A Direct Empirical Proof of the Existence of Dark Matter

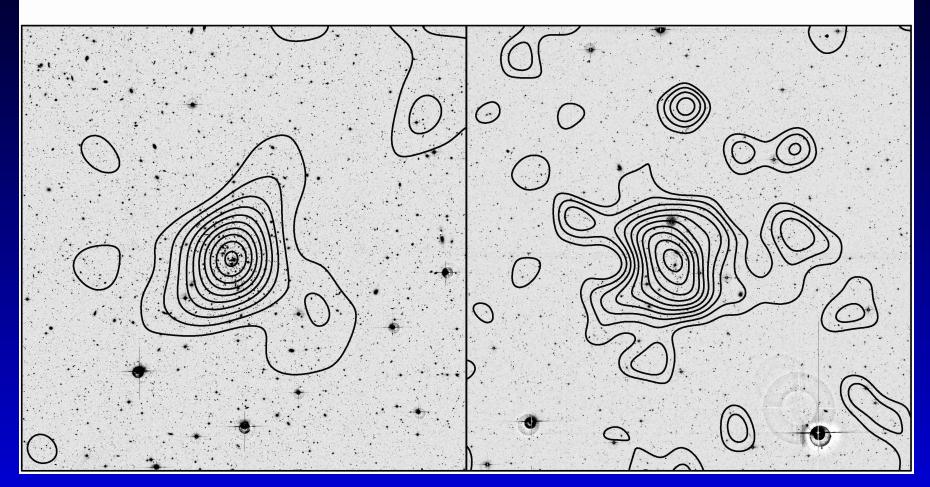
Douglas Clowe

Ohio University

D. Clowe: Dark Matter – p.1

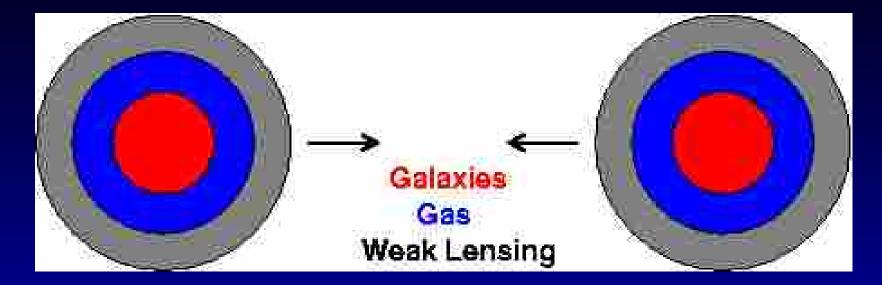
Collaborators

- Marusa Bradac (KIPAC)
- Christine Jones Forman (CFA)
- Anthony Gonzalez (U Florida)
- Maxim Markevitch (CFA)
- Scott Randall (CFA)
- Dennis Zaritsky (U Arizona)

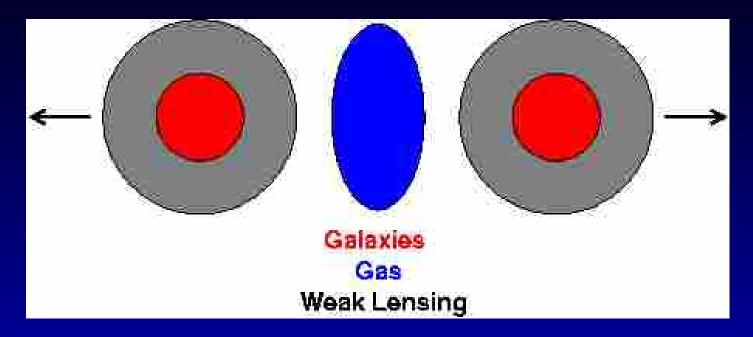

Excess of gravity in clusters

- Zwicky (1933) pointed out that the Coma cluster had a virial mass > 100× larger than the luminous matter in the cluster galaxies.
- Concluded that either gravity is non-Newtonian or the bulk of the mass of the cluster is made from non-luminous matter.
- Discovery of the X-ray plasma reduces the gravity excess to $\sim 6 10 \times$ Newtonian gravity from luminous matter.
- Assumption of dark matter due mostly to lack of compelling non-Newtonian gravity theory.

