Microlensing and Compact Objects in Galaxies

Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH)

"Applications of Gravitational Lensing" KITP, Santa Barbara October 4, 2006

Microlensing and Compact Objects in Galaxies

• What is **microlensing**?

mass scales, angular scales, time scales

Why is microlensing relevant for astrophysics? Iens/source, qualitative/quantitative, light/dark, near/far, stellar/quasar

How can we observe microlensing? photometric, spectroscopic, astrometric microlensing

Which are the interesting microlensing results?

quasar microlensing: quasar size, compact (cold) dark matter

stellar microlensing: (no) machos, star structure, cool dark matter

What is the future of microlensing? unique, useful, universal

What is Microlensing?

Gravitational microlensing is the action of **compact** objects of **small mass** along the line of sight to **distant sources**

```
what is "small mass" ? 
 \Rightarrow~10^{-6}~<~M/M_{\odot}~<10^{3}
```

what is "compact" ? \Rightarrow (much) smaller than Einstein radius

what are the "distant sources"? ⇒ quasars, stars

What is Microlensing?

Overall scale in gravitational lensing: Einstein radius

$$\theta_E = \sqrt{\frac{4GM}{c^2}} \frac{D_{LS}}{D_L D_S}$$

Einstein radius for star in distant galaxy:

$$\theta_E \approx 1.8 \sqrt{\frac{M}{M_\odot}}$$
 microarcsec

Einstein radius for star in Milky Way:

$$\theta_E \approx 0.5 \sqrt{\frac{M}{M_\odot}}$$
 milliarcsec

Why is microlensing relevant for astrophysics? (background source: stars)

1936 Einstein: "Lens-like action of a star by the deviation of light in the gravitational field"

1986 Paczynski: "Gravitational Lensing by the Galactic Halo"

1991 Mao & Paczynski: "Gravitational microlensing by double stars and planetary systems"

1993 Alcock et al. (MACHO team): "Possible gravitational microlensing of a star in the Large Magellanic Cloud"

1993 Aubourg et al. (EROS team): "Evidence for gravitational microlensing by dark objects in the Galactic halo"

1993 Udalski et al. (OGLE team): "The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge halo"

Why is microlensing relevant for astrophysics? (background source: quasars)

1979 Chang & Refsdal: "Flux variations of QSO 0957+561 A, B and image splitting by stars near the light path"

1981 Gott: "Are heavy halos made of low mass stars? A gravitational lens test"

1986 Paczynski: "Gravitational microlensing at large optical depth"

1986 Kayser et al.: "Astrophysical applications of gravitational micro-lensing"

1987 Schneider/Weiss: "A gravitational lens origin for AGN-variability? Consequences of micro-lensing"

1989 Irwin et al.: "Photometric variations in the Q 2237+0305 system: first detection of a microlensing event"

Two regimes of microlensing:

compact objects in the Milky Way, or its halo, or the local group acting on stars in the Bulge/LMC/SMC/M31:

stellar microlensing Galactic microlensing local group microlensing optical depth: ~10⁻⁶

compact objects in a **distant galaxy**, or its halo acting on even more distant (multiple) **quasars**

quasar microlensing
extragalactic microlensing
cosmological microlensing
optical depth: ~1

How can we observe microlensing ?

Direct imaging? impossible:

Einstein angle << telescope resolution; however:

- magnification, line shape, position change with time due to relative motion of source, lens and observer: microlensing is a dynamic phenomenon! Observable:
 - photometrically
 - spectroscopically
 - astrometrically
- what are the relevant time scales? $(z_L = 0.5, z_S = 2.0)$

Einstein time:
$$t_E = r_E / v_\perp \approx 15 \sqrt{\frac{M}{M_\odot}} v_{600}^{-1}$$
 years

Crossing time: $t_{cross} = R_{source}/v_{\perp} \approx 4R_{15}v_{600}^{-1}$ months

