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Why QCD at LHC is special

¥ dominance of sea parton
scattering

¥ small typical momentum fractions
x in several key searches
(Higgs, lighter superpartners, ...)

¥ large QCD backgrounds

¥ complicated event signatures;
reliance on differential distributions

¥ different low-energy dynamics
(underlying event, multiple
interactions...)

¥ ...
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Examples of global connections

¥ Correlations between collider cross sections through shared
parton distribution functions

based on

Implications of CTEQ6.6 global analysis for collider
observables

by P. N., Q.-H. Cao, J. Huston, H.-L. Lai, J. Pumplin, D. Stump, W.-K. Tung, C.-P. Yuan; arXiv:0802.0007

¥ Standard model effects on electroweak precision
measurements

I W boson mass at the Tevatron and LHC

Pavel Nadolsky (MSU) LHC workshop @ KITP February 13, 2008 4



PDF-induced correlations in hadron scattering

¥ Dependence on the PDF’s is
strongly correlated for some pairs
of cross sections and
anti-correlated for other pairs

⇒ implications for the monitoring
of parton and collider luminosities,
determination of new physics
parameters

¥ I will discuss the origin of the
correlations, especially for W , Z , t t̄
cross sections

Noteworthy (anti)correlations

Range of PDF uncertainties (CTEQ6.1)
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Correlation angle ϕ

Determines the parametric form of the X − Y correlation ellipse

X = X0 + ∆X cos θ

Y = Y0 + ∆Y cos(θ + ϕ)

δX

δY

δX

δY

δX

δY

cos ϕ ≈ 1 cos ϕ ≈ 0 cos ϕ ≈ −1

X0, Y 0: best-fit
values

∆X , ∆Y : PDF errors

cos ϕ ≈ ±1 :
cos ϕ ≈ 0 :

Measurement of X imposes
tight
loose

constraints onY
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“Standard candle” processes: W , Z , t t̄ production

¥ Cross sections for pp → W±X , pp → Z0X at the LHC can be
measured with accuracy δσ/σ ∼ 1% (tens of millions of
events even at low luminosity)

¥ These measurements will be employed to tightly constrain
PDF’s and monitor the LHC luminosity L in real time (Dittmar, Pauss,

Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller’;...)

I other methods will initially give δL = 10− 20%

¥ t t̄ cross section can be potentially measured with accuracy
≈ 5%
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Theoretical uncertainties on σW , σZ , σt t̄
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NLO PDF’s
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σW ,Z

I NNLO PQCD: (Hamberg et al; Harlander, Kilgore;

Anastasiou et al.): σNNLO − σNLO = −2%

I PDF dependence: & 3%
at ≈ 90% c.l.

σt t̄

INLO scale dependence: 11%
(to be reduced at NNLO soon)

Imt dependence: 2− 3% for
mt = 172±1 GeV

I PDF dependence: 3%
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Cross section ratios

¥ LHC collaborations will normalize many cross sections σ to
the “standard candle” cross sections σsc (i.e., measure
r = σ/σsc)

I dependence on L and other systematics may cancel in r

I PDF uncertainties cancel in r for strongly correlated cross
sections; add up in anticorrelated cross sections

¥ Similar cancellations may occur in S/
√

B, asymmetries, etc.

It helps to find a correlated “standard candle” cross section for
each interesting LHC cross section

For example, it is better to normalize σHiggs to σZ (σt t̄ ) if σHiggs is
correlated (anticorrelated) with σZ
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A mini-poll: Z production at the LHC

Choose all that apply and select the x range

The PDF uncertainty in σZ is mostly due to...

1. u, d, ū, d̄ PDF’s at x < 10−2

(x > 10−2)

2. gluon PDF’s at x < 10−2

(x > 10−2)

3. s, c, b PDF’s at x < 10−2

(x > 10−2)

Pavel Nadolsky (MSU) LHC workshop @ KITP February 13, 2008 10



An inefficient application of the error analysis

Ì Compute σW for 40 (now 44)
extreme PDF eigensets

Ì Find eigenparameter(s)
producing largest variation(s),
such as #9, 10, 30 0 2 4 6 8 10121416182022242628303234363840

PDF set number

1.86

1.88

1.9

1.92

1.94

1.96

1.98

Σ
to

t

pp®ZX,
�!!!

