Quantum Disentangled Liquids

MPA Fisher

JoeP Fest February 28, 2014

HAPPY BIRTHDAY JOE!

JoeP and CM

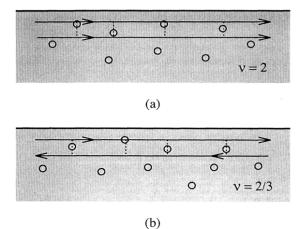
- Low Energy Dynamics of the Spinon Gauge Theory: J. Polchinski (1994), 118 citations
- Randomness at the Edge: Theory of Quantum Hall Transport at filling nu=2/3,
 C. Kane, MPAF, J. Polchinski (1994), 115 citations

Predicted "upstream" neutral modes in nu=2/3 fractional quantum Hall states ("phenomenology"!!)

JoeP and Experiment!

Observation of neutral modes in the fractional quantum Hall regime, M. Heiblum et al, (2010)

But the jury is still out...



Firewalls, Aaaahhhh...

Black Holes event horizon: quantum (or not), very hot or not, thermal or not, entangled but how....

My personal confusion (among many): Eqivalence of thermal/entanglement entropy, or not...

Hidden Locality in (some) "Thermal" Eigenstates?

- Thermal/entanglement entropy and Eigen-State Thermalization (ETH)
- Breakdown of ETH?

Yes: Many-Body-Localization, frozen disorder (classical dof)

Tarun Grover

KEY QUESTION:

Can ETH breakdown in fully Quantum Many-Body systems?

Maybe....

Describe: (T. Grover, MPAF 2013)

Ryan Mishmash

- **New Wavefunction Diagnostics**, beyond entanglement entropy: Jim Garrison local partial-measurement, and then post-measurement entanglement
- Quantum Disentangled Liquids: New "Thermal" states with "hidden" locality

Thermal and entanglement entropy

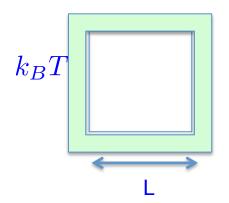
Thermal entropy, system w/ heat bath:

Canonical ensemble

$$\hat{\rho}_{th} = \frac{1}{Z}e^{-\beta\hat{\mathcal{H}}}$$

Thermal entropy: Number of states, $S_{th} = -Tr[\hat{\rho}_{th} \ln \hat{\rho}_{th}]$ extensive for T>0

$$S_{th} \sim L^d$$



Entanglement Entropy: Isolated, single eigenstate

$$\hat{\mathcal{H}}|\psi\rangle = E|\psi\rangle$$

$$\hat{\rho} = |\psi\rangle\langle\psi|$$

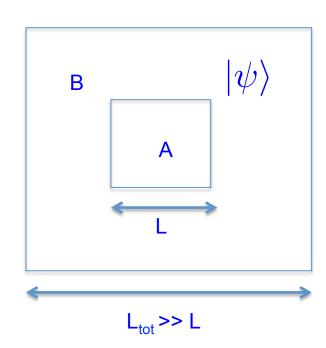
Spatial partition: Regions A and B

Reduced density matrix $\hat{\rho}_A$

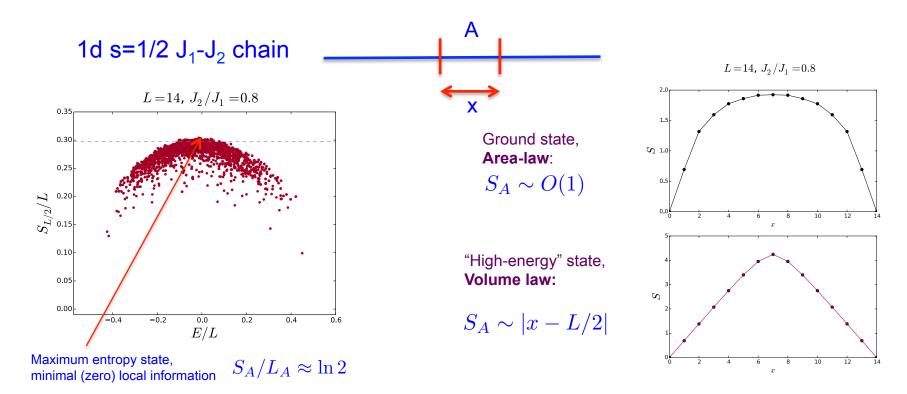
$$\hat{\rho}_A = Tr_B(\hat{\rho})$$

Entanglement entropy:

