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High energy collisions

Frontier research in particle physics studies scattering and production of elementary

constituents

e+e−→ qq̄ gg→H gg→ gg
Ideally, one needs elementary constituents as projectiles and targets, (i.e. a collider

for leptons, gluons and quarks) and a final-state detector of leptons, gluons and

quarks. Not obvious for quarks and gluons:

•• at short distance, due to asymptotic freedom, quarks and gluons behave as free
particles

•• at long distance, infrared slavery: very strong interactions hide the simplicity of
the description of the constituents.
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Dominant corrections

Collinear-splitting processes in the initial

and final state (always with transverse mo-

menta > ΛQCD) are strongly enhanced. This

is due to the fact that, in perturbation the-

ory, the denominators in the propagators are

small.

•• The algorithms that evaluate all these enhanced contributions are called shower
algorithms.

•• Shower algorithms give a description of a hard collision up to distances of order
1/ΛQCD.

•• At larger distances, perturbation theory breaks down and we need to resort to non-
perturbative methods (i.e. lattice calculations). However, these methods can be ap-

plied only to simple systems. The only viable alternative is to use models of hadron

formation.
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Color and hadronization

ShowerMonte Carlo programs assign color labels to partons. Only color connections

are recorded (in large Nc limit). The initial color is assigned according to hard cross

section.

Color assignments are used in the hadronization model.

Most popular models: Lund string model, cluster model.

In all models, color singlet structures are formed out of color connected partons, and

are decayed into hadrons, preserving energy and momentum.
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Hadronic final states

 IHEP    ID      IDPDG IST MO1 MO2 DA1 DA2   P-X     P-Y     P-Z  ENERGY    MASS     V-X       V-Y       V-Z       V-C*T
   30 NU_E          12   1  28  23   0   0   64.30   25.12-1194.4 1196.4    0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
   31 E+           -11   1  29  23   0   0  -22.36    6.19 -234.2  235.4    0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  230 PI0          111   1 155  24   0   0    0.31    0.38    0.9    1.0    0.13 4.209E-11 6.148E-11-3.341E-11 5.192E-10
  231 RHO+         213 197 155  24 317 318   -0.06    0.07    0.1    0.8    0.77 4.183E-11 6.130E-11-3.365E-11 5.189E-10
  232 P           2212   1 156  24   0   0    0.40    0.78    1.0    1.6    0.94 4.156E-11 6.029E-11-4.205E-11 5.250E-10
  233 NBAR       -2112   1 156  24   0   0   -0.13   -0.35   -0.9    1.3    0.94 4.168E-11 6.021E-11-4.217E-11 5.249E-10
  234 PI-         -211   1 157   9   0   0    0.14    0.34  286.9  286.9    0.14 4.660E-13 8.237E-12 1.748E-09 1.749E-09
  235 PI+          211   1 157   9   0   0   -0.14   -0.34  624.5  624.5    0.14 4.056E-13 8.532E-12 2.462E-09 2.462E-09
  236 P           2212   1 158   9   0   0   -1.23   -0.26    0.9    1.8    0.94-4.815E-11 1.893E-11 7.520E-12 3.252E-10
  237 DLTABR--   -2224 197 158   9 319 320    0.94    0.35    1.6    2.2    1.23-4.817E-11 1.900E-11 7.482E-12 3.252E-10
  238 PI0          111   1 159   9   0   0    0.74   -0.31  -27.9   27.9    0.13-1.889E-10 9.893E-11-2.123E-09 2.157E-09
  239 RHO0         113 197 159   9 321 322    0.73   -0.88  -19.5   19.5    0.77-1.888E-10 9.859E-11-2.129E-09 2.163E-09
  240 K+           321   1 160   9   0   0    0.58    0.02  -11.0   11.0    0.49-1.890E-10 9.873E-11-2.135E-09 2.169E-09
  241 KL_1-     -10323 197 160   9 323 324    1.23   -1.50  -50.2   50.2    1.57-1.890E-10 9.879E-11-2.132E-09 2.166E-09
  242 K-          -321   1 161  24   0   0    0.01    0.22    1.3    1.4    0.49 4.250E-11 6.333E-11-2.746E-11 5.211E-10
  243 PI0          111   1 161  24   0   0    0.31    0.38    0.2    0.6    0.13 4.301E-11 6.282E-11-2.751E-11 5.210E-10

High-energy experimental physicists feed this kind of output through their detector-simulation

software, and use it to determine efficiencies for signal detection, and perform background esti-

mates.

