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No new dimensionless couplings. Couplings of supersymmetric particles
equal to couplings of Standard Model ones.  
Two Higgs doublets necessary.  Ratio of vacuum expectation values
denoted by  tan β
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Minimal Supersymmetric Standard Model

SM particle SUSY partner GSM

(S = 1/2) (S = 0)
Q = (t, b)L (t̃, b̃)L (3,2,1/6)
L = (ν, l)L (ν̃, l̃)L (1,2,-1/2)
U =

(
tC

)
L

t̃∗R (3̄,1,-2/3)
D =

(
bC

)
L

b̃∗R (3̄,1,1/3)
E =

(
lC

)
L

l̃∗R (1,1,1)

(S = 1) (S = 1/2)
Bµ B̃ (1,1,0)
Wµ W̃ (1,3,0)
gµ g̃ (8,1,0)
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The Higgs problem
• Problem: What to do with the Higgs field ?

• In the Standard Model masses for the up and down (and lepton)
fields are obtained with Yukawa couplings involving H and H†

respectively.

• Impossible to recover this from the Yukawas derived from P [Φ], since
no dependence on Φ̄ is admitted.

• Another problem: In the SM all anomalies cancel,
∑

quarks

Yi = 0;
∑

left

Yi = 0;

∑

i

Y 3
i = 0;

∑

i

Yi = 0 (38)

• In all these sums, whenever a right-handed field appear, its charge
conjugate is considered.

• A Higgsino doublet spoils anomaly cancellation !
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Solution to the problem

• Solution: Add a second doublet with opposite hypercharge.

• Anomalies cancel automatically, since the fermions of the second
Higgs superfield act as the vector mirrors of the ones of the first one.

• Use the second Higgs doublet to construct masses for the down
quarks and leptons.

P [Φ] = huQUH2 + hdQDH1 + hlLEH1 (39)

• Once these two Higgs doublets are introduced, a mass term may be
written

δP [Φ] = µH1H2 (40)

• µ is only renormalized by wave functions of H1 and H2.
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W [Φ] = huQUHu + hdQDHd + hlLEHd

δW [Φ] = µHuHd

Hu and Hd



Structure of Supersymmetry Breaking Parameters

• Although there are few supersymmetry breaking parameters in the
gaugino and Higgsino sector, there are many in the scalar sector.

• For instance, there are 45 scalar states and all these scalar masses
might be different. In addition, one can add complex scalar mass
parameters that mix squark and sleptons of different generations:
Lmix = m2

ij f̃
∗
i f̃j + h.c.

• In addition, one can add A-terms that also mix squarks and sleptons
of different generations.

• In general, in the presence of such terms, if the scalar masses are of
the order of the weak scale, one can induce contributions to flavor
changing neutral currents by interchanging gauginos and scalars.

• This leads to problematic phenomenological consequences.
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Flavor Changing Neutral Currents

• Two particularly constraining examples of flavor changing neutral
currents induced by off-diagonal soft supersymmetry breaking parameters

• Contribution to the mixing in the Kaon sector, as well as to the rate of
decay of a muon into an electron and a photon.

• While the second is in good agreement with the SM predictions, the first
one has never been observed.

• Rate of these processes suppressed as a power of supersymmetric particle
masses and they become negligible if relevant masses are heavier than 10 TeV
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Solution to the Flavor Problem
• There are two possible solutions to the flavor problem

• The first one is to push the masses of the scalars, in particular to the
first and second generation scalars, to very large values, larger than a
few TeV.

• Some people have taken the extreme attitude of pushing them to
values of order of the GUT scale. This is fine, but supersymmetry is
then broken in a hard way and the solution to the hierarchy problem
is lost.

• A second possibility is to demand that the scalar mass parameters
are approximately flavor diagonal in the basis in which the fermions
mass matrices are diagonal. All flavor violation is induced by either
CKM mixing angles, or by very small off-diagonal mass terms.

• This latter possibility is a most attractive one because it allows to
keep SUSY particles with masses of the order of the weak scale.
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Renormalization Group Evolution
• One interesting thing is that the gaugino masses evolve in the same

way as the gauge couplings:
d(Mi/αi)/dt = 0, dMi = −biαiMi/4π, dαi/dt = −biα2

i /4π

• The scalar fields masses evolve in a more complicated way.
4πdm2

i /dt = −Ci
a4M2

aαa + |Yijk|2[(m2
i + m2

j + m2
k + A2

ijk)]/4π

• There is a positive contribution coming from the gaugino masses and
a negative contribution proportional to the Yukawa couplings.

