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The event topology

Example: q̃ → qχ̃0
2 → ql̃ l → qχ̃0

1ll .

! This could come from a longer decay chain as long as
there is no extra missing particle.

! Assume all intermediate particles on-shell.
! Assume mN = mN′ , mX = mX ′ , mY = mY ′ , mZ = mZ ′ .

Case 1



An ideal example
q̃q̃ → qχ̃0

2qχ̃0
2 → ql̃ lql̃ l → qχ̃0

1llqχ̃0
1ll

SPS1a, masses: ( 97.4, 142.5, 180.3, 564.8 ) GeV
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2 solutions per pair on average.



Realistic case
Wrong combinations

! One event, 8 combinations for 2µ2e channel, 16 for 4µ or
4e channel.

! A pair of events, 64, 128 or 256 combinations.
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16 times more solutions.



Other issues

PYTHIA+ATLFAST
! Finite width, 5GeV, 20MeV, 200 MeV for q̃L, χ̃0

2 and "̃R.
! Flavor splitting medL

−meuL
∼ 6GeV .

! Initial/final state radiation. Use a pT cut to get rid of soft
jets.

! Extra jet from g̃ → qq̃L.
meg −meqL

= 40 GeV, meqL
−meχ0

2
= 380 GeV.

→ Select two jets with highest pT .
! Experimental resolutions simulated by ATLFAST.



Background events

The SM background can be ignored by requiring large missing
pT + 4 isolated leptons+2 enegetic jets.
SUSY background:

! q̃L → qχ̃0
2 → qτ τ̃ → qττ χ̃0

1, both τ ’s decay letonically.
BR(χ̃0

2 → τ τ̃) ∼ 14 BR(χ̃0
2 → µµ̃). Require matching

flavors and charges; lepton pT cut.
! b̃’s have very different mass, mb̃1

∼ 520GeV , so b̃ pair
production must be taken as a background. → Require: no
b-jet.

! Electroweak processes: χ̃0
2 + χ̃0

2, χ̃0
2 + g̃. A jet pT cut helps

to reduce these backgrounds.



Realistic solution distributions
Cuts:

1. 4 isolated leptons with pT > 10 GeV, |η| < 2.5, consistent
flavors and charges.

2. No b-jet, ≥ 2 jets with pT > 100 GeV, |η| < 2.5. Take 2
highest-pT jets as partiles 7 and 8.

3. pTmiss > 50 GeV.
About 1000 events (∼ 700 signals) after cuts for 300 fb−1.
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Fit the masses

Fitting each curve using a sum of a Gaussian and a quadratic
polynomial and take the peak positions as the estimated
masses, we get {77.8, 135.6, 182.7, 562.0} GeV.
Averaging over 10 different data sets:

mN = 76.7 ± 1.4 GeV, mX = 135.4 ± 1.5 GeV,
mY = 182.2 ± 1.8 GeV, mZ = 564.4 ± 2.5 GeV.

The statistical errors are very small, but the masses are biased.



The combinatoric background
Plot solutions from wrong combinations only, without smearing.
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The peaks are at the true masses. But the curves are
asymmetric. After smearing, the peak positions move around to
yield biases.



Some model-independent techniques
I. Cut off “bad” combinations

! For the ideal case, the correct combination of one event
can always pair with any other event and yield solutions.
So the number of events that pair with this combination is
maximized as Nevt − 1.

! After smearing, this is no longer true, but the correct
combinations still have statistically larger number of events
to pair.

! We cut on this number so that we have about 4
combinations per event left ( originally 11).



II. Number of solutions weighting.

A pair with many solutions enters with a large weight, although
at most one of the solutions can be the true masses.
→ Treat each pair equally, weight the solutions by 1/n,
n=number of solutions for the pair.



III. Cut on mass difference
Some solutions may have one or more, but not all four masses
to be close to the true masses. Remove these solutions by a
mass window cut.
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Require all three mass differences to be within the mass
window defined by 0.7× peak height.



Mass peaks with smaller biases
SPS1a
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10 sets:

mN = 94.1 ± 2.8 GeV, mX = 138.8 ± 2.8 GeV,
mY = 179.0 ± 3.0 GeV, mZ = 561.5 ± 4.1 GeV.

Compare: { 97.4, 142.5, 180.3, 564.8 } GeV



Case 2Event topology

! Assume mN = mN′ , mX = mX ′ , mY = mY ′ .
! Include but not limited to the 3 visible particles per chain

case. For example, direct χ̃0
2 pair production.

! A simpler topology, but a harder problem–not enough
constraints. (The edge method fails.)



Consistent region–the ideal case
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No smearing, correct combination, (246.6, 128.4, 85.3) GeV,
500 events.

! The correct masses are located at the endpoint .



Why the endpoint?

We found that the correct masses are located at the endpoint of
the allowed region. This is true in general.

Figure: Map between mass space and kinematic space. The input
masses, point A, produces a kinematic region that coincides with the
experimental region: KA = Kexp. A point B inside the allowed mass
region produces a larger kinematic region: KB ⊃ Kexp.



The effect of smearing and wrong combinatorics
Smeared with ATLFAST, all combinations, (246.6, 128.4, 85.3)
GeV, 500 events. 4µ channel.
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! Larger region at low mN–wrong combinations.
! True masses endpoint disappeared!



The effect of smearing and wrong combinatorics

The endpoint corresponding to the true masses disappeared.
With more events, the entire allowed region could disappear.



The “turning” points

! One can not read the masses on the tip of the allowed
region.

! One can not maximize the number of solvable events
either–it will favor the low mN region.

! Look for the turning points by fixing two of the three
masses, where the number of solvable events starts to
change rapidly.
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! In order to determine where the truning point is located, fit
(a) and (c) to two straight lines. The peak in (b) is eminent,
so identify it as the turning point.



One-dimensional recursive fits
Starting from some random masses satisfying mN < mX < mY ,
apply one-dimensional recursive fits in the order mN , mX , mY
with the other two masses fixed. Update the masses after each
fit.
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Figure: After cuts |η|µ < 2.5, pTµ > 10 GeV, /pT > 50 GeV

.

The masses go up, but the fits in general do not converge.
However, the number of events at the “turning” points are
maximized around the correct mass.



Number of events at the turning points
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! Record the number of events at the turning points after
each fit of mN . Fit the plot to a polynomial and take the
peak position as the estimation for mN .

! Do a few one-dimensional fits for mX and mY with fixed mN
until they are stablized.



! The above plot corresponds to about 1900 events. The
masses are estimated as (252.2, 130.4, 85.0) GeV,
compare (246.6, 128.4, 85.3) GeV.

! Average ove 10 sets:

{252.2 ± 4.3 GeV, 130.4 ± 4.3 GeV, 86.2 ± 4.3 GeV}.

! The mass differences are determined better:

mY −mX = 119.8± 1.0 GeV, mX −mN = 46.4± 0.7 GeV

! Remove the biases by comparing with Monte Carlo.



Contour plot for our recursive fitting procedure
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More Realistic Case
Backgrounds can also deteriorate the mass determination.
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Equal number of signal and background events

Blue=signals  Red=backgrounds
Black=signals+backgrounds  Green= fits

(mY , mX , mN ) = (246.6, 128.4, 85.3) GeVSignal:
Background:  tt̄, with 2 µ’s coming from W decays

and 2 µ’s coming b’s (without isolation cuts).



More Realistic Case
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