Analysis strategies are set up using these simulated data.
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Summarizing

• In high-energy collider physics not many questions can be answered without
a Shower Monte Carlo (SMC).

• The name shower comes from the fact that we dress a hard event with QCD
radiation.

• After a latency period, many physicists are now looking at shower Monte
Carlo models again, under different perspective: Catani, Krauss, Kühn &

Webber; Mangano, Moretti, Piccinini, Pittau, Polosa & Treccani; Frixione &

Webber; Kramer, Mrenna, Nagy & Soper; Giele, Kosower & Skands; Bauer &

Schwartz; Schumann & Krauss; Dinsdale, Ternick & Weinzierl; . . .

• Shower algorithms summarize most of our knowledge in perturbative QCD:
infrared cancellations, Altarelli-Parisi equations, soft coherence, Sudakov

form factors. All have a simple interpretation in terms of shower algorithms.
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A word of warning

“The Monte Carlo simulation has become the major mean of visualization of

not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by theMonte Carlo

generators carry the authority of data itself. They look like data and feel like

data, and if one is not careful they are accepted as if they were data.”

J.D. Bjorken

Talk given at the 75th anniversary celebration of the Max-Planck Institute of

Physics, Munich, Germany, December 10th, 1992, as quoted in Beam Line,

Winter 1992, Vol. 22, No. 4. Reference taken from Sjöstrand.
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Shower basics: collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections factorize

near collinear limit

dΦn+1 = dΦn dΦr dΦr ÷ dt dz dϕ

|Mn+1|2dΦn+1 =⇒ |Mn|2 dΦn
αs

2π

dt

t
Pq,qg(z) dz

dϕ

2π

t : (k+ l)2, p2T , E
2θ2 . . .

z = k0/(k0 + l0) : energy (or p‖ or p
+) fraction of quark

Pq,qg(z) = CF
1+ z2

1− z : Altarelli-Parisi splitting function

(ignore z→ 1 IR divergence for now)
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Shower basics: collinear factorization

If another gluon becomes collinear, iterate the previous formula

θ′, θ → 0 with θ′ > θ

|Mn+1|2dΦn+1 =⇒ |Mn−1|2dΦn−1 ×
αs

2π

dt′

t′
Pq,qg(z

′) dz′
dϕ′

2π

× αs

2π

dt

t
Pq,qg(z) dz

dϕ

2π
θ(t′ − t)

Collinear partons can be described by a factorized integral ordered in t.
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Collinear factorization: multiple emissions

For n collinear emissions, the cross section goes as

σ ≈ σ0α
n
s

∫ Q2

t0

dt1
t1

dt2
t2
. . .
dtn
tn

θ
(

Q2 > t1 > t2 > . . . > tn > t0
)

= σ0α
n
s

∫ Q2

t0

dt1
t1

∫ t1

t0

dt2
t2
. . .
∫ tn−1

t0

dtn
tn

≈ σ0α
n
s
1

n!

(

log
Q2

t0

)n

•• Q2 is an upper cutoff for the ordering variable t
•• t0 ≈ Λ2 ≈ Λ2QCD is an infrared cutoff (quark mass, confinement scale)

•• Due to the log dependence, we call it leading-log approximation.
•• According to the Kinoshita-Lee-Nauenberg theorem, the virtual corrections, or-
der by order, contribute with a comparable term, with opposite sign.