• Colored particles are affected by positive, strongly coupled
corrections and tend to be the heaviest ones.

• Weakly interacting particles tend to be lighter, particular those
affected by large Yukawas.

• There scalar field H2 is both weakly interacting and couples with the
top quark Yukawa. Its mass naturally becomes negative.
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Negative values of the soft supersymmetry breaking mass parameter 
induce electroweak symmetry breaking. The total Higgs masses receive 
a SUSY contribution

Electroweak symmetry breaking therefore demands a relation between 
these two contributions

Therefore,      must be of the order of the SUSY breaking parameters

Also, the mixing term                                 appearing in the potential

must be of the same order. Is there a natural framework to solve the 
flavor problem, inducing weak scale values for                   ? 

Electroweak Symmetry Breaking and the µ Problem

µ2 + m2
Hi

µ2 +
M2

Z

2
=

m2
Hd
− tan2 β m2

Hu

tan2 β − 1
, tanβ =

vu

vd

µ

−(BµHuHd + h.c.)

sin 2β =
2Bµ

2|µ|2 + m2
Hu

+ m2
Hd

µ and Bµ



Gauge Mediated SUSY Breaking

Supersymmetry breaking is transmitted to the observable 
sector via (flavor blind) gauge interactions

Messenger sector in complete representations of SU(5) and 
vector-like.  

Minimal model:  One 

SUSY  Breaking
Sector

Messenger
Sector

Observable
Sector (quarks, 
leptons, Higgs)Gauge Int.

(5, 5̄) ≡ (3, 2) + (3̄, 2̄)

W = λ S 3 3̄ + γ S 2 2̄, < S >= S + FSθ2,

with S a singlet field parametrizing SUSY breaking and the messenger mass



Spectrum of Sparticles (more details later)
Gaugino masses fulfill the standard unification relations, 

Scalar masses at the messenger scale are also governed by their color 
structure. For instance,

This implies that, independently of the messenger scale, there are large 
negative corrections to the Higgs mass parameter, triggering EWSB

The requirement of a weak scale spectrum demands 

The scale of SUSY breaking has important consequences, for instance 
it determines the gravitino mass and interactions (and therefore the 
nature of the LSP). Lightest superpartner tends to be a Bino. 

Mi ∝ αi
4π

FS
S , Mi

Mj
= αi

αj

mq̃,H ∝ α3,2
4π

FS
S ,

Λ ≡ FS
S = O(105 GeV)



Gravitino

• When standard symmetries are broken spontaneously, a massless
boson appears for every broken generator.

• If the symmetry is local, this bosons are absorved into the
longitudinal components of the gauge bosons, which become massive.

• The same is true in supersymmetry. But now, a massless fermion
appears, called the Goldstino.

• In the case of local supersymmetry, this Goldstino is absorved into
the Gravitino, which acquires mass mG̃ = F/MPl, with F the order
parameter of SUSY breaking.

• The coupling of the Goldstino (gravitino) to matter is proportional to
1/
√

F = 1/
√

mG̃MPl, and couples particles with their superpartners.

• Masses of supersymmetric particles is of order F/M , where M is the
scale at which SUSY is transmitted.
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Decay Width of NLSP into Gravitino

• In low energy supersymmetry breaking models, the SUSY breaking
scale 10TeV ≤

√
F ≤ 103 TeV.

• The gravitino mass is very small in this case 10−1eV ≤ mG̃ ≤ 103 eV.

• Since the gravitino is the lightest supersymmetric particle, then the
lightest SM superpartner will decay into it.

• It is easy to extract the decay width on dimensional grounds

• Just assume that the lightest SM partner is a photino, for instance,
and it decays into an almost massless gravitino and a photon. Then,

Γ(γ̃ → γG̃) $
m5

γ̃

16πF 2
$

m5
γ̃

16πm2
G̃

M2
Pl

(2)

where we have used the fact that [F ] = 2.
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Generation of     :Giudice-Masiero mechanism
Assume exact Peccei-Quinn symmetry forbidding 

Then, introduce higher dimensional operators in Kahler function

where                           is the SUSY breaking chiral superfield. Then,

But in theories of gauge mediation, as we have seen

It is therefore required that      is suppressed.  Different alternatives have 
been proposed to make it work. I will concentrate on a slightly different 
strategy. 