$$S_A(L) = -Tr_A(\hat{\rho}_A \ln \hat{\rho}_A)$$



Entanglement entropy: 1d spin-chain



Non-locality of volume-law states

Maximum-entropy (volume-law) eigenstate possesses no "local" information,

(Entropy: Classical - choose to "ignore" local information Quantum - Local information **does not exist**)

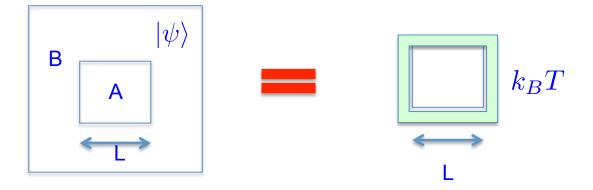


cf EPR pair, neither Alice nor Bob have any local information about their spin

Eigenstate Thermalization Hypothesis (ETH)

Josh Deutsch, Mark Srednicki

ETH = Microcanonical ensemble for E/L^d >0 eigenstate equivalent, in region A, to canonical ensemble w/ heat bath



Eigenstates w/ (nearly) same energy have identical correlations inside A

Equivalence of Thermal and entanglement entropies

$$S_A/L^d = S_{th}/L^d; \quad L \to \infty$$

Can ETH Break Down?

YES: In "Many-Body-Localized" (MBL) phase

Isolated, interacting, quantum particles in random potential can be in a Many-Body-Localized (MBL) phase

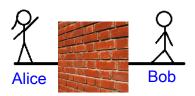
Eigenstates in MBL have area law entanglement entropy (even at E/L^d >0) while thermal entropy is extensive

$$S_A \sim L^{d-1}$$
 $S_{th} \sim L^d$

V. Oganesyan, D. Huse (2007)

I.V. Gornyi, A.D. Mirlin, D.G. Polyakov (2005) D. Basko, I. Aleiner, B. Altshuler (2006)

- Lack of thermalization: Particles don't serve as own thermal bath
- Conserved quantites (eg charge, or even energy) do not propagate, zero conductivity
- Entanglement does not "propagate", local quantum information cannot be transmitted



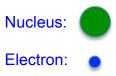
Alice + Bob embedded in MBL, completely isolated, quantum info cannot be transmitted

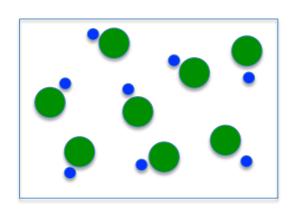
The random potential consitutes classical But... (frozen) set of degrees of freedom...

Can ETH Breakdown in fully Quantum system?

When might this happen?

Neutral atoms, isolated in box, prepared in many-body eigenstate, energy E



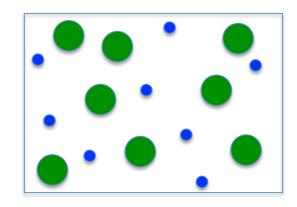


Atomic-Liquid

Vary energy E (the "temperature")

- T ~ 10-1,000 K atomic-liquid
- T > 10 eV, ionized-plasma

Question: Are eigenstates of **atomic-liquid** qualitatively the same as the **ionized-plasma** eigenstates?



Ionized-Plasma

Atomic-Liquid vs ionized-plasma?

Canonical answer: Atomic-liquid and ionized plasma are "equivalent"

- · Atomic-liquid and ionized-plasma eigenstates both volume-law entangled
- Atoms weakly ionized (even at low "T")
- · Low density of ionized electrons "should" thermalize

But...

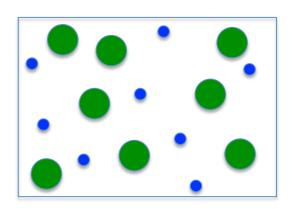
How does one (or can one) define "ionized"? How to characterize thermalization of "ionized" electrons?