s=14 TeV; 40 CTEQ6.1 extreme PDF sets

Ì Check that the same eigenparameters produce largest
variations in σZ

Î It is not obvious how to relate abstract eigenparameters to
physical PDF’s u(x), d(x), etc.
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CTEQ6.6 theoretical framework
(W.-K. Tung and collaborators)

¥ A full NLO analysis (NNLO is nearly completed)

¥ 2700 data points from 35 experiments on DIS, Drell-Yan
process, jet production

¥ Recent improvements in treatment of heavy quark masses in
DIS, etc. (CTEQ6.5), with important impact on W , Z cross
sections

I a general-mass factorization scheme with full dependence
on mc,b

I free parametrization for strange quarks (constrained by CCFR,
NuTeV charged-current DIS data)
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General-mass CTEQ6.6 PDF’s vs. zero-mass
CTEQ6.1 PDF’s

Dashes: CTEQ6.1M

¥ CTEQ6.6 u, d are above CTEQ6.1 by 2-3% at x ∼ 10−3 ; ∴
σW ,Z at the LHC larger by 5− 6%

¥ very different strange PDF’s: s(x) + s̄(x) 6= ū(x) + d̄(x) at low µ
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Multi-dimensional PDF error analysis

aiai0

χ2
0

χ2

¥ Minimization of a likelihood
function (χ2) with respect to
∼ 30 theoretical (mostly
PDF) parameters {ai} and
> 100 experimental
systematical parameters

I partly analytical and
partly numerical
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Multi-dimensional PDF error analysis

a
+
ia−

i aiai0

∆χ2

χ2
0

χ2

¥ Establish a confidence
region for {ai} for a given
tolerated increase in χ2
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Multi-dimensional PDF error analysis

ai

χ2

Pitfalls to avoid

¥ “Landscape”

I disagreements between
the experiments

Pavel Nadolsky (MSU) LHC workshop @ KITP February 13, 2008 14



Multi-dimensional PDF error analysis

ai

χ2

Pitfalls to avoid

¥ Flat directions

I unconstrained
combinations of PDF
parameters
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Multi-dimensional PDF error analysis

χ2

ai

The actual χ2 function shows

¥ a well pronounced global
minimum χ2

0

¥ weak tensions between
data sets in the vicinity of χ2

0
(mini-landscape)

¥ some dependence on
assumptions about flat
directions
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Multi-dimensional PDF error analysis
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Tolerance hypersphere in the PDF space

(a)

Original parameter basis

(b)

Orthonormal eigenvector basis

zk

T
diagonalization and

rescaling by

the iterative method

ul

ai

2-dim (i,j) rendition of N-dim (22) PDF parameter space

Hessian eigenvector basis sets


aj
ul

p(i)

s0
s0

contours of constant c2
global 

ul: eigenvector in the l-direction

 p(i): point of largest ai with tolerance T

s0: global minimum
p(i)

zl

A hyperellipse ∆χ2 ≤ T 2 in space of N physical PDF parameters
{ai} is mapped onto a hypersphere of radius T in space of N or-
thonormal PDF parameters {z i}
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Tolerance hypersphere in the PDF space

(b)

Orthonormal eigenvector basis

2-dim (i,j) rendition of N-dim (22) PDF parameter space

~∇X

~zm

PDF error for a physical observable X is given by

∆X = ~∇X ·~zm =
∣∣∣~∇X

∣∣∣ = 1
2

√∑N
i=1

(
X (+)

i − X (−)
i

)
2
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Tolerance hypersphere in the PDF space

(b)

Orthonormal eigenvector basis

2-dim (i,j) rendition of N-dim (22) PDF parameter space

~∇X

~∇Y

ϕ

Correlation cosine for observables X and Y :

cos ϕ =
~∇X ·~∇Y
∆X∆Y = 1

4∆X ∆Y

∑N
i=1

(
X (+)

i − X (−)
i

)(
Y (+)

i − Y (−)
i

)
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Correlation angle ϕ

Determines the parametric form of the X − Y correlation ellipse

X = X0 + ∆X cos θ

Y = Y0 + ∆Y cos(θ + ϕ)

δX

δY

δX

δY

δX

δY

cos ϕ ≈ 1 cos ϕ ≈ 0 cos ϕ ≈ −1

X0, Y 0: best-fit
values

∆X , ∆Y : PDF errors

cos ϕ ≈ ±1 :
cos ϕ ≈ 0 :

Measurement of X imposes
tight
loose

constraints onY
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Types of correlations