•• The virtual leading-log contribution should be included in order to get sensible
results!
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Typical dominant configuration at very high Q2

γ∗
→ hadrons

• Besides q → qg, also g → gg, g → qq̄ come into
play.

• In the typical configurations, intermediate an-
gles are of order of geometric average of up-

stream and downstream angles.

• Each angle is O(αs) smaller than its upstream

angle, and O(αs) bigger than its downstream

angle.

• As relative momenta become smaller, αs be-

comes bigger, and this picture breaks down.
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Simple probabilistic interpretation of “not-resolved” corrections

•• probability of emission in the interval dt, at order αs (multiple emissions are of
higher orders inαs)

dPemis(t+ dt, t) =
dt

t

αs(t)

2π

∫

dz Pi, jk(z)

•• probability of no emission in the interval dt

dPno emis(t+ dt, t) = 1− dPemis(t+ dt, t) = 1− dt
t

αs(t)

2π

∫

dz Pi, jk(z)

The “no emission” probability contains, through the 1, all the virtual corrections

(in the collinear approximation, that is at the leading-log level).

t2 t1tn

dt
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Simple probabilistic interpretation of “not-resolved” corrections

•• divide a finite interval [t2, t1] in N small intervals dt = (t1 − t2)/N.

t2 t1tn

dt

The probability of not emitting radiation between the two ordering scales t1 and

t2 is given by the product

Pno emis(t1, t2) = lim
N→∞

N

∏
n=1

[

1− dt
tn

αs(tn)

2π

∫

dz Pi, jk(z)

]

= exp

{

−
∫ t1

t2

dt

t

αs(t)

2π

∫

dz Pi, jk(z)

}

≡ ∆(t1, t2)

•• The weight ∆(t1, t2) is called Sudakov form factor. It resums all the dominant

virtual corrections to the tree graph (in the collinear approximation).
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Sudakov form factors

∆i(t1, t2) = exp

{

−∑
jk

∫ t1

t2

dt

t

αs(t)

2π

∫

dz Pi, jk(z)

}

Notice that, when t2 ≪ t1, ∆→ 0, i.e. the probability that a hard parton turns into a
narrow jet, or that it does not radiate at all, is small (it is Sudakov suppressed)
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First branching

The probability of the first branching is independent of subsequent branchings be-

cause of Kinoshita-Lee-Nauenberg cancellation. It is given by

dPfirst = ∆i(t, t
′)

αS(t
′)

2π

dt′

t′
Pi, jk(z) dz

dϕ

2π

Upon integrating in z andϕ, and summing over jk, we have

dPfirst = ∆i(t, t
′)

αS(t
′)

2π

dt′

t′

∫

∑
( jk)

Pi, jk(z) dz
dϕ

2π
= d∆i(t, t

′)

i.e. the distribution is uniform in the Sudakov form factor.

The integral over the whole t′ range, from the minimum value t0 (IR cutoff) up to t,
is given by

∫ t

t0
dPfirst =

∫ t

t0
d∆i(t, t

′) = ∆i(t, t)− ∆i(t, t0) = 1− 0 = 1

as it should be for a correct probabilistic interpretation.



Final recipe I

Si(t, E) = ∆i(t, t0) 1+ ∑
( jk)

∫ t

t0

αS(t
′)

2π

dt′

t′

∫

dz
∫
dϕ

2π
∆i
(
t, t′
)
Pi, jk(z) S j

(
t′, zE

)
Sk
(
t′, (1− z)E

)

•• consider all tree graphs.
•• assign values to the radiation variables Φr (t, z andϕ) to each vertex.

•• at each vertex, i→ jk, include a factor

dt

t
dz

αs(t)

2π
Pi, jk(z)

dϕ

2π
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Final recipe II

• include a factor ∆i(t1, t2) to each internal parton i, from hardness t1 to hardness t2.