Atomic-Liquid

Plan:

- Describe new wavefcn diagnostic (to characterize ionization?)
- Propose new quantum phases of T>0 multi-component fluids:

"Quantum Disentangled Liquids"



Ionized-Plasma

New wavefcn diagnostic: "Post-measurement entanglement"

Consider (E >0) volume-law wavefcn,

$$\Psi(R,r)$$

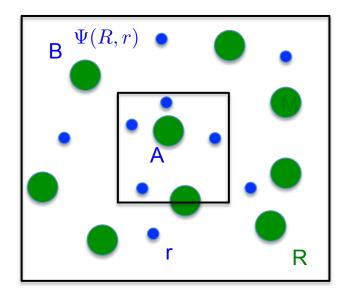
Diagnostic:

- (i) Measure positions of nuclei, but not electrons, (partial measurement) find R
- (ii) Consider wavefcn of (unmeasured) electrons,

$$\psi_e(r) \sim \Psi(\underline{R}, r)$$

- (iii) Compute (spatial) bi-partition entanglement entropy of electron wavefcn (w/ fixed nuclei coordinates, R)
- (iv) Repeat (i)-(iii) and average, gives post-measurement entanglement entropy $S^{r/R}_{\ \ A}$

Can repeat w/ $R \leftrightarrow r$ $S_A^{R/r}$



(R, r denote nuclei/electron coordinates)

Interest: Size scaling of post-measurment entanglement entropies?

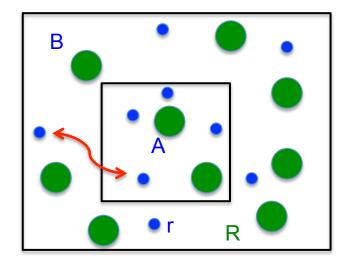
Scaling of post-measurment entanglement entropy?

Volume Law: $S_A^{r/R} \sim L^d$

Electrons entangled (thermalized) even after measuring nuclei positions,

Fully Thermalized Eigenstate

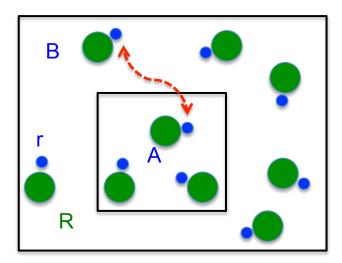
ionized-pasma, fully thermal w/ volume laws



Area Law: $S_A^{r/R} \sim L^{d-1}$

Measuring nuclei positions has disentangled ("localized") electrons

"Quantum Disentangled Eigenstate"



Atomic Fluid with NO ionization will have area law, but what about w/ weak ionization?

Quantum Disentangled State for atomic fluid

An atomic fluid eigenstate is Quantum-Disentangled if,

Measuring (heavy) nuclei, disentangles (light) electrons, **Area law**:

$$S_A^{r/R} \sim L^{d-1}$$

Measuring (light) electrons does not disentangle (heavy) nuclei, **Volume law**:

$$S_A^{R/r} \sim L^d$$

Quantum Disentangled States: General defn

Volume law entangled eigenstate (E >0)

$$S_A^\Psi \sim L^d$$

Perform (some) **local partial-measurement**, wf of un-measured d.o.f. $\ket{\Psi}
ightharpoonup \ket{\psi}$

$$\ket{\Psi}
ightarrow \ket{\psi}$$

Compute entanglement-entropy of post-measurement wf

$$|\psi\rangle \longrightarrow S_A^{\psi}$$

Quantum Disentangled State: post-measurement wf has area law

$$S_A^{\psi} \sim L^{d-1}$$

Local Partial Measurment induces full locality

Thermal State: wf post-measurment still entangled (non-local, volume law) $\,S_A^\psi \sim L^d$

Do Quantum Disentangled States exist?