0.8 R_E

 $20 R_{E}$

 $4 R_{E}$

(from Wambsganss, Paczynski, Schneider 1990)

Quasar Microlensing

Quasar microlensing:

Quasar variability due to microlensing reveals:

- Effects of compact objects along the line of sight
- Size of quasar
- Two-dimensional brightness profile of quasar
- Mass (and mass function) of lensing objects
- Detection of smoothly distributed (dark) matter

Quasar microlensing

A few highlights:

- Quadruple Q2237+0305: source size, v_{transverse}
- Double Q0957+561: limits on machos
- Flux anomaly: Microlensing can do it
- "Odd" images
- Size is everything

Source size effect

0

2

Joachim Wambsganss: "Microlensing and Compact Objects in Galaxies" at: "Applications of Gravitational Lensing", KITP, Santa Barbara, October 4, 2006 6

The quadruple quasar Q2237+0305

z(quasar) = 1.695, z(galaxy) = 0.039 image separation 1.7 arcsec (HST)

Wozniak et al. 2000 (OGLE)

OGLE Web page

Monitoring campaign: 6 months in 2000 GLITP - Gravitational Lens International Time Project

Limits on transverse velocity of lensing galaxy:

Idea: "typical" distance between caustics ⇒ due to effective transverse motion: ⇒ typical time scale between maxima!

Gil-Merino, Wambsganss et al. (2005)

 $V_{trans, 90\%} \leq 630$ km/sec $V_{trans, 95\%} \leq 872$ km/sec

Gil-Merino, Wambsganss et al. (2005)

Quasar Microlensing? Q0957+561

Falco et al. (1998); Kundic et al. (1997)

Quasar Microlensing Simulation: Q0957+561

Quasar Microlensing Results: Q0957+561

Halo of lensing galaxy cannot consist entirely of compact objects (MACHOs) in certain mass ranges (Wambsganss et al. 2000)

More systems, longer baseline \Rightarrow better constraints!

Quasar Microlensing:

"suppressed saddlepoints" and the role of dark matter

PG1115+080: 0.48", $\Delta m = 0.5$ mag (Weymann et al. 1980) SDSS0924+0219: 0.66", $\Delta m = 2.5 \text{ mag}$ (Inada et al. 2003)

Quasar Microlensing:

"suppressed saddlepoints" and the role of dark matter

MG0414+0534:

close pairs of bright images: they should be "about" equal in brightness they are not! saddle point image demagnified! at least 4 similar systems what's going on?!?

ML, substructure, DM ?

CASTLES

Quasar Microlensing: "Suppressed saddlepoints" and the role of dark matter (Schechter & Wambsganss 2002)

saddle point image:

minimum image:

Quasar Microlensing: "suppressed saddlepoints" and the role of dark matter (Schechter & Wambsganss 2002)

"Most anomalous lensed quasar": SDSS J0924+0219

Keeton et al. (2006):

image D factor 10-20 "too faint"; anomaly present in continuum & broad emission line flux

variability detected \Rightarrow microlensing!

 \Rightarrow R_{BLR} \leq 0.4 R_E

 \Rightarrow stars contribute \leq 15-20% of surface mass density

Morgan et al. (2006):

more variability \Rightarrow microlensing!

predictions: images C & D brighten

Keeton et al. (2006) & Morgan et al. (2006): microlensing can explain the flux ratio anomaly

Maccio, Moore et al. (2006): substructure cannot explain the flux ratio anomaly

"Odd Images": Microlensing Magnification Maps for PMN J1632-0033 (Winn et al. 2002, 2003, 2004)

Dobler, Keeton & Wambsganss (2006)

"Size is everything":

Investigation of quasar luminosity profiles on microlensing fluctuations

Uniform disks, Gaussian disks, "cones", Shakura-Sunyaev models:

for circular disk models:

microlensing fluctuations are relatively insensitive to all properties of the models except the **half-light radius of the disk** (Mortonson, Schechter & Wambsganss 2005)

Astrometric microlensing of quasars

(Treyer & Wambsganss 2004)

Astrometric microlensing of quasars:

(Treyer & Wambsganss 2004)

Quasar microlensing: The current achievements

Quasar variability due to microlensing reveals:

- Effects of compact objects along the line of sight YES!
- Size of quasar PARTLY!
- Two-dimensional brightness profile of quasar NOT AT ALL!
- Mass (and mass function) of lensing objects SOME LIMITS!
- Detection of smoothly distributed (dark) matter STRONG HINTS!