∆i(t1, t2) = exp



− ∑
( jk)

∫ t1

t2

dt

t

αS(t)

2π

∫

dz Pi, jk(z)
∫
dϕ

2π





Theweights∆i(t1, t2) are called Sudakov form factors. They resum all the dominant

virtual corrections to the tree graph (in the collinear approximation). Notice also

that the inclusion of real and virtual corrections gives a net result of 1 (cancellation

of collinear singularities in inclusive quantities).

• include a factor ∆i(t , t0) on final lines (t0 = IR cutoff)

Carlo Oleari Matching NLO Calculations with Parton Shower: the POsitive-Weight Hardest Emission Generator 16



Actual implementation of the shower algorithm

We start from a given value of the ordering variable t. We want to generate the value

t′ for the next emission, according to the probability

dPfirst = ∆i(t, t
′)

αS(t
′)

2π

dt′

t′

∫

∑
( jk)

Pi, jk(z) dz
dϕ

2π
= d∆i(t, t

′)

Since this is an exact differential form, we proceed as in the case we want to gener-

ate a random variable x according to a distribution function f (x), whose indefinite

integral is known, starting from a uniform random variable r

dP = f (X) dX = 1 dR where f (X) dX = dF(X)

∫ x

xmin
f (X) dX = F(x) =

∫ r

0
1 dR = r =⇒ x = F−1(r)
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Actual implementation of the shower algorithm

✓ generate a hard process configuration with a probability proportional to its parton-level cross

section. Parton densities are evaluated at the typical “high” scale Q of the process

✓ for each final-state colored parton, generate a shower

•• set t = Q2

•• generate a uniform random number 0 < r < 1

•• solve the equation ∆i(t, t
′) = r for t′

•• if t′ < t0 stop here (final state line). Begin

hadronization

•• if t′ > t0, generate z, jkwith probability Pi, jk(z),

and 0 < ϕ < 2π uniformly. Assign energies

E j = zEi and Ek = (1− z)Ei to partons j and
k. The angle θ between their momenta is fixed

by t′ and with ϕ their direction is completely

specified

•• restart shower from each of the two branched
parton j and k, setting the ordering parameter

t = t′.



Shower algorithm

✓ for each initial-state colored parton, generate a shower in a similar way, but us-

ing a “trick”: the backward evolution (Sjöstrand)

f hi (t
′, x) ∆(t, t′)

f hi (t, x)
= r

where f hi is the parton density for the colliding hadron h, where parton i carries

a momentum fraction x = Ei/Eh

Some momentum reshuffling is needed in order to preserve local (at each vertex)

and global momentum conservation
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Accuracy: soft divergences and double-log regions

z→ 1 (z→ 0) region problematic. In fact, for z→ 1, Pqq, Pgg ÷ 1/(1− z)

The choice of the ordering variable tmakes a difference

virtuality: t ≡ E2z(1− z)

2(1−cosθ)
︷︸︸︷

θ2

p2T: t ≡ E2z2(1− z)2θ2

angle: t ≡ E2θ2

virtuality : z(1− z) > t/E2 =⇒
∫
dt

t

∫ 1−
√
t/E

√
t/E

dz

1− z ≈
1

4
log2

t

E2

p2T : z
2(1− z)2 > t/E2 =⇒

∫
dt

t

∫ 1−t/E2

t/E2

dz

1− z ≈
1

2
log2

t

E2

angle : =⇒
∫
dt

t

∫ 1

0

dz

1− z ≈ log t logΛ

Sizable difference in double-log structure!
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Angular ordering

Mueller (1981) showed that angular ordering is the correct choice

dθ

θ

αs
(
p2T
)

2π
P(z) dz

θ1 > θ2 > θ3 . . .

p2T = E2z2(1− z)2θ2

αs(p2T) for a correct treatment of charge renormalization in soft region (p
2
T equals to

the maximum virtuality of the gluon line).

