
The Kavli Institute for Theoretical Physics

University of California, Santa Barbara

Knotted Fields

Appreciation of the Classical Approach to Knots

From 1833 to 1990

Kenneth C. Millett

University of California
Santa Barbara, CA, USA

millett@math.ucsb.edu

June 22, 2012

Kenneth C. Millett The Kavli Institute for Theoretical Physics University of California,



Outline

An appreciation of the classical approach to knotting in the
mathematical and natural sciences with an eye on a few historical
events.

Origins of knotting, linking and, entanglement

Mathematical knotting and linking: Gauss, Kelvin, Alexander

The Jones era: Jones, HOMFLY, BLMH, Kauffman

Applications in the natural sciences

Discussion
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Origins of knotting

In Nature

Living organizimes employ knotting and entanglement to
accomplish important tasks.

The hagfish uses a knotted configuration to gain leverage in
order to feed or as a defensive strategy.

Vines use linking and entanglement to stabilize their positions
during growth

The presence of knotting, linking, and other forms of
entanglement can be observed widely in nature.
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Origins of knotting

Human uses

Knots can be found in the reminants of Finnish fish nets made
of nettle fibers 10,000 years ago. The photo shows rock
weights and bark floats.

While some origins are utilitarian others, such as this Celtic
knot, are decorative or have a religious interpertation.
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Origins of knotting

An the earliest manifestations

Entanglement of solar flares on March 6, 2012 (NASA/SDO/AIA)
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Mathematical Knotting and Linking

Gauss Linking Number

In 1833 Johann Carl Friedrich Gauss developed an integral formula
that defined the linking number between two oriented simple
closed curves in space, thereby initiating the mathematical study of
knots and links.
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Mathematical Knotting and Linking

Vortex knots leads to knot identification and enumeration problems

Lord Kelvin (Sir William Thomson) and Peter Guthrie Tait were
inspired by the work of Helmholtz and Maxwell to propose vortex
tubes forming different knots and links as models for atomic
structure. Building on the work of Gauss and his student, Listing,
the classification of knots was undertaken. The unknotted ring was
to represent oxygen while the simplest knot, the trefoil, was carbon
and the Hopf link was to be sodium.
The absence of ”ether” ended this vision.
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Mathematical Knotting and Linking

Nevertheless, the mathematical study of knotting and linking
continued with its on life.

Enumeration

Equality means we can move one configuration to the other in
space

Composition (connection sum) defines a monoid with the
unknot as identity but without inverses.

Enumeration focuses on irreducible, or prime, knots.

P.G. Tait, in the late 1800’s, began the systematic
classification of prime knots with effort continuing to this day.
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Mathematical Knotting and Linking

Polygonal Knots

Defined by an ordered sequence of n vertices in 3-space

Connected cyclically by straight line segments called edges

Two edges meet, if at all, at their common vertices
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Mathematical Knotting and Linking

Lattice Knots

Defined by an ordered sequence of n adjacent non-repeating
vertices in simple cubic lattice

Require the first vertex be adjacent to the last vertex

Connect vertices cyclically by their adjoining edges
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Mathematical Knotting and Linking

Knot and Link Presentations

Choose a projection of the knot or link orthogonally to a plane
in 3-space

which is generic:

For smooth knots: the projection does not annihilate any
tangent vectors, at double points the images of the tangent
vectors are distinct, and there are no triple points
For polygonal knots, vertices project 1-1, no edge interior
image intersects a vertex, edge images intersect only in the
interiors at discrete points, and there are no triple points
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Mathematical Knotting and Linking

Theorem (Reidemeister 1926)

Two knots or links are ambient isotopic if and only there is a finite
sequence of elementary Reidemeister moves, shown above, taking a
presentation of the first to a presentation of the second.
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Mathematical Knotting and Linking

But it’s not so easy as one might hope

Indeed, determining whether an presentation represents the unknot
is, in a very formal sense, a very hard problem!
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Mathematical Knotting and Linking

Census organized by ”complexity”

The crossing number of a knot, Cr(K) is the fewest number of
crossings appearing in a presentation of the knot

The ”Unknot” or Trivial Knot

Standard representative is a round circle

Crossing number is 0. The unknot is designated by 01
denoting the first knot in the tabulation having 0 crossing
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Mathematical Knotting and Linking

Three crossings

The trefoil knot, 31
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Mathematical Knotting and Linking

Four crossings

The figure eight (or Listing’s) knot, 41
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Mathematical Knotting and Linking
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Mathematical Knotting and Linking

Alternating and Non-alternating Knots

A knot or link is alternating if it has a presentation in which
one alternates between crossing under and over when
traversing the knot.