µ

∆L =
∫

d4θ HuHd

(
c1

X

M
+ c2

X†X

M2

)
+ h.c.

X = X + FXθ2

µ =
c1FX

M
, Bµ =

c2F 2
X

M2

Bµ

µ
! FX

M
! 100 TeV

c2

µ



A natural solution would be possible by introducing a singlet

At the messenger scale, the soft supersymmetry breaking term

Since N is a singlet, its mass term is, in principle, driven to 
negative values at lower energies via Yukawa interactions, 
inducing a non-vanishing expectation value for N. Then,   

m2
N = 0, Aλ = 0 Aκ = 0

µ = λ vN

Bµ = λ < FN > +Aλµ FN = κ v2
N −

λ v2

2
sin 2β

W = λ NHuHd − κ
3 N3 + huQUHu + ...

and a Z3 symmetry which ensures the absence of bilinear and linear
terms. This symmetry could also help preventing the presence of
S and of Yukawas with the messenger sector.

Singlet Mechanism for the generation of µ



Problem with this Solution
The main problem is that the Higgs mass parameter becomes rapidly 
negative, turning the “negative Yukawa effects” on the singlet mass 
into positive ones

Then, the singlet never acquires a sufficiently large v.e.v. rendering the 
mechanism invalid, independently of the messenger scale

The main source of the problem is related to the large values of the 
stop masses compare to the Higgs masses.  Can this be avoided ?

Consider a simple generalization of the messenger sector with two 
singlets,

Now, doublets and triplets transmit different SUSY breaking effects

16π2 dm2
N

dt
= 4λ2

(
m2

Hu
+ m2

Hd
+ m2

N + A2
λ

)
+ 4κ2

(
3m2

N + A2
κ

)

   de Gouvea, Murayama’99

W = λi Si 33̄ + γi Si 22̄

Λq =
λiFi

λiSi
, Λl =

γiFi

γiSi

Dine, Mason’08

This extra degree of freedom
is enough to improve the situation



Method to extract Supersymmetry Breaking terms

Let us start with the effective superpotential

W =
∑

I SIΦ̄IΦI

where ΦI are the messenger fields, and SI are singlet fields parametrizing
SUSY breaking

One can now parametrize the gauge superfield kinetic term

LG =
∫

d2θ fj W i
αWα

j , < Re(fj) > = α−1
j /4π, Mj = −Ffj /(2fj)

Then, for FI " S2
I , the gaugino mass Mj = − 1

2
∂ lnfj

∂ lnSI

FI
SI

< SI >= SI + FIθ
2






I−Messenger Fermion Mass = SI

I− Scalar Squared Masses = S2
I ± FI

Giudice, Rattazzi ‘98



Finally, if we define trilinear and bilinear terms by

V = AQΦQ
∂W
∂ΦQ

Then, AQ = ∂ ln ZQ

∂ ln SI

FI
SI

Similarly, for the scalar fields

L =
∫

d4θZQΦQΦ̄Q,

where Q are arbitrary chiral superfields. Then, its soft mass is given by

m2
Q = −∂2 ln ZQ

∂SJ∂S†
I

FJF †
I

SJS†
I

One could easily show that the RG evolution of ZQ is

dZQ

dt =
cj

Q

π αj

with cj
Q = N(N − 1)/2 for SU(N) and cQ = Y 2/4 for U(1)Y .



Minimal Messenger Sector

bMSSM
i . In this particular example, the numerical values of these coefficients are given

by the following table

Full theory MSSM + 3 3̄ MSSM

b3 −2 −2 −3
b2 2 1 1
b1 38/5 7 33/5

More important than the particular values of the βi functions in the three regimes
are the contributions of the messenger states to the βi function coefficients, which can
be obtined by the information given in the above table. We shall call Bi

2 = 3/5, 1, 0 the
SU(2)L doublet contribution to these coefficients, and Bi

3 = 2/5, 0, 1 the SU(3) triplet
contribution for i = 1, 2, 3, respectively.