Stellar Microlensing: Point lens and extended source

"Near": Stellar Microlensing

Stellar microlensing:

Stellar variability due to microlensing reveals:

Effects of Machos in Milky Way/galaxy halos

- Stars in the Milky Way disk/bulge/bar
- Mass measurement of lensing stars
- Surface brightness profile of distant stars
- Cool dark matter

Stellar microlensing

A few highlights:

- results on Macho determination
- results on stellar mass measurements
- results on stellar surface structure
- results on planet searching

Stellar microlensing towards the LMC/SMC

Stellar microlensing towards the LMC/SMC Dark Matter Detection?

MACHO results (Alcock et al. 2001):

- 13 17 events in 5.7 years
- consistent with ≤ 20% macho contribution to dark matter halo (still being debated what "≤" means: Sahu (2003), Belokurov & Evans (2005), Griest et al. (2005), …)
- EROS results (Milsztajn et al. 2000, Afonso et al. 2003):
- macho contribution $\leq 3\%$ (95% confidence level),0.36×10⁻⁷
- OGLE results (see also poster by Wyrzykowski):
- macho contribution is low, optical depth: (0.45±0.2)×10⁻⁷

Little (or no?) evidence for dark matter!

Stellar microlensing towards the Galactic Bulge: OGLE and MOA

Microlensing events galore: more than 3000 events (> 600 this season by OGLE and MOA!):

most single lens, many double lens/caustic crossing

normal stars (binaries) acting as lenses!

lots of interesting stellar/Galactic astrophysics: masses, stellar surface structure, exo-planets

Stellar Microlensing: mass determination

Jiang et al. (2004): "OGLE-2003-BLG-238: Microlensing Mass Estimate of an Isolated Star"

I(OGLE)

- microlensing is only known direct method to measure the masses of stars that lack visible companions
- required: measurement of both the angular Einstein radius $\theta_{E}^{}$ and the projected Einstein radius $r_{E}^{}$
- simultaneous measurement of these two parameters is extremely rare
- for OGLE-2003-BLG-238 ($\mu_{max} = 170$) with finite source effects: $\theta_E = 650 \ \mu as$, $t_E = 38 \ days$
- constraints on microlens parallax: $4.4 < r_F /AU < 18$
- lens mass: 0.36 M_{\odot} < M < 1.48 M_{\odot}

Stellar Microlensing: Studying Stellar Atmospheres

Cassan et al. (2004): "Probing the atmosphere of the bulge G5III star OGLE-2002-BLG-069 by analysis of microlensed Ha line"

Stellar Microlensing: Studying Stellar Atmospheres

Cassan et al. (2004): "Probing the atmosphere of the bulge G5III star OGLE-2002-BUL-069 by analysis of microlensed Ha line"

Stellar Microlensing: Studying Stellar Atmospheres

Cassan et al. (2004): "Probing the atmosphere of the bulge G5III star OGLE-2002-BLG-069 by analysis of microlensed Hα line"

High-resolution, time-resolved spectra of caustic exit of OGLE-2002-BLG-069 (UVES/VLT):

- source G5III giant in Galactic bulge
- strong differential magnification resolves stellar surface
- PHOENIX model lightcurve compared with photometric data and H_{α} equivalent width
- agreement on gross features, discrepancies in details: excess amplified chromospheric emission after star's trailing limb outside caustic