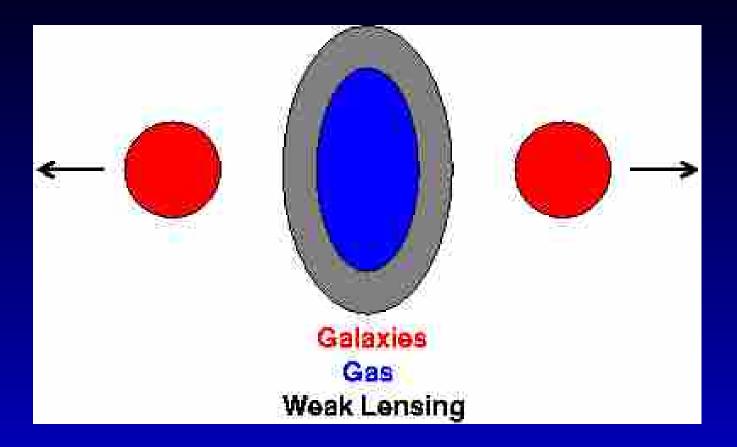
A1689 and A1835


A1689

A1835



Clowe and Schneider (2001,2002)


System before impact

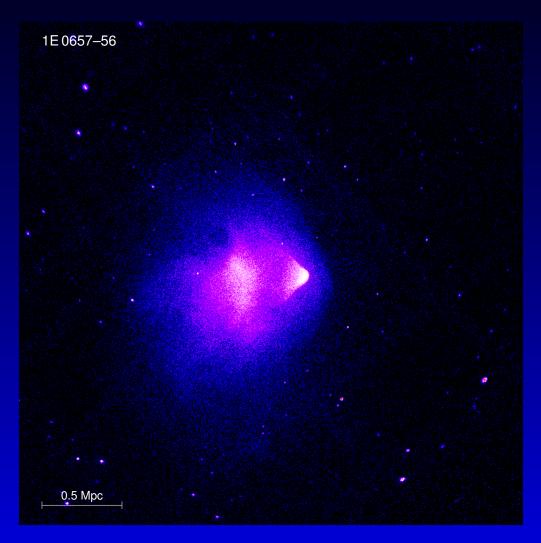
System after impact with dark matter

System after impact with alternative gravity

• Measured $g = \gamma/(1-\kappa)$

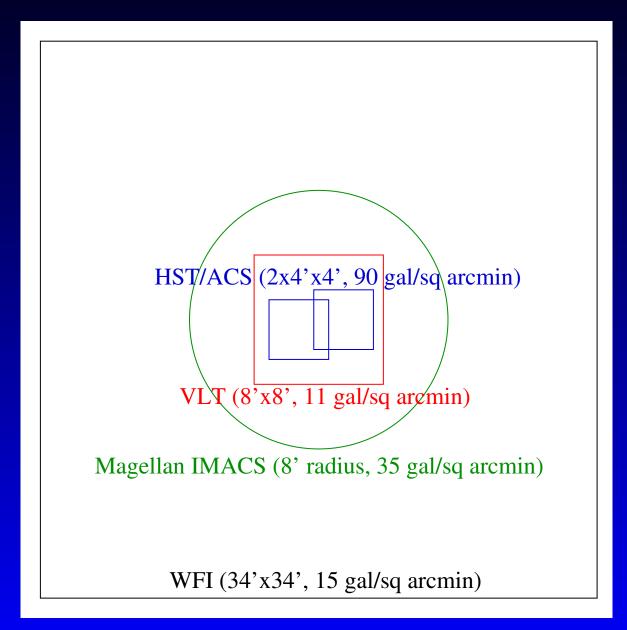
- Measured $g = \gamma/(1 \kappa)$
- Gravitational shear $\gamma = \{\frac{1}{2}(\phi_{,11} \phi_{,22}), \phi_{,12}\}$