∆i(t, t
′) = exp



−
∫ t

t′

dt

t

∫ 1−
√
t0
t

√
t0
t

dz
αs(p2T)

2π ∑
( jk)

Pi, jk(z)





≈ exp






− ci
4πb0

[

log
t

Λ2
log
log t

Λ2

log t0
Λ2

− log t
t0

]t

t′






(cq = CF , cg = 2CA)

Sudakov dumping stronger than any power of t.
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Color coherence

Soft gluons emitted at large angles from final-state partons add coherently

• angular ordering accounts for soft
gluon interference.

• intensity for photon jets = 0
• intensity for gluon jets = CA instead

of 2CF + CA

In angular-ordered shower Monte Carlo, large-angle soft emission is generated first.

Hardest emission, i.e. highest pT = E z(1− z)θ, in general, happens later.
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Some available codes

•• COJETS Odorico (1984)

•• ISAJET Paige+Protopopescu (1986)

•• FIELDAJET Field (1986)

•• JETSET Sjöstrand (1986)

•• PYTHIA Bengtsson+Sjöstrand (1987), Sjöstrand+Skands (2004)

•• HERWIG Marchesini+Webber (1988),
Marchesini+Webber+Abbiendi+Knowles+Seymour+Stanco (1992)

•• ARIADNE Lönnblad (1992)

•• SHERPA Gleisberg+Höche+Krauss+Schälicke+Schumann+Winter (2004)
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Available accuracy

collinear soft-collinear soft large-Nc soft

PYTHIA leading partial no no

HERWIG leading leading no no

ARIADNE partial partial leading no

PYTHIA6.4 partial partial leading no

SHERPA leading partial no no

One can realistically aim at

leading collinear, leading double log, leading soft in large-Nc limit

Soft effects for finite Nc require matrix exponentiation in the Sudakov form factor.
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New developments

•• Interfacing Matrix Elements (ME) generators with Parton Showers : CKKW matching
[Catani, Krauss, Küen, Webber], MLMmatching [Mangano]

•• Interfacing NLO calculations with Parton Showers: MC@NLO [Frixione, Webber],
POWHEG [Nason]

Several other approaches have appeared

•• e+e− → 3 partons [Kramer, Mrenna, Soper]
•• Shower by antenna factorization [Giele, Kosower, Skands]
•• Shower by Catani-Seymour dipole factorization [Schumann, Krauss]
•• Shower with quantum interference [Nagy, Soper]
•• Shower by Soft Collinear Effective Theory [Bauer, Schwartz]
•• Shower from the dipole formalism [Dinsdale, Ternick, Weinzierl]

Up to now, complete results for hadron colliders only from MC@NLO and POWHEG.
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NLO + Parton Shower

LO-ME good for shapes. Uncertain absolute normalization

αns (2µ) ≈ αns (µ)
(
1− b0αs(µ) log(4)

)n ≈ αns (µ)
(
1− nαs(µ)

)

For µ = 100 GeV,αs = 0.12, normalization uncertainty:
W + 1J W + 2J W + 3J

±12% ±24% ±36%

To improve on this, we need to go to NLO

•• Positive experience with NLO calculations at LEP, HERA and Tevatron
•• NLO results are cumbersome to compute: typically made up of an n-body (Born
+ virtual + soft and collinear remnants) and (n+ 1)-body (real emission) terms,

both divergent (finite only when summed up).

•• Merging NLO with shower is a natural extension of present approaches.
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NLO + Parton Shower

The main problem in merging a NLO result and a Parton Shower is not to

double-count radiation: the shower might produce some radiation already

present at the NLO level.

LO: NLO:
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POWHEG: how it works

1. POWHEG, POsitive Weight Hardest Emission Generator, [Nason,

hep-ph/0409146], generates first a partonic event with just one single emission,

at NLO level, and with the correct weight in order not to have double-counting

coming from (subsequent) radiation. The pT of the produced radiation works as an

upper cutoff for the pT’s of the entire subsequent shower.

2. The event is written on a file using the standard Les Houches Interface and is pro-

cessed by the Parton Shower program (HERWIG, PYTHIA. . . ), that showers the

event, but with a pT less than the pT generated by POWHEG (pT veto).