Stellar Microlensing: Searching for extrasolar planets

http://cfa-www.harvard.edu/~sgaudi/Movies

Stellar Microlensing: Searching for extrasolar planets

The 24 hour night shift: PLANET telescope sites

PLANET -Probing Lens Anomaly NETwork

Stellar Microlensing: Finding extrasolar planets

Vol 439 26 January 2006 doi:10.1038/nature04441

nature

LETTERS

Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing

J.-P. Beaulieu^{1,4}, D. P. Bennett^{1,3,5}, P. Fouqué^{1,6}, A. Williams^{1,7}, M. Dominik^{1,8}, U. G. Jørgensen^{1,9}, D. Kubas^{1,10}, A. Cassan^{1,4}, C. Coutures^{1,11}, J. Greenhill^{1,12}, K. Hill^{1,12}, J. Menzies^{1,13}, P. D. Sackett^{1,14}, M. Albrow^{1,15}, S. Brillant^{1,10}, J. A. R. Caldwell^{1,16}, J. J. Calitz^{1,17}, K. H. Cook^{1,18}, E. Corrales^{1,4}, M. Desort^{1,4}, S. Dieters^{1,12}, D. Dominis^{1,19}, J. Donatowicz^{1,20}, M. Hoffman^{1,19}, S. Kane^{1,21}, J.-B. Marquette^{1,4}, R. Martin^{1,7}, P. Meintjes^{1,17}, K. Pollard^{1,15}, K. Sahu^{1,22}, C. Vinter^{1,9}, J. Wambsganss^{1,23}, K. Woller^{1,9}, K. Horne^{1,8}, I. Steele^{1,24}, D. M. Burgdorf^{1,24}, C. Snodgrass^{1,25}, M. Bode^{1,24}, A. Udalski^{2,26}, M. K. Szymański^{2,26}, M. Kubiak^{2,26}, T. Więckowski^{2,26}, G. Pietrzyński^{2,26,27}, I. Soszyński^{2,26,27}, O. Szewczyk^{2,26}, Ł. Wyrzykowski^{2,26,28}, B. Paczyński^{2,29}, F. Abe^{3,30}, I. A. Bond^{3,31}, T. R. Britton^{3,15,32}, A. C. Gilmore^{3,15}, J. B. Hearnshaw^{3,15}, Y. Itow^{3,30}, Y. Muraki^{3,30}, S. Nakamura^{3,30}, C. Okada^{3,30}, K. Ohnishi^{3,34}, N. J. Rattenbury^{3,28}, T. Sako^{3,30}, S. Sato^{3,35}, M. Sasaki^{3,30}, T. Sekiguchi^{3,30}, D. J. Sullivan^{3,33}, P. J. Tristram^{3,32}, P. C. M. Yock^{3,32} & T. Yoshioka^{3,30}

Stellar Microlensing: Finding extrasolar planets

Stellar Microlensing: Finding extrasolar planets Microlensing event OGLE-2005-BLG-390:

produced by star-plus-planet system with mass ratio 7 × 10⁻⁵

most likely (with model of Milky Way):

- star of 0.2 solar masses
- planet of 5.5 Earth masses
- (instantanous) separation 2.6 AU
- orbital period 10 years

Stellar microlensing: The current achievements

Stellar variability due to microlensing reveals:

- Effects of Machos in Milky Way/galaxy halos Few (if any) dark compact objects in MW halo! [Few (if any) dark compact objects in G0957 halo!]
- Stars in the Milky Way disk/bulge/bar Plenty! and binaries!
- Mass measurement of lensing stars yes, very accurately!
- Surface brightness profile of distant stars yes!
- Cool dark matter

yes, 4 planets so far (cool!)

Summary

The future of gravitational **microlensing** ...

- In for measuring the surface brightness profiles of quasars as a function of wavelength ...
- for determining the mass scale, mass function, dark matter content of lensing objects in the galaxies ...
- In for detecting compact objects in the Milky Way, in particular extrasolar planets ...

... is bright!

"... from a curiosity into a tool ..."

(Kochanek et al., September 2006)