(as eigenstates of generic Hamiltonians)

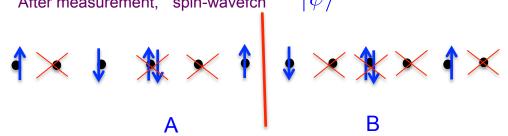
Fermion Hubbard models:

Partial-measurment on volume law (E>0) eigenstate $|\Psi\rangle$

Measure Charge on each site, but not spin $|\Psi
angle o \mathcal{P}|\Psi
angle=|\psi
angle$

$$|\Psi\rangle \to \mathcal{P}|\Psi\rangle = |\psi\rangle$$

After measurement, "spin-wavefcn" $|\psi
angle$



Post-measurement entanglement entropy of "spin-wf" $\,S_{s/c}\,$

Do Quantum-disentangled eigenstates exist with area law "spin-wf"? $S_{s/c} \sim L^{d-1}$

$$S_{s/c} \sim L^{d-1}$$

Numerics: 1d "Hubbard" chain

J. Garrison, R. Mishmash, T. Grover, MPAF (in progress)

$$\hat{\mathcal{H}} = -t \sum_{i,\sigma} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{i+1\sigma} + h.c.) - |U| \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1}$$

- Attractive inter, U<0, J destroys integrability
- Exact diagonalization, full entanglement entropy
- Measure Charge but not Spin, to get entanglement entropy of "spin-wf"

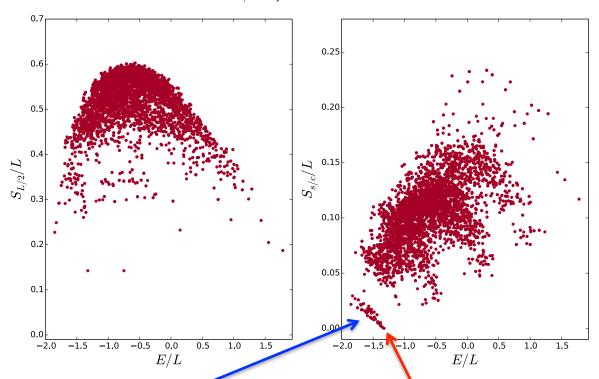
Full and post-measurement entanglement entropy

L=8 site Hubbard chain 4 up, 4 down fermions

Full Entanglement entropy

Post-measurement entropy of "spin-wf"

$$L\!=\!8$$
, $N_{\uparrow}\!=\!N_{\downarrow}\!=\!4$, $J\!=\!-3$, $U\!=\!-2.650$



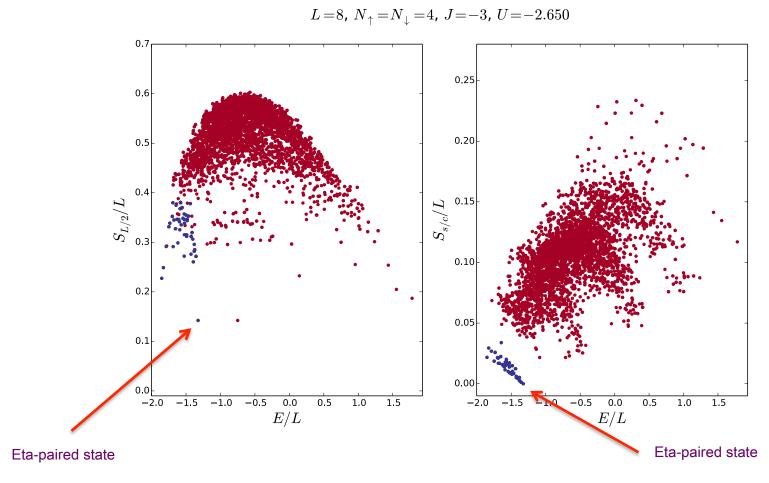
"Spin-disentangled band"

- · Post-measurment "spin-wf" low entanglement
- 70 (= 8 choose 4) states in "band" = number of fully-Paired states

Eta-paired state, pair-condensate at momentum pi Exact E>0 eigenstate w/ zero entanglement

