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New physics and cascade decays
•Most anticipated signal at LHC:

pp → XX → (n jets) + (m leptons) + MET

• Even without full reconstruction invariant mass distribu-
tions probe underlying model:

◦ endpoints (masses)

◦ shapes (spins)

◦ relative normalizations (couplings)

• Post-discovery: distribution shapes key to discriminating
between models
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SUSY Dileptons
•Ur-example: mSUGRA dileptons,

χ0
2 → `± ˜̀∓

R → `±`∓χ0
1

◦ Dilepton invariant mass m`` measures angular correlation of leptons

◦ Range set by kinematics: 0 ≤ m`` ≤ Mmax

◦ Intermediate scalar, so |M|2 = constant

◦ Channel set by quantum numbers of intermediate state: OS, SF
only

•Dilepton “triangle”:

◦ with x = m``/Mmax,

◦ 1
Γ

dΓ
dm = 2x
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• Shapes of invariant mass distributions are a powerful tool

◦ Clearly necessary for discerning underlying model, but useful to
examine even assuming SUSY

◦ mSUGRA-like spectra: mostly triangles.

◦ Other spectra can give wider variety of dilepton shapes in SUSY

◦ Other final states (``, `τ, ττ ; b`)

•Restrict attention to: adjacent fermions on decay chain,
on-shell intermediate states

•Make minimal assumptions about spectrum, model pa-
rameters, global symmetries; study consequences of re-
laxation
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Intermediate fermions
•Distributions depend on helicity state of intermediate

particle A. Barr

“Hump”
1
Γ

dΓ
dm = 4x(1− x2)

“Cusp”
1
Γ

dΓ
dm = 4x3
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• hump + cusp = triangle: must be able to separate chan-
nels to observe

(–must also have spectrum allowing this chain)

• SUSY: hump = SS, cusp = OS

• theoretical assumptions:

◦ neglect Yukawa couplings

◦ no L-R slepton mixing

◦ flavour structure
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Cross-channel comparison

Triangle Hump Half-Cusp

Opposite-Sign χ0
i → ˜̀∓

L,R`± ˜̀±
L,R → χ0

i `
±

Same-Flavor ↪→ χ0
j`
∓`± ↪→ ˜̀±

R,L`∓`±

Opposite-Sign ˜̀±
L,R → χ0

i `
±

Opposite-Flavor ↪→ ˜̀′±
R,L`′∓`±

Same-Sign ˜̀±
L,R → χ0

i `
±

Same-Flavor ↪→ ˜̀∓
R,L`±`±

Same-Sign

Opposite-Flavor ˜̀±
L,R → χ0

i `
±

↪→ ˜̀′∓
R,L`′±`±

◦ Simultaneous hump SS and cusp OS, with same normalizations and
endpoints. Flavour structure: sfermion degeneracy; L-R ordering.
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•Observing correlations a useful check on theoretical as-
sumptions: SUSY beyond MSSM

• Eg: Flavour universality

◦ Near-degeneracy of selectrons and smuons: edges of ee, µµ, eµ
should be identical

◦ Universality of gauge couplings fixes relative normalizations

• Eg: models with continuous U(1)R.

◦ Neutralinos acquire Dirac mass by marrying new chiral adjoints

◦ Right and left handed sleptons have opposite U(1)R charges
⇒ decay ˜̀−

L → ˜̀+
R`−`+ is forbidden

◦ Therefore no cusp OS distributions; only hump SS.
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•More flavour: “left-right ordering”

◦ The decays ˜̀
L,R → χ0

i ` → ˜̀′
R,L`′` always give

hump = SS, cusp = OS

◦ But if ˜̀
L → χ0

i ` → ˜̀′
L`′` is possible then sign-shape correlation is

reversed: hump = OS, cusp = SS

◦ Signal only seen in different-flavour dileptons
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τ final states
• Theoretically, τ final states give window into interesting

physics:

◦ λτ can be appreciable (large tan β)

◦ ⇒ L-R stau mixing

◦ ⇒ gaugino-higgsino mixing

• Experimentally, full four-momentum of τ not reconstructed

◦ compute modified line shapes: folding theoretical distributions with
energy spectra of daughter particles

◦ ditau triangle analysis (mSUGRA, few 100 pb−1
(Mangeol and Goerlach, CMS))

◦ τ polarization measurable
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The effects of mixing

• Stau L-R mixing:

⇒

•Relative normalization of distributions set by τ̃ mixing
angle

•Gaugino-higgsino mixing qualitatively similar
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Hump Half-Cusp

Opposite-Sign τ̃±2 → τ±χ0
i τ̃±2 → τ±χ0

i

Same-Flavor ↪→ τ̃±1 τ∓τ± ↪→ τ̃±1 τ∓τ±

Opposite-Sign ˜̀±
L → `±χ0

i
˜̀±
L → `±χ0

i

Opposite-Flavor ↪→ τ̃±1 τ∓`± ↪→ τ̃±1 τ∓`±

↪→ τ̃±2 τ∓`± ↪→ τ̃±2 τ∓`±

Same-Sign τ̃±2 → τ±χ0
i τ̃±2 → τ±χ0

i

Same-Flavor ↪→ τ̃∓1 τ±τ± ↪→ τ̃∓1 τ±τ±

Same-Sign ˜̀±
L → `±χ0

i
˜̀±
L → `±χ0

i

Opposite-Flavor ↪→ τ̃∓1 τ±`± ↪→ τ̃∓1 τ±`±

↪→ τ̃∓2 τ±`± ↪→ τ̃∓2 τ±`±

◦ comparing relative normalizations of hump, cusp distributions in
given channel measures calculable function of mixings: a precision
question
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• τ polarization can be determined from spectrum of its
daughters:

Fractional energy distribution for reconstructed 1-prong τs

• use to further distinguish final states and probe model
parameters more closely
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Lepton-τ hump and cusp distributions, for leptonically-decaying τs.