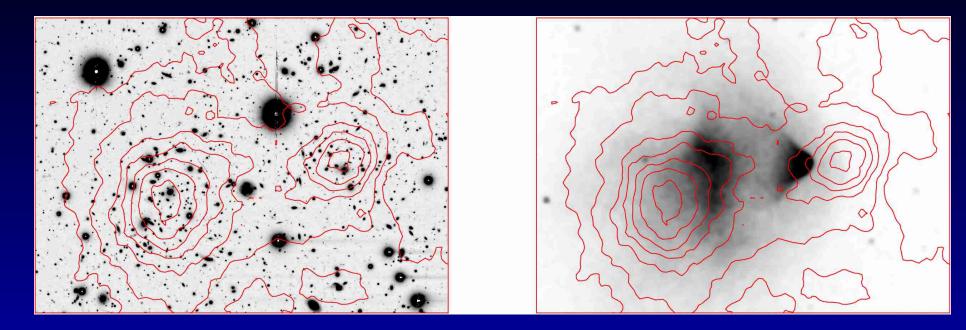
- Measured $g = \gamma/(1 \kappa)$
- Gravitational shear $\gamma = \{\frac{1}{2}(\phi_{,11} \phi_{,22}), \phi_{,12}\}$
- Convergence $\kappa = \frac{1}{2}\nabla^2 \phi = \frac{\Sigma}{\Sigma_{\text{crit}}}$


- Measured $g = \gamma/(1 \kappa)$
- Gravitational shear $\gamma = \{\frac{1}{2}(\phi_{,11} \phi_{,22}), \phi_{,12}\}$
- Convergence $\kappa = \frac{1}{2}\nabla^2 \phi = \frac{\Sigma}{\Sigma_{\text{crit}}}$
- $\vec{\nabla}\kappa = \begin{bmatrix} \partial\kappa/\partial x \\ \partial\kappa/\partial y \end{bmatrix} = \begin{bmatrix} \partial\gamma_1/\partial x + \partial\gamma_2/\partial y \\ \partial\gamma_2/\partial x \partial\gamma_1/\partial y \end{bmatrix}$

- Measured $g = \gamma/(1 \kappa)$
- Gravitational shear $\gamma = \{\frac{1}{2}(\phi_{,11} \phi_{,22}), \phi_{,12}\}$
- Convergence $\kappa = \frac{1}{2}\nabla^2 \phi = \frac{\Sigma}{\Sigma_{\text{crit}}}$
- $\vec{\nabla}\kappa = \begin{bmatrix} \partial\kappa/\partial x \\ \partial\kappa/\partial y \end{bmatrix} = \begin{bmatrix} \partial\gamma_1/\partial x + \partial\gamma_2/\partial y \\ \partial\gamma_2/\partial x \partial\gamma_1/\partial y \end{bmatrix}$
- "Mass sheet" degeneracy $\kappa_{true} = (1 \lambda)\kappa_{obs} + \lambda$

1E0657-556

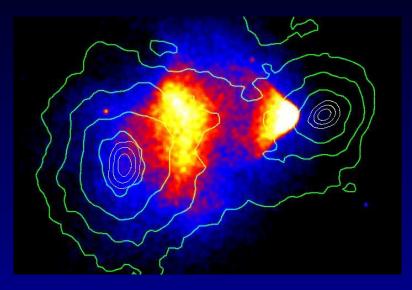

500 ks Chandra observation


X-ray — galaxy offset

Weak lensing images

Weak lensing reconstruction

Sources of error


- PSF smearing correction
- Intrinsic ellipticity of background galaxies
- Projection of unrelated mass structures
- "Mass sheet" degeneracy
- Unknown redshift distribution of background galaxies
- Assumption of mass profile family
- Assumption of spherical symmetry