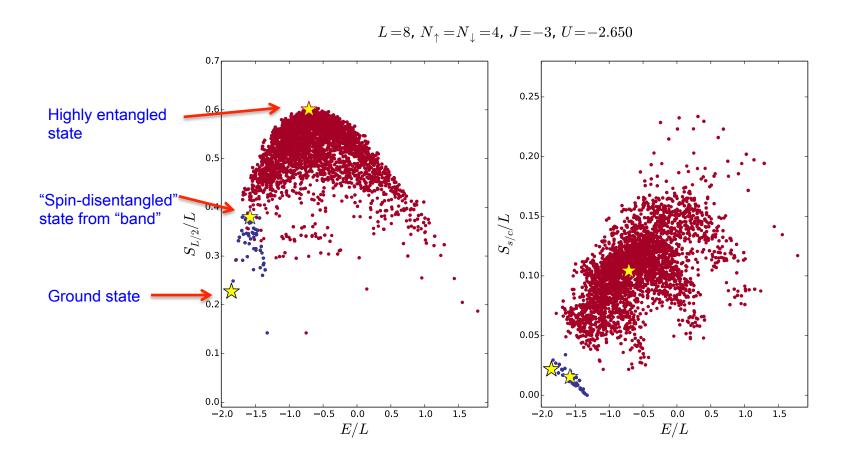
CN Yang, PRL (1989)

"Spin-disentangled" versus other states

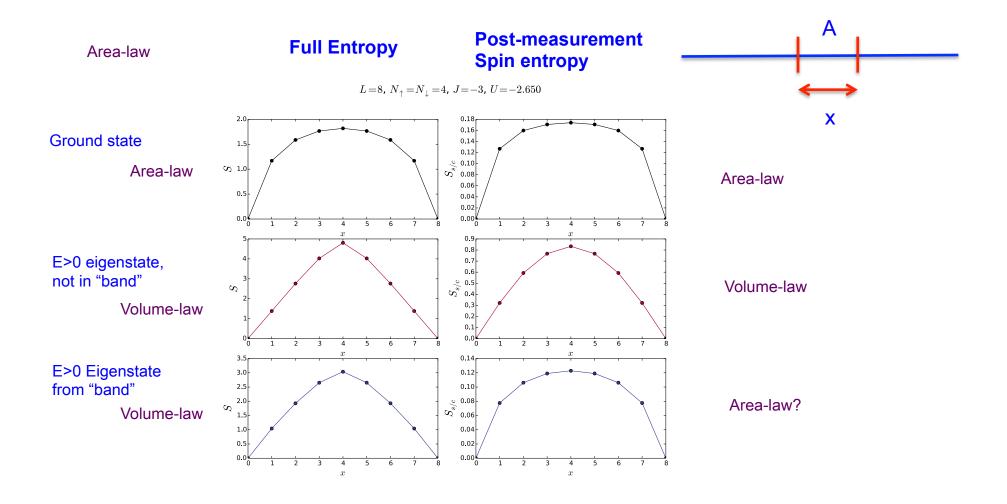


Possible breakdown of ETH, since wavefcns at same energy have very different properties...

Focus on 3 states



Entropy scaling for 3 eigenstates



Possible band of Quantum-disentangled states, "liquid of pairs" w/ area-law post-measurement spin-entropy?

Summary

Possible "Hidden" Locality in (some) "Thermal" eigenstates

New diagnostic for many-body wf: **Partial-local-measurement**, followed by post-measurement entanglement entropy of un-measured dof

Quantum Disentangled States: Volume-law eigenstates w/ post-measurement area-law entanglement entropy – "induced-locality"

Future:

Identify Hamiltonians which exhibit Quantum-disentangled eigenstates?

"Finite-temperature QFT" w/ very-heavy and very-light fields, Quantum-Disentangled eigenstates?

Other diagnostics to reveal hidden structure in volume-law entangled states?

Happy Birthday Joe!