Notice different polarizations. Distinguishability at > 10% level
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Di-τ triangles, again for leptonically-decaying τs. Different

polarizations are distinguishable at > 10% level
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•Quantitative study necessary (statistics, efficiencies)

• Potentially difficult measurements: Need to understand
high energy tail

◦ Selection efficiency must be good: combinatoric background

•Worthwhile: sensitivity to broad range of model param-
eters
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Ditau triangles

Process Weight

τ+
L τ−L χ0

j → τ±L τ̃∓2
↪→ τ±L τ∓L χ0

i cos4 θ|yLjyLi|2
χ0

j → τ±L τ̃∓1
↪→ τ±L τ∓L χ0

i sin4 θ|yLjyLi|2

τ+
R τ−R χ0

j → τ±R τ̃∓2
↪→ τ±R τ∓R χ0

i sin4 θ|yRjyRi|2
χ0

j → τ±R τ̃∓1
↪→ τ±R τ∓R χ0

i cos4 θ|yRjyRi|2

τ±L τ∓R χ0
j → τ±L τ̃∓1,2

↪→ τ±L τ∓R χ0
i cos2 θ sin2 θ|yLjyRi|2

χ0
j → τ∓R τ̃±1,2

↪→ τ∓R τ±L χ0
i cos2 θ sin2 θ|yRjyLi|2
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Lepton-tau distributions

Hump Half-Cusp

Process Weight Process Weight

`±τ∓L
˜̀±
L → `±χ0

i
˜̀±
R → `±χ0

i

↪→ `±τ∓L τ̃±1 sin2 θ|yLi|2 ↪→ `±τ∓L τ̃±1 sin2 θ|yLi|2

`±τ∓R
˜̀±
R → `±χ0

i
˜̀±
L → `±χ0

i

↪→ `±τ∓R τ̃±1 cos2 θ|yRi|2 ↪→ `±τ∓R τ̃±1 cos2 θ|yRi|2

`±τ±L
˜̀±
R → `±χ0

i
˜̀±
L → `±χ0

i

↪→ `±τ±L τ̃∓1 sin2 θ|yLi|2 ↪→ `±τ±L τ̃∓1 sin2 θ|yLi|2

`±τ±R
˜̀±
L → `±χ0

i
˜̀±
R → `±χ0

i

↪→ `±τ±R τ̃∓1 cos2 θ|yRi|2 ↪→ `±τ±R τ̃∓1 cos2 θ|yRi|2
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Hump Half-Cusp

Final state Process Weight Process Weight

τ+
L τ−L τ̃±2 → τ±L χ0

i

↪→ τ±L τ∓L τ̃±1 cos2 θ sin2 θ|yLi|4

τ+
R τ−R τ̃±2 → τ±L χ0

i

↪→ τ±R τ∓R τ̃±1 cos2 θ sin2 θ|yRi|4

τ+
L τ−R τ̃−2 → τ−R χ0

i

↪→ τ−R τ+
L τ̃−1 sin4 θ|yRiyLi|2

τ̃+
2 → τ+

L χ0
i

↪→ τ+
L τ−R τ̃−1 cos4 θ|yRiyLi|2

τ+
R τ−L τ̃−2 → τ−L χ0

i

↪→ τ−L τ+
R τ̃−1 cos4 θ|yRiyLi|2

τ̃+
2 → τ+

R χ0
i

↪→ τ+
R τ−L τ̃+

1 sin4 θ|yRiyLi|2

◦ clean, independent measurements of gaugino couplings and stau
mixing angle

19



b-lepton final states
•Quark sector is more difficult to study: indistinguishabil-

ity of final states washes out information.

◦ Barr: rely on overall squark production asymmetry to generate
asymmetry in q-`−, q-`+ distributions

• Possibility of signing b-jets using associated muon allows
nontrivial spin correlations to be seen without the need
for overall production asymmetry

◦ O(10%) of b-jets can be signed;

◦ mis-sign rate O(30%) (ATLAS TDR, D0); optimistic this can be
improved (S. Schnetzer)
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• Expect mixings to be typically non-negligible

◦ Recall τ sector: total distribution contains admixture of “wrong”
distribution, depending on mixing angles

◦ good: can probe many parameters in the underlying model

◦ bad: Spin measurement may require more statistics

•Quantitative study necessary
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Conclusions
•Difermions are fun!

◦ crucial analysis tool

◦ third-generation fermions are challenging but potentially rewarding

•Many further aspects of cascade decays which can (even
now!) repay further analysis:

◦ Other final states: `V µ, `h

◦ Nonadjacent fermions

◦ Three-body decays; finite width effects

◦ Same-spin partners
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