Sources of error

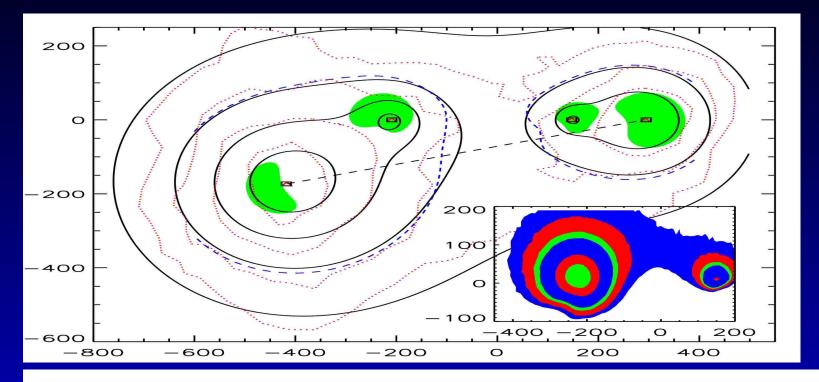
- PSF smearing correction
- Intrinsic ellipticity of background galaxies
- Projection of unrelated mass structures
- "Mass sheet" degeneracy
- Unknown redshift distribution of background galaxies
- Assumption of mass profile family
- Assumption of spherical symmetry

Mass centroid errors

Weak lensing results

- The total system is best fit with $r_{200} = 2140$ kpc, c = 1.9 at 11σ for the main cluster, $r_{200} = 1000$ kpc, c = 7.1 at 7σ for the merging subcluster.
- Both mass peaks are offset from the X-ray peaks at $\sim 8\sigma$ significance.
- The X-ray gas is detected as a minor perturbation to the cluster gravitational potential.
- Subcluster has mass-to-light ratio of 0.95 ± 0.2 as compared to the main cluster.

• 85-90% of the baryons have been stripped from the subcluster and main cluster.


- 85-90% of the baryons have been stripped from the subcluster and main cluster.
- γ measurements indicate the lensing potential is near the galaxies, not the gas, and the 4 baryonic peaks are not symmetric.

- 85-90% of the baryons have been stripped from the subcluster and main cluster.
- γ measurements indicate the lensing potential is near the galaxies, not the gas, and the 4 baryonic peaks are not symmetric.
- The ratio of lensing strength to optical light consistent with normal clusters.

- 85-90% of the baryons have been stripped from the subcluster and main cluster.
- γ measurements indicate the lensing potential is near the galaxies, not the gas, and the 4 baryonic peaks are not symmetric.
- The ratio of lensing strength to optical light consistent with normal clusters.
- lensing strength in normal systems from galaxies to clusters \propto baryonic mass

- 85-90% of the baryons have been stripped from the subcluster and main cluster.
- γ measurements indicate the lensing potential is near the galaxies, not the gas, and the 4 baryonic peaks are not symmetric.
- The ratio of lensing strength to optical light consistent with normal clusters.
- lensing strength in normal systems from galaxies to clusters \propto baryonic mass
- Even in an alternative gravity scenario, the universe must have a significant fraction (> 70%) in dark matter.

TeVeS model, Angus et al, 2006, submitted

μ	$M^{gas}_{m,x-ray}$	$M^{gas}_{s,x-ray}$	$M_{m,gal}$	$M_{s,gal}$	$\overline{ ho_m}$	$\overline{\rho_s}$
	r<100/180kpc	r < 100/80 kpc	$ m r{<}250 kpc$	$ m r{<}250 kpc$	r < 100	r < 100
GR	1.05/1.97	0.33/0.27	9.97	7.58	2.63	2.59
standard μ	0.97/1.79	0.29/0.24	9.0	6.78	2.26	2.34
simple μ	0.74/1.33	0.21/0.18	6.81	5.06	1.66	1.76
C06/B06	0.66/2.0	0.58/0.42	/28.0	/23.0		

Constraints on dark matter

• Lensing measures gravity, so independent of the dynamical state of mass.