•• if the shower is ordered in pT (for example PYTHIA), nothing else needs to be
done

•• if the shower is ordered in angle (for example HERWIG), we need to generate
correctly soft radiation at large angle.

– pair up the partons that are nearest in pT
– generate an angular-ordered shower associated with the paired parton, stop-

ping at the angle of the paired partons (truncated shower)

– generate all subsequent vetoed showers
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Example of truncated shower: e+e−

• nearby partons: 1 and 2
• truncated shower: 1 and 2 pair, from θ up to

a maximum angle. The truncated shower rein-

troduces coherent soft radiation from 1 and 2

at angles larger thanθ (angular-ordered shower

Monte Carlo programs generate those earlier).

• 1 and 2 shower from θ to cutoff

• 3 showers from maximum to cutoff

Truncated showers not yet implemented.

No evidence of effects from their absence in ZZ and e+e− production. Might be some
effects in heavy-quark production.
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NLO calculations

We can always parametrize the (n + 1)-body phase space Φn+1 in terms of the Born phase

spaceΦn and three radiation variables Φr: Φn+1 = {Φn,Φr}

〈O〉 =
∫

Odσ =
∫

dΦnO(Φn) [B(Φn) +Vb(Φn)] +
∫

dΦn dΦr O(Φn,Φr) R(Φn,Φr)

where Vb is the (divergent) virtual differential cross section. The virtual and real-radiation

integrals are separate divergent. Their sum is finite (for any infra-red safe observable).

A typical subtraction method re-organize the integrals in the form

〈O〉 =
∫

dΦn O(Φn)

[

B(Φn) +Vb(Φn) +
∫

dΦr C(Φn,Φr)

]

+
∫

dΦn dΦr
[
O(Φn,Φr) R(Φn,Φr)−O(Φn)C(Φn,Φr)

]

︸ ︷︷ ︸

finite

Defining

V(Φn) = Vb(Φn) +
∫

dΦr C(Φn,Φr) ⇐= finite

we have

〈O〉 =
∫

dΦn O(Φn) [B(Φn) +V(Φn)]+
∫

dΦn dΦr [O(Φn,Φr) R(Φn,Φr)−O(Φn)C(Φn,Φr)]



NLO in SMC

Shower Monte Carlo (SMC) cross section for first emission (dΦr = dt dz dϕ)

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn)∆t0 +
∫

t0

dt

t
dz dϕO(Φn,Φr) ∆t

αs

2π
P(z)

}

with

∆t = exp

[

−
∫

t

dt′

t′
dz′ dϕ′ αs

2π
P(z′)

]

The expansion at orderαs gives the NLOSMC

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn) +
∫

t0

dt

t
dz dϕ [O(Φn,Φr)−O(Φn)]

αs

2π
P(z)

}

This is the inexact NLO correction implemented by the SMC

How do we reach exact NLO accuracy?
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Towards NLO accuracy

〈O〉 =
∫

dΦnO(Φn) [B(Φn) +V(Φn)]

+
∫

dΦn dΦr [O(Φn,Φr) R(Φn,Φr) −O(Φn)C(Φn,Φr)]

=
∫

dΦnO(Φn)

{

B(Φn) +V(Φn) +
∫

dΦr
[
R(Φn,Φr) − C(Φn,Φr)

]
}

+
∫

dΦn dΦr R(Φn,Φr) [O(Φn,Φr) −O(Φn)]

Define

B(Φn) = B(Φn) +V(Φn) +
∫

dΦr
[
R(Φn,Φr) − C(Φn,Φr)

]

〈O〉 =
∫

dΦn O(Φn) B(Φn) +
∫

dΦn dΦr R(Φn,Φr)
[
O(Φn,Φr)−O(Φn)

]

In NLOSMC, it was

〈O〉 =
∫

dΦn O(Φn) B(Φn) +
∫

dΦn dΦr B(Φn)
αs

2π
P(z)