Otherwise, a knot or link is non-alternating

The ”first” non-alternating prime knots are 819, 820, 821.

Alternating knots are the most accessible to study but become
proportionally rarer with increasing crossing number.
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Mathematical Knotting and Linking: Integer Invariants

(Minimal) Crossing number, Cr(K ), is the smallest number of
crossings that must be occur in a presentation of the knot.
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Mathematical Knotting and Linking: Integer Invariants

Gordian or Unknotting number, Un(K ), is the smallest
number of crossings that can be changed to get a
presentation of the unknot, over all presentations of the knot.
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Mathematical Knotting and Linking: Integer Invariants

The Bridge number of a knot, Br(K ), is the smallest number
of maxima (or minima) over all orthogonal projections to a
line in 3-space over all presentations of the knot.

Note, if there is a projection with a single maximum, the knot
is trivial.

Many of the simplest knots are two bridge knots. What is the
first one that is not? How does one know?
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Mathematical Knotting and Linking: Integer Invariants

The Edge number of a knot, Ed(K ), is the smallest number
of edges (or vertices) necessary to create a polygonal
presentation of a knot.

The Equilateral Edge number of a knot, EEd(K ), is the
smallest number of edges (or vertices) necessary to create an
equilateral polygonal presentation of a knot.

The Lattice Edge number of a knot, LEd(K ), is the smallest
number of edges (or vertices) necessary to have an simple
cubic lattice presentation of a knot.
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Mathematical Knotting and Linking:

Linking Number of an Oriented Link

Figure: +1 crossing Figure: −1 crossing

Definition

A knot or link is oriented if a direction is assigned to each
component.

In an oriented link, the linking number, Lk(L1, L2), between
two components, L1 and L2 is defined to be half the sum of
±1′s associated to the crossings between the two components.
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The linking number of an oriented link is a topological

invariant

Must check invariance under Reidemeister Moves

Type I

Type II

Type III
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Mathematical Knotting and Linking: Integer Invariants

The writhe of a knot or link presentation, Wr(L), is defined to
be the sum of the ±1′s in the diagram.

The writhe of a minimal crossing diagram of a prime
non-alternating knot is NOT an invariant, e.g. 10161 and
10162, the Perko Pair, in old knot tables (pre 1974).

But, if the knot is alternating, it is invariant.
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Mathematical Knotting and Linking:

Polynomial Invariants of Knots

Alexander/Conway Polynomial 1923/1969

Given an oriented link, L, there is a unique element, ∇(L) of
Z[t, t−1] such that

∇(Unknot) = 1

and, if L−, L0, L+ are link presentations that are identical outside
the relation region where they are precisely as shown above, then

∇(L+) - ∇(L−) - t ∇(L0) = 0.
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Mathematical Knotting and Linking: Alexander Polynomial

The classical Alexander Polynomial is related to the
Alexander-Conway polynomial by
∆ (L)(t2) = ∇(L)(t − t−1)
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The Era of Jones

V. F. R. Jones Polynomial 1984

Given an oriented link, L, there is a unique element, V (L) of
Z[t,t−1] such that

V (Unknot) = 1

and, if L−, L0, L+ are link presentations that are identical outside
the relation region where they are precisely as shown above, then

t−1 V (L+) - t V (L−) + (t−
1
2 − t

1
2 )V (L0) = 0.
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The Era of Jones: Why is this important?

Compare the calculations for the trefoil knot

∆ (31)(t) = t−1 − 1 + t

V (31)(t) = t + t3 − t4

What happens under mirror reflection?

∆ (31)(t) = t−1 − 1 + t

V (31)(t) = −t−4 + t−3 + t−1
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The Era of Jones: Alexander-Conway and Jones imply......