Constraints on dark matter

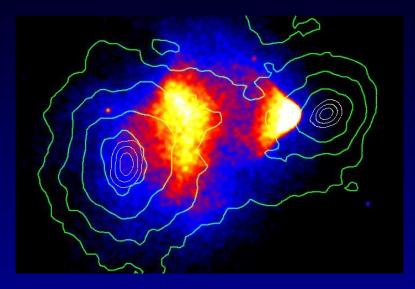
- Lensing measures gravity, so independent of the dynamical state of mass.
- BBN requires most of this mass is non-baryonic.

Constraints on dark matter

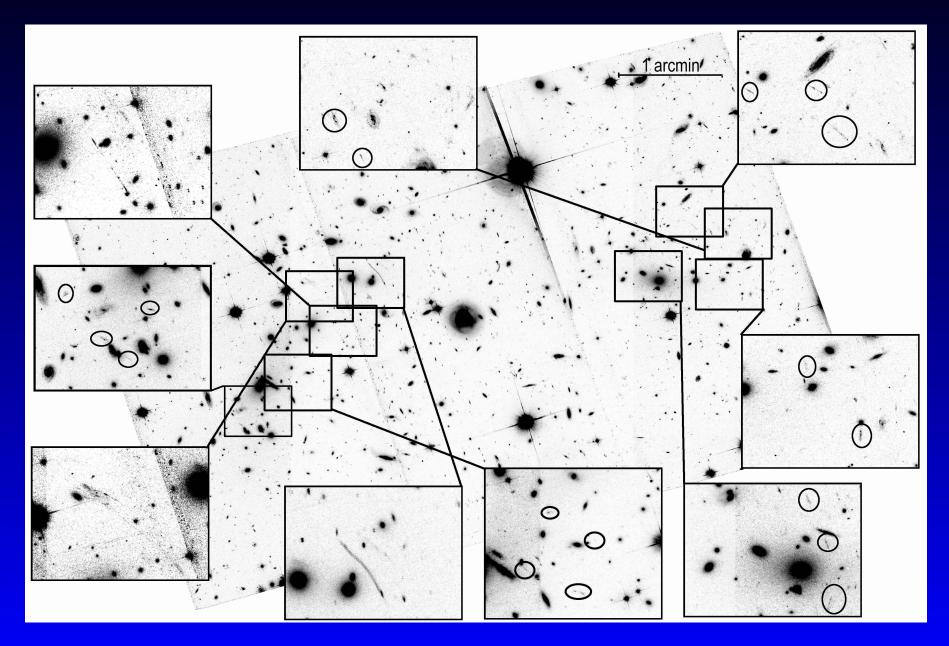
- Lensing measures gravity, so independent of the dynamical state of mass.
- BBN requires most of this mass is non-baryonic.
- The subcluster cannot have a core larger than 120 kpc, so neutrinos must have mass greater than 3.9 eV, which has been ruled out experimentally (eg Bonn et al 2002).

 Self-interacting dark matter with cross-sections 1-100cm²g⁻¹ have been proposed to alleviate problems with CDM (cuspy cores, excess small halos) (Spergel & Steinhardt 2000).

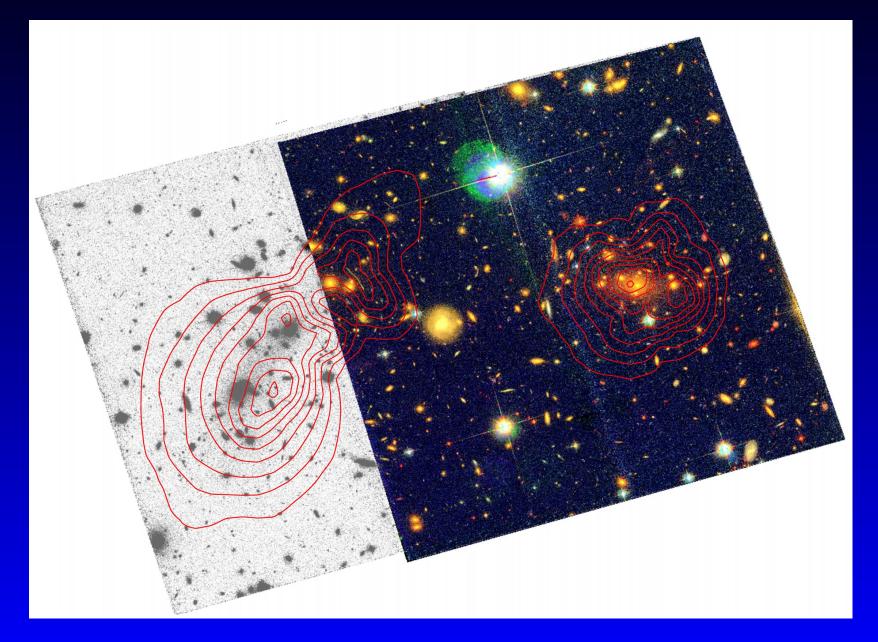
- Self-interacting dark matter with cross-sections 1-100cm²g⁻¹ have been proposed to alleviate problems with CDM (cuspy cores, excess small halos) (Spergel & Steinhardt 2000).
- Simulations and theoretical studies have reduced the allowed range to $0.5 5 \text{cm}^2 \text{g}^{-1}$ (Davé 2001; Ahn & Shapiro 2002).


