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Introduction:

I Artin’s braid groups are at the confluence of several basic
mathematical structures.

I The purpose of this lecture is to illustrate one such confluence
by comparing “crude” motions of points in the plane to
analogous motions of points in the two-dimensional sphere,
and to give topological features of these motions, features to
be made precise below.

I The focus here is on properties of spaces of braids and their
fundamental groups rather than the geometry of individual
braids.



A (crude) picture of a braid obtained from 3 particles
moving through time in a plane:

I Three particles mill about, but do not collide.



Motivation:

I The main point of this lecture is that particles “milling about”
in certain prescribed ways correspond to several different,
related subjects.

I Classical “discrete” structures given by the homotopy groups
of spheres as well as modular forms arise naturally arise by
keeping track of these motions.

I The purpose of this lecture is to illustrate these two
connections.



Artin’s braid groups and paths of distinct points in the
plane:

I Artin’s braid group can be though of as paths of particles of
points in the plane as the particles move from time t = 0 to
time t = 1 for which the particles are not allowed to collide,
that is the space of paths of particles in the configuration
space.

I A picture returns:



A picture of certain natural elements in Artin’s braid group:

I Consider the braids σi for 1 ≤ i ≤ k − 1 pictured next.



Artin’s presentation of the braid group:

I The braid group on k strands denoted

Brk = Brk(R2)

is generated by elements
σi

for 1 ≤ i ≤ k − 1,

I with a complete set of relations given by

σiσi+1σi = σi+1σiσi+1

for 1 ≤ i ≤ k − 2, and

σiσj = σjσi

for all |i− j| ≥ 2.



Configuration spaces:

I The braid group is the fundamental group of certain
‘unordered’ configuration spaces to be defined shortly.

I The configuration space of ordered k-tuples of distinct
points in a space M is

Conf(M,k) = {(m1, . . . ,mk) ∈Mk | mi 6= mj if i 6= j}.



Configuration spaces continued:

I The symmetric group on k-letters

Σk

acts naturally on Conf(M,k) by permutation of coordinates.

I The orbit space
Conf(M,k)/Σk

is the “unordered” configuration space sometimes called
‘unlabeled’.

I In case M = C, this last space would have been familiar to
you in high school as we are about to see !



A basic example:

I Consider the space of all monic, complex polynomials of
degree k

f(z) = zk + ak−1z
k−1 + · · ·+ a1z + a0 = (z − r1) · · · (z − rk)

denoted

Polynomialsk(z) = {f(z)}.



A basic example continued:

I By identifying a polynomial f(z) with its coefficients, the
space of polynomials

Polynomialsk(z)

is homeomorphic to complex k-dimensional space

Ck.

I By identifying a polynomial with its’ roots, the space
Polynomialsk(z) is homeomorphic to the k-fold symmetric
product

Symk(C) = (Ck)/Σk

the space of unordered roots of the polynomials.



A basic example continued:

I Thus the space Polynomialsk(z) is homeomorphic to both Ck

and to (Ck)/Σk via the homeomorphism

roots : (Ck)/Σk → Ck

which sends the roots of a polynomial to the coefficients, the
elementary symmetric functions of the roots (up to sign).



A basic example continued:

I A homework problem of Galois was to see how the
homeomorphism

roots : (Ck)/Σk → Ck

can be inverted !



A basic example continued:

I Restrict to
Conf(C, k)/Σk ⊂ (Ck)/Σk

to see that this configuration space

Conf(C, k)/Σk

is the space of monic, complex polynomials of degree k with k
distinct roots.



Braid groups for other surfaces:

I A braid can be thought of as the graph of a loop in the
configuration space

Conf(S, k)/Σk

for any surface S.

I The k-stranded braid group of a surface S

Brk(S)

is the fundamental group of the ‘unordered’ configuration
space Conf(S, k)/Σk.



Braids on the Riemann sphere:

I The next few sections compare the braid groups for the
complex numbers C or the Riemann sphere

C ∪ {∞} = S2.

I The Riemann sphere is also identified as the space of complex
lines through the origin in C2

CP1.



The Riemann sphere:

I



Configurations in the Riemann sphere:

I The configuration space

Conf(S2, 3)

is a disguise for
PSL(2,C)

dating back to classical work of Poincaré.



Configurations in the Riemann sphere:

I That is, consider the configuration given by

(0, 1,∞) ∈ Conf(S2, 3).

I The map which sends a point

ρ ∈ PSL(2,C)

to
(ρ(0), ρ(1), ρ(∞))

gives a homeomorphism

PSL(2,C)→ Conf(S2, 3).



Configurations in the Riemann sphere:

Thus there are homeomorphisms

I

PSL(2,C)/SO(3)→ Conf(S2, 3)/SO(3)

where SO(3) is regarded as the maximal compact subgroup,

I

PSL(2,C)/SO(3)→ H3

one sheet of hyperbolic three space.



Configurations in the Riemann sphere:

The notation
H3

means one sheet of hyperbolic three space given by

{(t, x, y, z) ∈ R4 | t > 0, t2 − (x2 + y2 + z2) = 1}.



Configurations in the Riemann sphere:

I Furthermore, if k ≥ 3, there are homeomorphisms

Conf(S2, k)/SO(3)→ H× Conf(C− {0, 1}, k − 3).



A three-stranded braid for the Riemann sphere:



The map from the braid group for the plane to the braid
group for the Riemann sphere:

One goal of this lecture is to compare braids for the plane C to
those for the Riemann sphere S2.



A picture of the map from the braid group for the plane to
the braid group for the Riemann sphere:



The map from the braid group for the plane to the braid
group for the Riemann sphere again:

I The homomorphism

Brk(R2)→ Brk(S2)

has a kernel in case k ≥ 3.