Let us begin with the gaugino masses. The gauge couplings dependence on the
messenger scales may be simply obtained by renormalization group methods. At the
one-loop level, we get

1

αj(X2)
=

1

αj(MG)
+

bj

4π
ln

(

M2
G

|X2|2

)

,

1

αj(X3)
=

1

αj(X2)
+

b33̄
j

4π
ln

(

|X2|2

|X3|2

)

,

1

αj(µ)
=

1

αj(X3)
+

bMSSM
j

4π
ln

(

|X3|2

|µ|2

)

. (8)

Applying the above rules, and using the holomorphicity of Sj(XI , µ), the gaugino
masses Mj are given by

Mj(µ) =
Bj

2αj(µ)

4π

F2

X2
+

Bj
3αj(µ)

4π

F3

X3
. (9)

Numerically, we hence obtain,

M3(µ) =
α3(µ)

4π

F3

X3
, M2(µ) =

α2(µ)

4π

F2

X2
, M1(µ) =

α1(µ)

4π

(

3F2

5X2
+

2F3

5X3

)

,

(10)
a result that agrees with the one obtained, for the same conditions, in Ref. [4]. Observe
that the gaugino masses receive contributions from the decoupling of both messenger
states, which are proportional to the beta function contribution of the messenger XI

and to αi(XI), while their dependence on αi(µ) is a reflection of the evolution of the
gaugino masses at the one-loop level

dMi

dt
=

biMiαi

4π
,

d

dt

(

Mi

αi

)

= 0, (11)

where t = ln µ2. For future purposes, it is useful to define the gaugino masses at the
scales X2 and X3, which are given by

Mj(X2) =
Bj

2αj(X2)

4π

F2

X2
,

Mj(X3) =
Bj

2αj(X3)

4π

F2

X2
+

Bj
3αj(X3)

4π

F3

X3
, (12)

4

Let us introduce two superfields belonging to 5, 5̄ of SU(5), (3, 2) + (3̄, 2̄)

Doublets and triplets couple to different SI ’s : Sl and Sq, respectively

1
αj(Sl)

= 1
αj(MG) + bj

4π ln
(

M2
G

|Sl|2

)

1
αj(Sq) = 1

αj(Sl)
+ b33̄j

4π ln
(

|Sl|2
|Sq|2

)

1
αj(µ) = 1

αj(MG) + bMSSM
j

4π ln
(

|Sq|2
µ2

)

Using the holomorphicity of fj(SI , µ), we obtain

Mj(µ) = Bj
2αj(µ)
4π

Fl
Sl

+ Bj
3αj(µ)
4π

Fq

Sq
,

where Bi
3,2 are the triplet and doublet beta-function contributions.

M3(µ) = α3(µ)
4π

Fq

Sq
, M2(µ) = α2(µ)

4π
Fl
Sl

, M3(µ) = α1(µ)
4π

(
3Fl
5Sl

+ 2Fq

5Sq

)



Scalar Masses

ln
(

ZQ

ZQ(MG)

)
= −

2ci
Q

bi
ln

(
αi(MG)
αi(Sl)

)
−

2ci
Q

b33̄
i

ln
(

αi(Sl)
αi(Sq)

)
−

2ci
Q

bi
ln

(
αi(Sq)
αi(µ)

)

Analogously,  and ignoring Yukawa effects, 

λ, κ ∼ O(1). This is difficult to achieve because (see the related RG equations summarized
in Appendix A):
(1) For m2

N , as the RG evolution runs down, its beta function becomes small quickly due to
the negative contribution from m2

Hu
;

(2) For Aλ and Aκ, their values at the messenger scale are highly suppressed due to their
high-loop level origin and, at the same time, their beta functions are not negative enough.
In addition, because Aλ and Aκ are the only sources explicitly breaking the global U(1)R

symmetry in the Higgs potential, their smallness necessarily leads to an almost massless
pseudoscalar which is ruled out by the current LEP bound [6].
As a result, the µ/Bµ problem is not solved in the NMSSM within the minimal gauge me-
diation scenario [7].