- Self-interacting dark matter with cross-sections 1 - 100cm²g⁻¹ have been proposed to alleviate problems with CDM (cuspy cores, excess small halos) (Spergel & Steinhardt 2000).
- Simulations and theoretical studies have reduced the allowed range to $0.5 5 \text{cm}^2 \text{g}^{-1}$ (Davé 2001; Ahn & Shapiro 2002).
- Significant offset between subcluster X-ray gas core and dark matter peak gives $\frac{\sigma}{m} < 10 \text{cm}^2 \text{g}^{-1}$.

- Self-interacting dark matter with cross-sections 1 - 100cm²g⁻¹ have been proposed to alleviate problems with CDM (cuspy cores, excess small halos) (Spergel & Steinhardt 2000).
- Simulations and theoretical studies have reduced the allowed range to $0.5 5 \text{cm}^2 \text{g}^{-1}$ (Davé 2001; Ahn & Shapiro 2002).
- Significant offset between subcluster X-ray gas core and dark matter peak gives $\frac{\sigma}{m} < 10 \text{cm}^2 \text{g}^{-1}$.
- Survival of the subcluster dark matter peak during interaction gives $\frac{\sigma}{m} < 3 \text{cm}^2 \text{g}^{-1}$.


- Self-interacting dark matter with cross-sections 1-100cm²g⁻¹ have been proposed to alleviate problems with CDM (cuspy cores, excess small halos) (Spergel & Steinhardt 2000).
- Simulations and theoretical studies have reduced the allowed range to 0.5 - 5cm²g⁻¹ (Davé 2001; Ahn & Shapiro 2002).
- Significant offset between subcluster X-ray gas core and dark matter peak gives $\frac{\sigma}{m} < 10 \text{cm}^2 \text{g}^{-1}$.
- Survival of the subcluster dark matter peak during interaction gives $\frac{\sigma}{m} < 3 \text{cm}^2 \text{g}^{-1}$.
- No loss of mass from subcluster during interaction gives $\frac{\sigma}{m} < 0.7 \text{cm}^2 \text{g}^{-1}$.

Weak lensing reconstruction



Strong lensing

Strong + weak lensing

Conclusions

- Studies of interacting clusters provide direct proof that dark matter exists independent of any assumptions about gravity or cosmology.
- Small core radii of the dark matter peaks requires a neutrino mass higher than allowed by the β decay experiments.
- The survival of the subclump in the 1E0657-556 merger gives an upper limit of $3(0.7) \mathrm{cm}^2 \mathrm{g}^{-1}$ for SIDM.

Future work

- We hope to reduce the SIDM upper limit using the observed strong lensing.
- Creating high resolution N-body simulations, including baryonic gas, to compare with the observations.
- Spectroscopy of star-forming galaxies near the X-ray shock.
- Wide-field spectroscopy for better kinematics of both clusters and to detected projected structures/filaments.
- Extend to other merging cluster systems.