Berkeley, Summer 1985, Vaughan Jones with James Hoste, Adrian
Oceanu, Kenneth Millett, Peter Freyd, W. B. Raymond Lickorish,
and David Yetter (HOMFLY) absent Przytycki and Traczyk
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The Era of Jones: HOMFLY-PT Polynomial 1984

The HOMFLY Polynomial

Given an oriented link, L, there is a unique element, P(L) of
Z[l,l−1,m,m−1] such that

P(Unknot) = 1

and, if L−, L0, L+ are link presentations that are identical outside
the relation region where they are precisely as shown above , then

l P(L+) + l−1 P(L−) +m P(L0) = 0.

P(31)(l ,m) = −2l2 − l4 + l2m2

What happens under mirror reflection?

P(31)(l ,m) = −2l−2 − l−4 + l−2m2
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The Era of Jones: Why is this important?

HOMFLY is an extension of both Conway-Alexander and Jones

HOMFLY distinguishes knots that neither Conway-Alexander
nor Jones can distinguish, e.g. 11388 and 11388.

HOMFLY is unable to distinguish “mutants” as well as other
small families

Beware, there is no agreement on the choice of variables and
normalization.
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The Jones Era: BLMH Polynomial Winter 1985

Brandt-Lickorish-Millett-Ho Polynomial

Given a link, L, there is a unique element, Q(L) of Z[x,x−1] such
that

Q(Unknot) = 1

and, if L+, L−, L0, L∞ are link presentations that are identical
outside the relation region where they are precisely as shown
above, then

Q(L+) + Q(L−) = x (Q(L0) + Q(L∞)).
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The Jones Era: Kauffman’s Λ Polynomial Summer 1985

For any presentation of an unoriented link, L, first define a Laurent
polynomial, Λ(L), in two variables, a and x , by
(i)

Λ(Circle) = 1;

(ii) If L− contains a negative type I Reidemeister move and L
denotes the result of its untwisting, then

Λ(L−) = a−1Λ(L);

(iii) If L+ contains a positive type I Reidemeister move and L
denotes the result of its untwisting, then

Λ(L+) = aΛ(L);

(iv)

Λ(L+) + Λ(L−) = x (Λ(L0) + Λ(L∞)).
Kenneth C. Millett The Kavli Institute for Theoretical Physics University of California,



The Jones Era: Kauffman Polynomial

For any oriented link, L, the Laurent polynomial defined by

F (L) = a−Wr(L)Λ(L)

is an invariant of L in 3-space.

F (31)(a, z) = −2a2 − a4 + (a3 + a5)x + (a2 + a4)x2

What happens under mirror reflection?

F (31)(a, z) = F (31)(a
−1

, z)
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The Jones Era: Kauffman’s Jones Polynomial

Begin with an unoriented link diagram, L, for which we define a
Laurent polynomial, 〈L〉, in one variable, A, using the following
rules:
(i) if O denotes a planar circle,

〈O〉 = 1;

(ii) the distant union of L and O, gives

〈L ⊔O〉 = −(A−2 + A2)〈L〉;

(iii)
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The Jones Era: Kauffman’s Jones Polynomial

One defines a new polynomial: X (L)

X (L) = (−A)−3Wr(L)〈L〉

Taking the difference between the equations,

we get

Accounting for the changes in the writhe and the normalization

and letting A = t
−1
4 , one has the Jones recursion equation.
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Applications to the Natural Sciences

Molecular Biology

Championed by Nick Cozzarelli, Knot Theory has been and is still
being used to study the mechanism of enzymes that act upon
DNA by changing their spatial structure thereby removing or
creating knots.

Nick Cozzarelli (Fall 1984)
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Applications to the Natural Sciences

Molecular Biology

Knot Theory is also being used to study the structure of proteins
in order to give insight into the relationship between structure and
function. But, its a somewhat different kind of ”knot theory” that
is exploited.