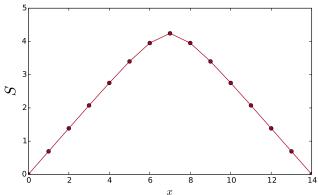
S(x)-vs-x for J1-J2 s=1/2 model

L = 14, $J_2/J_1 = 0.8$

Ground state (VBS state)

2.0 1.5 0.5 0.0 2 4 6 8 10 12 1.0

Maximally entangled state



Quantum Disentangled Eigenstates

Consider finite-energy density eigenstate of a many-body Hamiltonian, which has a volume law entanglement entropy $S^\Psi_\Lambda \sim L^d$

Perform (some) local **partial** measurement, and obtain projected wavefunction for unmeasured degrees of freedom

$$|\Psi\rangle
ightarrow |\psi
angle$$

Compute spatial entanglement entropy of post-measurement wavefunction S^{ψ}

$$\hat{\mathcal{H}}|\Psi
angle=E|\Psi
angle$$
 B $|\Psi
angle$

"Conventional Thermal state": Post-measurment entanglement is still volume law $S^{\psi}_A \sim L^d$

"Quantum Disentangled state": Area law post-measurement entanglement $S^{\psi}_{\ {}^{\Lambda}} \sim L^{d-1}$

In Quantum Disentangled Liquid a partial local measurement induces full locality

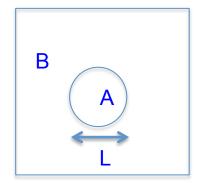
Full measurement in spatially extended system: Disentangles

Heisenberg model with s=1/2 $\hat{\mathcal{H}} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j + ...$

Hilbert space: Direct product of up/down spin on each site $|\{s_j\}\rangle=\prod_{j=1}|s_j\rangle_j$ $s_j=\pm 1$ Finite energy-density eigenstate: $|\Psi\rangle=\sum_{j=1}|\phi(\{s_j\})|\{s_j\}\rangle$ Volume law entanglement.

Finite energy-density eigenstate: $|\Psi\rangle = \sum_{\{s_i\}} \phi(\{s_j\}) |\{s_j\}\rangle$ Volume law entanglement,

$$\hat{\rho}_A = Tr_B |\Psi\rangle\langle\Psi|$$
 $S_A = -Tr_A[\hat{\rho}_A \ln \hat{\rho}_A] = sL^d$



Make Full (Local) Measurement: Measure spin on each and every site, find $\{\tilde{s}_i\}$

$$|\Psi
angle
ightarrow |\Psi'
angle = |\{ ilde{s}_j\}
angle$$
 (a direct product state)

After measurement: Wavefcn fully disentangled

$$S_A = sL^d \to S_A' = 0$$

Local Measurement collapses "non-local" volume law state, inducing "locality"

Local Partial-Measurements

Hubbard model for electrons
$$\hat{\mathcal{H}} = -t \sum_{ij} (\hat{c}_i^\dagger \hat{c}_j + h.c.) + u \sum_i n_{i\uparrow} n_{i\downarrow} + \dots$$

On-site Hilbert space: Up/down spin, empty, doubly-occupied $|\uparrow\rangle$, $|\downarrow\rangle$, $|0\rangle$, $|\uparrow\downarrow\rangle$

$$|\uparrow\rangle,|\downarrow\rangle,|0\rangle,|\uparrow\downarrow\rangle$$

Partial-Measurement: Measure spin on each site

Single-site wf: $|\psi\rangle = \phi_{\uparrow}|\uparrow\rangle + \phi_{\downarrow}|\downarrow\rangle + \phi_{0}|0\rangle + \phi_{\uparrow\downarrow}|\uparrow\downarrow\rangle$

$$|\psi\rangle \to \left\{ \begin{array}{c} \mathcal{P}_{\uparrow}|\psi\rangle = \phi_{\uparrow}|\uparrow\rangle \\ \mathcal{P}_{\downarrow}|\psi\rangle = \phi_{\downarrow}|\downarrow\rangle \\ \mathcal{P}_{0}|\psi\rangle = \phi_{0}|0\rangle + \phi_{\uparrow\downarrow}|\uparrow\downarrow\rangle \end{array} \right.$$

$$\left. \begin{array}{c} \mathcal{P}_{\uparrow} = |\uparrow\rangle\langle\uparrow\uparrow| \\ \mathcal{P}_{\downarrow} = |\downarrow\rangle\langle\downarrow| \\ \mathcal{P}_{0} = |0\rangle\langle0| + |\uparrow\downarrow\rangle\langle\uparrow\downarrow| \end{array} \right.$$