1

t

[
O(Φn,Φr)−O(Φn)

]
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POWHEG

NLOSMC ↔ NLO : B(Φn) ↔ B(Φn) B(Φn)
αs

2π
P(z)

1

t
↔ R(Φn,Φr)

All-order emission probability in SMC

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn) ∆t0 +
∫

t0
dΦr O(Φn,Φr) ∆t

αs

2π
P(z)

1

t

}

with

∆t = exp

[

−
∫

dΦ′
r

αs

2π
P(z′)

1

t′
θ(t′ − t)

]

All order emission probability in POWHEG

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn) ∆t0 +
∫

dΦrO(Φn,Φr) ∆t
R(Φn,Φr)

B(Φn)

}

∆t = exp

[

−
∫

dΦ′
r
R(Φn,Φ′

r)

B(Φn)
θ(t′ − t)

]

with t = kT(Φn,Φr) = transverse momentum of the emitted parton.

POSITIVE if B is positive (i.e. NLO < LO).



Accuracy of the Sudakov form factor

POWHEG’s Sudakov form factor has the form (with c ≈ 1)

∆t = exp

[

−
∫ Q2

t

dk2T
k2T

αs(c k2T)

π

{

A log
E2

k2T
+ B

}]

The next-to-leading log (NLL) Sudakov form factor has the form

∆NLLt = exp

[

−
∫ Q2

t

dk2T
k2T

αs(k2T)

π

{(

A1 + A2
αs(k2T)

π

)

log
E2

k2T
+ B

}]

provided the color structure of the process is sufficiently simple (6 3 colored legs). Can

use this to fix c in POWHEG’s Sudakov form factor as suggested in Catani, Webber,

Marchesini, (1991). HERWIG uses this.

For colored legs > 4, exponentiation only holds at leading-log (LL) or LL + NLL in the

large-Nc limit (i.e. planar color structure of Feynman diagrams)

POWHEG’s Sudakov form factor is always LL accurate. NLL accurate for 6 3 colored

legs, NLL accurate in leading Nc in all cases.



Mathematical tricks

✓ To generate the underlying Born variables (Φn), distributed according to

B(Φn), one uses programs like BASES/SPRING, that, after a single integra-

tion, can generate points distributed according to the integrand function.

✓ Use the veto technique and the highest-pT bid procedure, to generate the radi-

ation variables, distributed according to d∆i(t, t
′).

These tricks are well known to Monte Carlo experts.

We have collected a few of them in the appendixes of our paper

[Frixione, Nason and C.O., arXiv:0709.2092 [hep-ph]].
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POsitive-Weight Hardest Emission Generator

✓ it is independent from parton-shower programs. POWHEG can be interfaced

with both PYTHIA and HERWIG, or with your favorite showering program,

if the vetoed shower is implemented, according to the Les Houches Interface.

✓ it can use existing NLO results

✓ it generates events with positive weights

✓ As far as the hardest emission is concerned, POWHEG guarantees:

•• NLO accuracy on integrated quantities
•• collinear, double-log (soft-collinear), large-Nc-soft single-log of the Su-
dakov (in fact, corrections that exponentiates are obviously OK)

✓ As far as subsequent (less hard) emissions, the output has the accuracy of the

SMC one is using.

✗ no truncated shower implemented up to now. But this is a problem that af-

fects all the angular-ordered SMCwhen the shower is initiated by a relatively

complex matrix element.
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Existing implementations

The POWHEG method has already been successfully used in

•• ZZ production [Nason and Ridolfi, hep-ph/0606275]

•• e+e− to hadrons [Latunde-Dada, Gieseke and Webber, hep-ph/0612281]

•• heavy-quark QQ production (cc̄, bb̄, tt̄) with spin correlations [Frixione, Na-
son and Ridolfi, arXiv:0707.3088 [hep-ph]].

The POWHEG programs for ZZ andQQ production have been interfaced to both

PYTHIA and HERWIG.