I How and why is this interesting ?

I The next slide is the starting point of how these features ‘fit’
together.



Borromean “creatures” (usually ‘Borromean rings’:)

Figure: The Borromean rings



Borromean braids for the plane and for the Riemann
sphere:

I One property of the Borromean rings is that if any circle is
removed, the remaining pair of circles is unlinked.

I Define the Borromean k-stranded braids for a surface S as
those k-stranded braids which “become trival” if any strand is
deleted.

I The group of Borromean k-stranded braids is

Borrk(S).

,



An example of a Borromean braid for the plane:



Borromean braids for the plane and for the sphere
continued:

I The group of Borromean braids

Borrk(S)

is usually a countably infinitely generated free group.

I One “small example” is

Borr4(S2)

which is also the principal congruence subgroup of level 4 in
SL(2,Z).



Borromean braids for the plane and for the sphere
continued:

I The first homework problem is to compare

Borrk(C)→ Borrk(S2).

induced by the natural inclusion

C→ S2 = C ∪∞,

and
Conf(C, k)→ Conf(S2, k).

I These maps are the subject of joint work with J. Berrick,
Y. Wong, J. Wu and the speaker which are discussed next.



A theorem about Borromean braids in the plane and in
the sphere:

Assume that k ≥ 5.

I The image of
Borrk(C)→ Borrk(S2).

induced by the natural inclusion

C→ S2 = C ∪∞.

is a normal subgroup with quotient group given by

πk−1S
2

the (k − 1)-st homotopy group of the two sphere.



Some background:

Assume that k ≥ 5.

I The homotopy groups of spheres are currently not well
understood, and have been the subject of much work by many
people.

I One theorem of Serre (in his thesis) gives that

πk−1S
2

is a finite abelian group for all (k − 1) > 3. Thus the image of
Borrk(C) in Borrk(S2) is a finite index subgroup.

I Homework: Identify a more direct way to see this fact or to
identify the size of πk−1S

2 arising from geometric properties
of braids.



Some background continued:

Assume that k ≥ 5.

I Write
Borrk(S2)/Borrk(C)

for the quotient of Borrk(S2) modulo the image of Borrk(C).

I Thus the groups Borrk(S2)/Borrk(C) are finite abelian.

I In addition, these finite abelian groups have no 2-torsion
elements of order ≥ 8 by work of I. M. James or p-torsion of
order p2 for p an odd prime by results of either P. Selick, or
Moore, Neisendorfer, and the speaker.



A theorem about Borromean braids in the plane and in
the sphere continued:

Assume that k ≥ 5.

I There is an exact sequence

1→ Borrk+1(S2)→ Borrk(C)→ Borrk(S2)→ πk−1(S2)→ 1.



Remarks, homework, as well as wild speculation:

I Explicit computations of πk−1S
2 are similar in flavor to

calculating values of the classical partition function (the
number of ordered partitions of a fixed integer).

I This remark suggests forming the generating function

Θ(t) = 1 +
∑
t≥4

(1/k!)|Borrk(S2)/Borrk(C)|tk

where |Borrk(S2)/Borrk(C)| denotes the order of the (finite
abelian) group.



Remarks, homework, as well as wild speculation:

I Is the function Θ(t) analytic ?

I Do the actions of PSL(2,C) reflect non-trivial symmetry
properties of the generating function Θ(t) ?

I Can the coefficients of Θ(t) be estimated via analytic
methods as in the case of the classical partition function ?



Other spaces:

I A mild variation of these methods gives an analogous picture
for all spheres.

I However, these methods have not been useful for
concrete computations.

I Homework: Identify methods to keep track of the size of
these groups. For example, automorphisms of surfaces may
give invariance properties as exemplified next.



A final comment/accident:

I The braid groups have natural symplectic representations

Br2g+2(R2)→ Sp(2g,Z)

which arise from diffeomorphisms of Riemann surfaces.

I A natural question is to ask about the cohomology of the
braid group with coefficients in symmetric powers of this
representation.



Calculations:

I The first case arises with a quotient of B3 given by SL(2,Z).

I There is a direct sum decomposition

H∗(SL(2,Z); Z[x, y]) =M⊕ Tors

where
M

is a free abelian group while

Tors

is a torsion group.

I This case in cohomology was first considered in the 1950’s by
G. Shimura, or at least the torsion free summand of the
cohomology groups



Calculations:

I The purpose of this section is to give the torsion in the
cohomology groups

H∗(SL(2,Z); Z[x, y])

obtained in joint work with M. Salvetti, and F. Callegaro.

I To do so, first recall that there exist p-local fibrations for each
odd prime p > 3 given by

S2n−1 → Tp(2n+ 1)→ Ω(S2n+1)

in work of D. Anick as well as Gray-Theriault.

I In particular, there are spaces Tp(2n+ 1) which are total
spaces of p-local fibrations, p > 3.



Calculations:

I Shimura’s Theorem: The graded abelian group

M⊗Z C

is given by the classical ring of modular forms based on the
SL(2,Z) action on the upper 1

2 -plane by fractional linear
transformations.



Calculations:

Theorem 11

I If p is a prime with p > 3, then the p-torsion in

H∗(SL(2,Z); Z[x, y])

is given by the reduced cohomology of

T (2p+ 3)× T (2p2 − 2p+ 1).

I In case p = 2, 3, the answers are not quite as nice.



Remarks:

I The spaces Tp(2n+ 1) have long been conjectured to deloop
the fibre of the classical double suspension map

S2n−1 → Ω2(S2n+1).

I Homework: Explain this accident.



Thank you very much.

I Please remember to hand in the homework !