Spin projection operators

$$\mathcal{P}_{\uparrow} = |\uparrow\rangle\langle\uparrow|$$

$$\mathcal{P}_{\downarrow} = |\downarrow\rangle\langle\downarrow|$$

$$\mathcal{P}_{0} = |0\rangle\langle0| + |\uparrow\downarrow\rangle\langle\uparrow\downarrow|$$

After measuring spin, get a charge wavefunction (doublon/holon)

Partial-Measurement: Measure charge on each site

$$|\psi\rangle \to \left\{ \begin{array}{c} \mathcal{P}_0|\psi\rangle = \phi_0|0\rangle \\ \mathcal{P}_1|\psi\rangle = \phi_\uparrow|\uparrow\rangle + \phi_\downarrow|\downarrow\rangle \\ \mathcal{P}_2|\psi\rangle = \phi_\uparrow|\uparrow\downarrow\rangle \end{array} \right.$$

After measuring charge, get a spin wavefunction (up/down)

Charge projection operators:

$$\mathcal{P}_0 = |0\rangle\langle 0|$$

$$\mathcal{P}_1 = |\uparrow\rangle\langle\uparrow| + |\downarrow\rangle\langle\downarrow|$$

$$\mathcal{P}_2 = |\uparrow\downarrow\rangle\langle\uparrow\downarrow|$$

Entanglement, locality, information and measurment

Alice and Bob, each with a s=1/2 particle

Direct product: $|\psi\rangle = |\uparrow\rangle_A \otimes |\downarrow\rangle_B$

Bob's measurement, no effect on Alice.
Alice has full **local quantum information**.

Singlet state:
$$|\psi\rangle=\frac{1}{\sqrt{2}}[|\uparrow\rangle_A\otimes|\downarrow\rangle_B-|\downarrow\rangle_A\otimes|\uparrow\rangle_B]$$

Bob's measurement affects Alice. Alice has **no local quantum information** about "her" spin - two spins are "entangled"

Entanglement entropy quantifies local quantum information

Direct product state – complete local info: $S_A = S_B = 0$

Entangled Singlet state – no local info: $S_A = S_B = \ln(2)$

Local Measurement: Causes spatial disentanglement

For singlet state Bob **measures** his spin:

$$|\psi\rangle = \frac{1}{\sqrt{2}}[|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B] \longrightarrow \{|\psi'\rangle = |\uparrow\rangle_A \otimes |\downarrow\rangle_B \\ |\psi'\rangle = |\downarrow\rangle_A \otimes |\uparrow\rangle_B$$

After measurment, direct product state

$$S_A = S_B = \ln(2)$$
 $S'_A = S'_B = 0$

Measuring spin disentangles charge

4-site Hubbard, 2 up, 2 down spin electrons

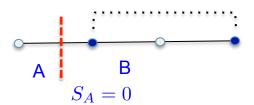
Measure spin on each site: $|\Psi
angle
ightarrow |\Psi'
angle$

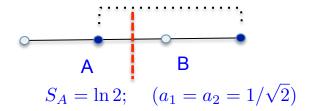
Suppose spin measurement gives (+1,0,-1,0),

wf after measurement

$$|\Psi'\rangle = a_1|\uparrow,0,\downarrow,\uparrow\downarrow\rangle + a_2|\uparrow,\uparrow\downarrow,\downarrow,0\rangle$$

Bipartition and compute entanglement entropy





Measuring spin (partially) disentangles charge

Measuring charge (partially) disentangles spin $|\Psi angle ightarrow |\Psi' angle$

Suppose charge measurement gives (1,0,1,2) leaving spin wf

$$|\Psi'\rangle = c_1|\uparrow,0,\downarrow,\uparrow\downarrow\rangle + c_2|\downarrow,0,\uparrow,\uparrow\downarrow\rangle$$

Bipartition, entanglement entropy of spin wf

