Parameters

So far only a few examples of variability: . NGC5548, NGC4051, NGC3516

 $n\sim10^8$ cm, $T\sim10^4$ K, $r\sim10^{16}$ cm, $\delta r\sim10^{15\text{-}16}$ cm

Suggestive of P(WA) ~ P(BELR) Kaastra et al 1995

- Large statistical uncertainties
- Systematic errors from simple physics
- May not be the case...

Warm Absorbers: complicated solutions

- 2 physically separate absorbers Otani et al. 1996
- 2 or more absorbers with arbitrary parameters •
- Relativistic lines Branduardi-Raymont et al. 2001 0
- Dust Lee et al. 2001

•

- High Fe abundance (> 10 x solar) Blustin et al. 2002 Ö
- Large outflow velocities McKerman et al. 2003 o
- Continuum range of U Krolik & Kriss 2001 •
- NO easy physics if many many-component solutions •

Warm Absorbers: a simple solution Our approach: build a complete model first

photoionized absorber spectral engine Krongold et al. 2004

PHASE

Includes:

- ATOMDB atomic database
- UTA approximation
- Voigt line profiles

Approach:

- -Global fit
- Allows for emission/absorption mutual cancellation
- Minimum free parameters

A 2-Phase Absorber

Simple solution > Variability analysis works.

Table 3
Two Phase Absorber Parameters

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Parameter	High-Ionization	Low-Ionization
$(cm^{-2})^a$ $22.20\pm.22$ $km s^{-1}$ 300 $m s^{-1})^a$ 788 ± 138 $9.52\pm0.44\times10^5$ $(K)]$ 5.98 ± 0.02 $U(\propto P^c)$ 5.22 ± 0.12 1.02 ± 0.12	$\text{Log } \mathrm{U}^a$	0.76 ± 0.1	-0.78 ± 0.13
km s ⁻¹) 300 m s ⁻¹) ^a 788 ± 138 $9.52\pm0.44\times10^5$ (K)] 5.98 ± 0.02 U (\propto P°) 5.22 ± 0.12 1.02 ± 0.12	$\text{Log N}_H \text{ (cm}^{-2})^a$	$22.20 \pm .22$	21.61 ± 0.14
${ m m \ s^{-1}})^a \qquad 788\pm138$ $9.52\pm0.44\times10^5$ $({ m K})] \qquad 5.98\pm0.02$ ${ m U \ }(\propto { m P}^c) \qquad 5.22\pm0.12$ 1.02 ± 0.12	$V_{Turb} \; (\text{km s}^{-1})$	300	300
$9.52 \pm 0.44 \times 10^5$ (K)] 5.98 ± 0.02 U (\propto P°) 5.22 ± 0.12 1.02 ± 0.12	$V_{Out} \text{ (km s}^{-1})^a$	788 ± 138	750 ± 138
(K)] 5.98 ± 0.02 U (\propto P°) 5.22 ± 0.12 1.02 ± 0.12	$T(K)^b$	$9.52 \pm 0.44 \times 10^{5}$	$2.58 \pm 0.39 \times 10^4$
U ($\propto P^c$) 5.22 ± 0.12 1.02 ± 0.12	$[Log\ T\ (K)]$	5.98 ± 0.02	4.41 ± 0.07
1.02 ± 0.12	$\text{Log T/U }(\propto P^c)$	5.22 ± 0.12	5.19 ± 0.20
	$\text{Log }\Xi^d$	1.02 ± 0.12	0.99 ± 0.20

																										red	+14.4	+6.5	+10.8 -17.4		+6.8 -7.6	+7.8	+16.0	+16.9 -14.2	+23.8 -15.4 +23.3	-21.4 +30.8	-33.1	+21.3	+20.2
red	+1.9	12.7	+15.8 2.1.8	+31	+ 1 + 6 4 4 8 6 6 1 8 6	1 + 1 -	+132	1+889 174	+8.3	-7.1 +10.2 -8.7	14.3	Maring made	***************************************	- Consequence				· · · · · · · · · · · · · · · · · · ·	Van aguesta a				+ 15.6 + 5.6 - 5.6		nÅ)	Measured	38.7		59.8°								34.2	23.0	
(mÅ) Measu	17.7	17.6	6.4	3.4	27.3	5.2	23.0°	41.0	47 Ac	34.7	12.3		8 (8 8			в	ø,	9 9	8	36.5		Width (mÅ)	Total	41.1	24.5	67.7	24.5	33.0	43.4	60.2	84.2	143.1	22.1	27.8	41.9	95.9
Equivalent Width (mÅ) HIP LIP Total Measured			0.5 3.7		< 0.5 5.1 < 0.5 24.7		0.5 20.7		< 0.5 45.4 - 0.5 30.7	, 0,	0.5 9.2			< 0.5 20.1 11.0 42.6		< 0.5 36.4		0.5 20.5 42.3 42.3			< 0.5 49.2		3.1 25.4 0.5 9.8	-Continued			6.5	< 0.5	16.7	24.5	33.0	43.4	55.2				27.8.3	41.9	0.55
			5.7.				20.7				9.2				30.0		28.3		< 0.5		49.2 <		9.8		Equivalent	HIP	34.6	24.5	51.0	< 0.5	< 0.5	< 0.5	5.0	13.2	89.0		49.5 7 0.5	0.00	
Wavelength (Å)	6.182	6.648	7.173	7.757	8.304	8.714	10.239	11.770	12.134	12.576	12.754	12.846	12.864	13.423	13.462	13.497	13,518	13.814	14.020	14.047	14.208	14.373	14.821	TABLE 4-															
Ion W	Sixiv	Sixili	Alxiii	AlxII	FexxIII Mexii	FexxII	NeX Fexix	FexxII	Nex For vi	Fexx	Fexx	Fexx	Fexx	Netx	Fexix	Fexix	FeXIX	Nevii	Nevi	Nevi	Fexvill	Fexviii	OVIII			Wavelength $(Å)$	15.176	15.261	16.006	17.086	17.200	17.396	17.768	18.627	18.969	20.910	21.602	23.771	24.114
	ain i Ing		er verification						ti Ölüşder					andy les			in house of the	· Colder and	at we to c	t with the state of the state o						$_{ m lon}$	OVIII	FexvII	OVIII	OVII	OVII	OVII	OVII	OVII	OVIII	INAII	No.	NVI	Caxiv

Table 7 Comparison with Kaspi et al. (2002)

λ (Å)	Ion Name and	Ion Name and Rest Frame λ (Å) identification
Observed	Kaspi et al.	This paper
10.126	FexvII(10.112)	Fexvii(10.112), Fexix(10.119), Fexvii(10.120)
10.524	FexvII(10.504)	FexvII(10.504), FexvIII(10.537)
12.436	No identification	Nixix(12.435)
12.560	Fexx(12.576)	Fexx(12.526)
12.592	Fexx(12.588)	Fexx(12.576,12.588), Fexix(12.538)
13.612		FeXIX (13.645,13.643)
13.822	Fexix(13.795)	NevII(13.814), FeXIX(13.795)
14.269	FeXVIII (14.256)	Nev(14.239), FexvIII(14.256)
15.584	* * * * * * * * * * * * * * * * * * * *	FexvIII(15.625)
21.466	OvII(21.602) zero redshift	CaXVI(21.450)
23.783	:	Nev1(23.771)
24.124	:	CaXIV(24.114)

Constraining the Structure of the

Opacity variation in response to flux variations