In this paper, we present a new way to solve the µ/Bµ problem within the NMSSM
with gauge-mediated SUSY breaking. Actually, we only take a simple modification to the
superpotential, Eq.(23), assuming the new one to be

W = λSqq̄q + γSl l̄l, (26)

here Sq = Sq + θ2Fq and Sl = Sl + θ2Fl are two SUSY breaking chiral spurions. In the
following, we will use Λq and Λl to denote the effective SUSY breaking scales, i.e.,

Λq =
〈Fq〉
〈Sq〉

, Λl =
〈Fl〉
〈Sl〉

. (27)

As explained above, the difficulty in generating a very negative m2
N (ΛEW ) is from the fact

that the RG evolutions of m2
Hu

and m2
N are strongly coupled to each other. The parameter

m2
Hu

has a large, positive beta function, so it becomes negative quickly as the RG evolutions
run down. The negative m2

Hu
leads to a negative contribution to the beta function of m2

N ,
therefore, preventing the appearance of a large, negative m2

N (ΛEW ). However, the story
can be dramatically changed after the introduction of a new parameter η = Λl/Λq. In the
minimal gauge mediation limit, we have η = 1. As it is increased, the beta function of m2

N

is effectively enlarged according to the dominant terms 4λ2(m2
Hd

+ m2
Hu

), while the beta
function of m2

Hu
is effectively diminished according to the terms −(2g2

Y M2
1 + 6g2

2M
2
2 ) (even

though some other terms may have positive contributions to this beta function.). Due to
these effects, the velocity for m2

N to evolve to a negative value is increased, but that for m2
Hu

,
is slowed down. It becomes possible now to get a large, negative m2

N (ΛEW ), even if only a
mild increase is made for η. In contrast to the “minimal gauge mediation”, we will refer to
this mechanism as “general gauge mediation” in the following.

With the superpotential of the messenger sector modified, the soft SUSY breaking
masses are also different from those generated in the minimal gauge mediation case. These
new soft masses at the messenger scale are found to be (see, for istance, Ref. [11])

M3 =
α3

4π
Λq M2 =

α2

4π
Λl M1 =

α1

4π

[

2

5
Λq +

3

5
Λl

]

(28)

8

At the messenger scale,

Finally, all bilinear and trilinear mass terms vanish at the messenger scale

m2
Q = 2

[
CQ

3

(α3

4π

)2
Λ2

q + CQ
2

(α2

4π

)2
Λ2

l + CQ
1

(α1

4π

)2
(

2
5
Λ2

q +
3
5
Λ2

l

)]
Sq ! Sl

AQ = 0 (Af , AN , Bµ = 0)

Complete formulae, including RG evolution, C.W., hep-ph/9801376



Comments

One can now introduce a parameter

The relations,              

 hold for any value of

For values of this parameter larger than one the gluino and 
wino masses become closer in magnitude

Similarly, and more importantly, the weakly interacting scalar 
masses become closer to the strongly interacting ones. 

Consequently,           is not driven to large negative values,  
enabling the evolution of          to negative values

η =
Λl

Λq

d(Mi/αi)
dt

= 0
M2

M3
= η

α2

α3

η

m2
N

m2
Hu



General considerations

Requiring the model to predict, for a given value of the couplings, the 
precise value of     that leads to consistency with electroweak 
symmetry breaking is quite restrictive

For values of       close to one,  there is no solution.   For very large 
values of this parameter, there is in general no  electroweak symmetry 
breaking.  Values larger than one, but of order one are preferred.

Small values of          lead to relatively large values of 

The model still correlates the gaugino masses with the corresponding 
squark and slepton masses

In general, to generate sufficiently large values of      in low energy 
gauge mediated supersymmetry breaking,  due to the small running, a 
heavy spectrum of gauginos, squarks and sleptons required.

Lightest neutralinos and charginos are therefore mostly admixtures of 
Higgsinos and singlinos.

η

µ

Bµ tanβ

µ



Neutralino Mass Matrix

24

the cut cos φaco,lj > −0.7 is useful. Finally, two of the jets have to combine to the invariant
mass of the Z boson, while the other two jets have to combine to W mass, |mj1j2 −MZ| < 10
GeV and |mj3j4−MW| < 10 GeV. This removes most of χ̃0

2χ̃
0
4 background and is also effective

on tt̄.
After application of these cuts, the SM background is removed to a negligible level, while

still a sizeable contamination of background from χ̃0
3χ̃

0
4 is left. In total B = 245 background

events remain, compared to S = 186 events for the signal. Since the cross-section for the
neutralino process can be measured independently, as described above, it can be subtracted,
but the additional error from this procedure needs to be taken into account. The resulting
expected precision for the χ̃±