Sulkowska, Rawdon, Millett, Stasiak, Onuchic

Conservation of complex knotting and slip knotting patterns in proteins, PNAS June 2012
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Applications to the Natural Sciences

Knotting of open chains

Although for many objectives it is sufficient to consider only the
knotting of closed curves, the knotting of open curves has
important applications in the study of physicial and biological
macromolecules, in the large, and for the study of knot localization
in both open and closed curves.
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Applications to the Natural Sciences

Raymer Smith Experiment

For example, in the 2007 Raymer-Smith study of the incidence of
knotting by tumbling open strands of varying lengths and flexibility,
a critical challenge was the notion of knotting in open strands.
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Applications to the Natural Sciences

The ”reasonable person” criterion

Mansfield (1994) ”Nevertheless, to paraphrase Associate Justice
Potter Stewart of the U.S. Supreme Court, we may not be able to
define a knot in an open path, but we know one when we see
one.....Since protein contours are not closed paths, it is only in the
subjective sense of a ‘reasonable-person’ test that we can address
the existence of knots in proteins.”

PDB codes: 1ns5 1yve 1xd3

Kenneth C. Millett The Kavli Institute for Theoretical Physics University of California,



Applications to the Natural Sciences

Simplification of structure algorithms

In the study of polymers, the primitive path analysis has been
employed since the 1970’s (Edwards and others?)
Taylor’s 2000 protein application kept the ends of the chain fixed
and modified the interior conformation by means of permitted
”triangle moves,” a la Reidemeister (1926).

Millett-Dobay-Stasiak (Macromolecules 2005) example, above, shows how the result depends upon choices.

MDS propose another strategy to locate the knot.
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Applications to the Natural Sciences

MDS identification of knotting in open chains

MDS uses the statistics of the closure to the sphere at ”infinity” to
define the knot types defined for all except a set of measure 0
points on S2.

Millett-Dobay-Stasiak 2005 & Millett-Sheldon 2005
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Applications to the Natural Sciences

Estimation of knotting in open chains

This leads to the knotting spectrum of a configuration.
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Applications to the Natural Sciences

Estimation of knots and unknots in random walks
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Applications to the Natural Sciences

Random walks

What does this strategy tell us about knotting in 500 step random
walks?
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Applications to the Natural Sciences

Slipknots: a protein example

A slipknot is a knotted portion of a chain, an ephmeral knot, that
is contained within an unknotted chain, the slipknot. Here is an
example of a slipknot in alkaline phosphatase discovered by Todd
Yeates (King et. al. J Mol Bio 2007).
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Applications to the Natural Sciences

Localization of knots in open and closed chains

We can identify the locus of knots, ephemeral knots, and slipknots
in an open or closed chains by testing segments of various lengths
and starting points. This can illuminate questions concerning their
size and location, for example:

The distribution of knot lengths in polygonal knots establishes
the scale of knotting: strongly local knotting (of bounded
length), weakly local knotting (sub-linear growth in length),
and global knotting (growing asymptotically in proportion to
the length).
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Applications to the Natural Sciences

Estimation of knotting

The length distributions of knots and ephemeral knots in 500 step
random walks
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Applications to the Natural Sciences

How important is the presence of knots and slipknots to the
overall structure of a random walk or random polygon?
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Applications to the Natural Sciences

Fingerprints of knots and slipknots in proteins

PNAS 2012 Sulkowska, Rawdon, Millett, Stasiak, and Onuchic
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Applications to the Natural Sciences

DehI protein forms a Stevedore’s knot, 61, (Bolinger et al
2010) as well as slipknotted 31, 41 and 61

74, 223 structures analyzed, 398 knotted, 222 slipknotted

PNAS 2012 Sulkowska, Rawdon, Millett, Stasiak, and Onuchic
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Applications to the Natural Sciences

Complex knotting fingerprints and their conservation

PNAS 2012 Sulkowska, Rawdon, Millett, Stasiak, and Onuchic
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Applications to the Natural Sciences
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Applications to the Natural Sciences
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Applications to the Natural Sciences
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Applications to the Natural Sciences
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Localization structure of knots in ideal knots

Structure of an ideal trefoil
Joint work with Heinrich, Hyde, Rawdon, and Stasiak
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Localization structure of knots in ideal knots

Structure of an ideal 817, 818, and 819
Joint work with Heinrich, Hyde, Rawdon, and Stasiak
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Localization structure of knots in ideal knots

Structure of an ideal 820
Joint work with Heinrich, Hyde, Rawdon, and Stasiak
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Localization structure of knots in ideal knots

Structure of an ideal 1099
Joint work with Heinrich, Hyde, Rawdon, and Stasiak
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Thank you for your attention

Happy Knotting in Santa Barbara
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