X and Y can be

¥ two PDFs f1(x1, Q1) and f2(x2, Q2)
(plotted as cos ϕ vs x1 & x2)

¥ a physical cross section σ and PDF f (x , Q)
(plotted as cos ϕ vs x)

¥ two cross sections σ1 and σ2
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Correlations between f1(x1, Q) and f2(x2, Q) at Q = 85 GeV

Figures from http://hep.pa.msu.edu/cteq/public/6.6/pdfcorrs/
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Correlations between f (x1, Q) and f (x2, Q) at Q = 85 GeV

f1(x1, Q) vs. f1(x2, Q)
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Can you guess which PDF’s these are?
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Correlations between f (x1, Q) and f (x2, Q) at Q = 85 GeV
u(x1, Q) vs. u(x2, Q)
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Correlation patterns look similar for g, c, b PDF’s (no intrinsic
charm here!)
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Correlations between f1(x1, Q) and f2(x2, Q) at Q = 85 GeV

d vs u

10-510-4 10-3 0.010.02 0.05 0.1 0.2 0.5 0.7
x in u at Q=85. GeV

10-5

10-4

10-3

0.01

0.02

0.05

0.1

0.2

0.5

0.7

x
in

d
at

Q
=

85
.G

eV

Correlations between CTEQ6.6 PDF’s

s vs ū at Q=2 GeV
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Sometimes there is a clear physics reason behind the correlation
(e.g., sum rules or assumed Regge-like behavior); sometimes not
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Correlations between g(x1, 2 GeV) and g(x2, 85 GeV)
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Gluons at Q = 85 GeV are
correlated with gluons at
Q = 2 GeV and larger x
because of DGLAP evolution
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Correlations between W , Z cross sections and PDF’s

Tevatron Run-2
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A surprising discovery

LHC Z , W cross sections are strongly
correlated with g(x), c(x), b(x) at
x ∼ 0.005

∴ they are strongly anticorrelated
with processes sensitive to g(x) at
x ∼ 0.1 (t t̄ , gg → H for MH > 300
GeV)
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Correlations between σ(gg → H0), σZ , σt t̄
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cos ϕ for various NLO Higgs production cross
sections in SM and MSSM

Particle mass (GeV)
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s̄c + b̄c → h+LHC X-setion:Correlation with pp → ZX (solid), pp → tt̄ (dashes), pp̄ → ZX (dots)

gg → h0 b̄b → h0 W+h0 h0 via WW fusion
t-hannel single top:Z

tt̄ : Z

W+ : W− : Z

Z (Tev-2): Z (LHC)
t-hannel single top: tt̄
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An example of a small correlation with the gluon
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Single-top production (NLO)

W
b

tq

q̄′

¥ typical x ∼ 0.01

¥ mostly correlated with u, d
PDF’s

PDF uncertainties in W , Z total cross sections are irrelevant for
some quark scattering processes (single-top, Z ′, ...)
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Precision tests of
electroweak symmetry breaking
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Higgs sector in SM and MSSM

80.3

80.4

80.5

150 175 200

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

Green band: 114 ≤ MH ≤ 1000 GeV

SM: 1 Higgs doublet, one boson H

¥ Direct search:
mH > 114 GeV at 95% c.l.

¥ indirect: MH = 80+39
−28 GeV at 68% c.l.

MSSM: 2 Higgs doublets; h0, H0, A0, H±

mh ≤ mZ |cos 2β|+rad. corr. . 135 GeV

¥ In these models, expect one or more Higgs bosons with mass
below 140 GeV

¥ Many other possibilities for EW symmetry breaking exist!

Pavel Nadolsky (MSU) LHC workshop @ KITP February 13, 2008 29



Higgs sector in SM and MSSM
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Heinemeyer, Hollik, Stockinger, Weber, Weiglein ’07

experimental errors 68% CL:

LEP2/Tevatron (today)

Tevatron/LHC

SM band: 114 ≤ MH ≤ 400 GeV
SUSY band: random scan

¥ the goal of direct and indirect
measurements is to over-constrain
SM, greatly constrain SUSY

¥ indirect constraints strongly
depend on MW , mt values, hence
require accurate QCD predictions
for W and t production

For example, in SM

MW = 80.3827− 0.0579 ln
„

MH

100 GeV

«
− 0.008 ln2

„
MH

100 GeV

«

+0.543

 „
mt

175 GeV

«2

− 1

!
− 0.517

 
∆α

(5)
had(MZ )