•• single vector-boson production (with spin correlations), vector-boson pro-
duction plus jet and Higgs boson production via vector-boson fusion is work

in progress [Alioli, Nason, Oleari and Re]
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ZZ production: POWHEG + HERWIG vs MC@NLO

No significant difference with MC@NLO [Nason and Ridolfi, hep-ph/0606275]



POWHEG + HERWIG vs POWHEG + PYTHIA

Agreement between POWHEG + HERWIG and POWHEG + PYTHIA

[Nason and Ridolfi, hep-ph/0606275]



e
+
e
−

→ hadrons

[Latunde-Dada, Gieseke and Webber, hep-ph/0612281]

Fit to e+e− data: better agreement than in the standard matrix-element correction approach.
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tt̄ production: POWHEG vs. NLO

• when ptt̄T → 0, POWHEG treats correctly the resummation of soft/collinear radiation
- when ptt̄T becomes large, POWHEG approaches the NLO result

• when Φtt̄→ 0, the emitted radiation becomes hard and POWHEG goes to the NLO result.

Carlo Oleari Matching NLO Calculations with Parton Shower: the POsitive-Weight Hardest Emission Generator 41



tt̄ production

Good agreement for all observables considered. There are sizable differences that can be

ascribed to different treatment of higher terms. But more investigation needed (different

scale choices, no truncated shower, different hard/soft radiation emission,. . . ).
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ALPGEN vs MC@NLO: tt̄ + 1 jet

ALPGEN can generate samples of tt̄ + n jets. Can be compared to NLO +

Parton Shower [Mangano, Moretti, Piccinini & Treccani, hep-ph/0611129]

✓ advantage: better high jet multiplicity (exact Matrix Element)

✗ disadvantage: worse normalization (no NLO)

ALPGEN

•• Generation: PTmin = 30 GeV, ∆R = 0.7

•• Matching: ETmin = 30 GeV, ∆R = 0.7

Jet definitions

•• Tevatron: ETmin = 15 GeV, ∆R = 0.4, K factor = 1.45

•• LHC: ETmin = 20 GeV, ∆R = 0.5, K factor = 1.57
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ALPGEN vs MC@NLO: tt̄ + 1 jet

Rapidity y1 of the leading jet (highest pT).

Different shapes both at Tevatron and at the LHC



POWHEG: rapidity of the leading jet

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(
dσ

dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

POWHEG’s distribution as in ALPGEN: no dip present. The size of discrepancy can

be attributed to different treatment of higher-order terms. Is this “feature” really

there?

The new pp→ tt̄ + jet at NLO [Dittmaier, Uwer, Weinzierl, hep-ph/0703120] shows
no dip too (preliminary result).



W/Z production
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From NLO to POWHEG

POWHEG is amethod, NOT (only) a set of programs!

POWHEG is fully general and can be applied to any NLO subtraction framework.

We have provided any user with all the formulae and ingredients to implement an

existing NLO calculation in the POWHEG formalism [Frixione, Nason and C.O.,

arXiv:0709.2092 [hep-ph]].

We have looked in detail at POWHEG in two subtraction schemes:

•• the Frixione, Kunszt and Signer scheme
•• the Catani and Seymour scheme.

We have discussed, in a pedagogical way, two examples:

•• e+e− → qq̄
•• qq̄→V
The fortran implementation of the POWHEG code for these two processes can be

found at:

http://moby.mib.infn.it/~nason/POWHEG/FNOpaper/



Strategy and conclusions

✓ Shower Monte Carlo programs to do the final shower already exist

✓ Most of them implement a pT veto

✓ Most of them comply with a standard interface to hard processes, the so

called Les Houches Interface (LHI)

SO. . .

•• construct a POWHEG for a NLO process. Output on LHI
•• if needed, construct a generator capable to add truncated showers to
events from the LHI. Output again on LHI

•• use standard Shower Monte Carlo to perform the pT-vetoed final shower
from the event on LHI.
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