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Excess of gravity in clusters
• Zwicky (1933) pointed out that the Coma cluster

had a virial mass > 100× larger than the
luminous matter in the cluster galaxies.

• Concluded that either gravity is non-Newtonian
or the bulk of the mass of the cluster is made
from non-luminous matter.

• Discovery of the X-ray plasma reduces the
gravity excess to ∼ 6− 10× Newtonian gravity
from luminous matter.

• Assumption of dark matter due mostly to lack of
compelling non-Newtonian gravity theory.
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A1689 and A1835

Clowe and Schneider (2001,2002)
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System before impact
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System after impact with dark
matter
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System after impact with alter-
native gravity
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Definitions
• Measured g = γ/(1− κ)

• Gravitational shear γ = {1
2(φ,11 − φ,22), φ,12}

• Convergence κ = 1
2∇

2φ = Σ
Σcrit

• ~∇κ =

[

∂κ/∂x

∂κ/∂y

]

=

[

∂γ1/∂x+ ∂γ2/∂y

∂γ2/∂x− ∂γ1/∂y

]

• “Mass sheet” degeneracy κtrue = (1− λ)κobs + λ
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1E0657-556
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500 ks Chandra observation

0.5 Mpc

1E 0657–56
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X-ray — galaxy offset
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Weak lensing images

WFI (34’x34’, 15 gal/sq arcmin)

Magellan IMACS (8’ radius, 35 gal/sq arcmin)

VLT (8’x8’, 11 gal/sq arcmin)

HST/ACS (2x4’x4’, 90 gal/sq arcmin)
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Weak lensing reconstruction
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Sources of error
• PSF smearing correction
• Intrinsic ellipticity of background galaxies
• Projection of unrelated mass structures
• “Mass sheet” degeneracy
• Unknown redshift distribution of background

galaxies
• Assumption of mass profile family
• Assumption of spherical symmetry
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Mass centroid errors
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Weak lensing results
• The total system is best fit with r200 = 2140 kpc,
c = 1.9 at 11σ for the main cluster, r200 = 1000
kpc, c = 7.1 at 7σ for the merging subcluster.

• Both mass peaks are offset from the X-ray peaks
at ∼ 8σ significance.

• The X-ray gas is detected as a minor perturbation
to the cluster gravitational potential.

• Subcluster has mass-to-light ratio of 0.95± 0.2 as
compared to the main cluster.
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Implications for gravity
• 85-90% of the baryons have been stripped from

the subcluster and main cluster.

• γ measurements indicate the lensing potential is
near the galaxies, not the gas, and the 4 baryonic
peaks are not symmetric.

• The ratio of lensing strength to optical light
consistent with normal clusters.

• lensing strength in normal systems from galaxies
to clusters ∝ baryonic mass

• Even in an alternative gravity scenario, the
universe must have a significant fraction (> 70%)
in dark matter.
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TeVeS model, Angus et al, 2006,
submitted
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Constraints on dark matter
• Lensing measures gravity, so independent of the

dynamical state of mass.

• BBN requires most of this mass is non-baryonic.
• The subcluster cannot have a core larger than 120

kpc, so neutrinos must have mass greater than 3.9
eV, which has been ruled out experimentally (eg
Bonn et al 2002).
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CDM interaction cross-section
• Self-interacting dark matter with cross-sections

1− 100cm2g−1 have been proposed to alleviate
problems with CDM (cuspy cores, excess small
halos) (Spergel & Steinhardt 2000).

• Simulations and theoretical studies have reduced
the allowed range to 0.5− 5cm2g−1 (Davé 2001;
Ahn & Shapiro 2002).

• Significant offset between subcluster X-ray gas
core and dark matter peak gives σ

m < 10cm2g−1.
• Survival of the subcluster dark matter peak

during interaction gives σ
m < 3cm2g−1.

• No loss of mass from subcluster during
interaction gives σ

m < 0.7cm2g−1.
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Weak lensing reconstruction
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Strong lensing
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Strong + weak lensing
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Conclusions
• Studies of interacting clusters provide direct

proof that dark matter exists independent of any
assumptions about gravity or cosmology.

• Small core radii of the dark matter peaks requires
a neutrino mass higher than allowed by the β
decay experiments.

• The survival of the subclump in the 1E0657-556
merger gives an upper limit of 3(0.7)cm2g−1 for
SIDM.
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Future work
• We hope to reduce the SIDM upper limit using

the observed strong lensing.
• Creating high resolution N-body simulations,

including baryonic gas, to compare with the
observations.

• Spectroscopy of star-forming galaxies near the
X-ray shock.

• Wide-field spectroscopy for better kinematics of
both clusters and to detected projected
structures/filaments.

• Extend to other merging cluster systems.
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