0.0280
− 1

!
− 0.085

„
αs(MZ )

0.118
− 1
«
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MW measurement at hadron colliders

¥ The Tevatron (LHC) collaborations intend to measure MW
with accuracy 15 MeV (5 MeV)

¥ Several theoretical factors contribute at this level of
accuracy

I NNLO QCD+NLO EW perturbative contributions

I PDF dependence

I small-pT resummation

I small-x effects

I dependence on mc,b
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Measurement of MW and resummation

The largest QCD uncertainties on MW arise from

¥ the model for W boson’s recoil in the transverse plane
¥ parton distributions

dσ/dQT for W & Z bosons is predicted
by the resummation formalism, which
evaluates

∑
n,m αn

s lnm(Q2
T /Q2) at

QT → 0 to all orders of αs
( Collins, Soper, Sterman, 1985)

CDF analysis for 207 pb−1:
uncertainty in nonperturbative resummed parameters currently
translates into δMW ≈ 3 MeV (9 MeV) in the M`ν

T (pe
T ) method
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QCD factorization at QT → 0
(ResBos: C. Balazs, G. Ladinsky, P. N., C.-P. Yuan)

Small-QT factorization
Λ2

QCD ¿ Q2
T ¿ Q2

P(x; kT )

P(x; kT )
S HH

¥ Realized in space of the
impact parameter b
(conjugate to QT )

¥ At NNLL accuracy, we
include perturbative
coefficients up to orders
A(3)

(from Moch, Vermaseren, Vogt, 2004);
B(2) ; and C(1)

dσAB→VX

dQ2dydQ2
T

∣∣∣∣∣
Q2

T¿Q2

=
∑

a,b=g,
(−)
u ,

(−)

d ,...

∫
d2b
(2π)2 e−i~qT ·~bW̃ab(b, Q, xA, xB)

W̃ab(b, Q, xA, xB) = |Hab|2 e−S(b,Q)Pa(xA, b)Pb(xB, b)
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Universal nonperturbative contributions
A. Konychev, P. N., PLB 633, 710 (2006)

Nonperturbative Gaussian smearing a(Q)
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a
2
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¥ QT factorization: initial-state
nonperturbative contributions
(a ∼“intrinsic” 〈k2

T 〉/4) follow a
universal quasi-linear dependence
on ln Q; this expectation is
confirmed by the global analysis of
Drell-Yan and Z boson data at
x & 0.01

¥ the observed ln Q dependence agrees with the
renormalon/lattice estimate (Tafat)

¥ at Q ∼ MZ , soft NP corrections dominate over collinear NP
corrections

¥ the model is sufficient to predict many Drell-Yan-like resummed
cross sections
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Combined analysis of PDF’s and resummed
nonperturbative function
(Lai, P.N., Pumplin, Tung, Yuan, in progress)

¥ The common origin of collinear PDF’s fa(x , µ) and FNP(b, Q)
from kT -dependent PDF’s indicates importance of their
simultaneous analysis

I The best-fit FNP(b, Q) is correlated with fa(x , µ) ⇒
consequences for EW precision measurements

I PT data constrains poorly known degrees of freedom
in fa(x , µ)

¥ The technical challenge of including a slow Fourier-Bessel
transform into a global fit has been resolved

¥ The first combined PDF+QT fit has been recently finished
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Impact on lepton pT distributions in W boson
production
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T correspond to somewhat larger MW values

extracted from experimental data
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Conclusions

¥ It is exciting to explore rich global connections between the
LHC cross sections

I to calibrate the LHC detectors, monitor LHC luminosity

I to explore new forms of QCD factorization (resummations)
and merge them with important EW contributions

I to precisely test the Standard Model, understand the EWSB
mechanism

I to impose limits on new physics parameters using hadron
collider data
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Conclusions (continued)
¥ Ongoing progress in (N)NLO PQCD global analysis of hadron

cross sections

¥ Correlation analysis in the PDF parameter space is an
efficient technique that relates PDF uncertainties in physical
cross sections to PDF’s for specific parton flavors at known
(x , µ)

¥ This technique is essential for revealing poorly constrained
combinations of PDF’s, such as those associated with heavy
quarks

I consequences for standard candle and other cross sections
at the LHC

I useful guidance for future LHC measurements aimed at
constraining the PDF uncertainties
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