1 χ̃∓
2 cross-section is δσ±

12 = 13%.
For the chargino signal, the spectrum of the 4-jet invariant mass has an upper limit of

minv,j,max = mχ̃±
2
−mχ̃0

1
, which can be used to extract information about the heavy chargino

mass. The neutralino background typically leads to slightly smaller 4-jet invariant masses,
so that this upper edge is not contaminated. From a fit to the data, one obtains

minv,j,max = 287.2+5.4
−4.2 GeV, (49)

which together with the mχ̃0
1

mass measurement from the analysis of χ̃+
1 χ̃−

1 production di-
rectly translates into

mχ̃±
2

= 319.5+5.5
−4.3 GeV. (50)

3.3.8 Combination of sparticle measurements at ILC

Feeding in the precise measurement of the neutralino mass from the analysis of χ̃+
1 χ̃−

1 produc-
tion, the masses of the heavier neutralinos from χ̃0

2χ̃
0
4 and χ̃0

3χ̃
0
4 production can be determined

much more accurately,

mχ̃0
2

= 106.6+1.1
−1.3 GeV, mχ̃0

3
= 181.5 ± 4.9 GeV, mχ̃0

4
= 278.0+2.5

−3.5 GeV. (51)

For the lightest neutralino and the charginos, the expected errors given in the previous
sections are not improved by combining with the other neutralino observables, so that one
obtains

mχ̃0
1

= 33.3+0.4
−0.3 GeV, mχ̃±

1
= 164.98 ± 0.05 GeV, mχ̃0

4
= 319.5+5.5

−4.3 GeV. (52)

From a χ2 fit to all mass and cross-section observables, constraints on the underlying neu-
tralino and chargino parameters can be extracted. For completeness, we also allow a tripe-
singlet coupling κ as in the NMSSM. In the nMSSM, κ must be zero, but it is interesting not
to impose this requirement a priori, but see how well it can be checked from an experimental
analysis. The parameter κ enters in the (5,5)-entry of the neutralino mass matrix,

Mχ̃0 =





M1 0 −cβsWMZ sβsWMZ 0

0 M2 cβcWMZ −sβcWMZ 0

−cβsWMZ cβcWMZ 0 λvs λv2

sβsWMZ −sβcWMZ λvs 0 λv1

0 0 λv2 λv1 κ




, (53)

27

In the nMSSM, κ = 0.

2κvs

Tex
FF
ort

For large values of the gaugino masses, masses are proportional to the 
Higgs vacuum expectation values, and naturally of the weak scale 

Lightest chargino mass is approximately equal to       in this case. In many 
of the examples we considered, singlino becomes relatively heavy and 
lightest charginos and neutralinos become close in mass.

µ



Higgs Spectrum

Mass of would be CP-odd Higgs boson tends to be large, as well as 
that of the associated charged Higgs

Still, a light CP-odd scalar, mainly single-like remains in the 
spectrum, particularly in low energy mediation

This can induce new Higgs decays and change the associated 
phenomenology

25

δm2
h1

=
3m4

t

4π2v2
ln





√

m2

t̃1
m2

t̃2

m2
t



 + O



h2
tg

2, h2
tλ

2,
A2

t
√

m2

t̃1
m2

t̃2



 . (43)

Here mt is the running top quark mass at the top-quark mass scale and
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being a one loop correction factor. Observe that we have omitted the positive tree-level
term proportional to λ2 sin2 2β, which becomes unimportant for large values of tan β, and
we have included the more important contribution coming from the mixing with the singlet
state, that in the limit we are working becomes independent of the mass parameters of the
theory. This occurs since the singlet CP -even state acquires a mass about 4κ2v2

N and its
mixing matrix element with the lightest MSSM CP -even Higgs state is approximately equal
to 2λ2vN v in this limit. Note also that within this approximation, the O(m4

t ) loop correction
is independent of the renormalization scale Λ

MS
, and is determined by the geometric average

of the two stop mass squares.
For the low-scale general gauge mediation, the RG evolution paths of the stop soft

masses m2

Q̃3L
and m2

t̃R
are short. Given the effective SUSY breaking scales Λq ∼ Λl ∼

(105 − 106) GeV, m2

t̃1
and m2

t̃2
, and hence δm2

h1
could be large according to Eq.(43). In

such cases (see points A2, A3, A4, A6 and A7, and also see points B4 and C4 in the
intermediate- and high-scale cases, respectively), the main constraint on the model comes
from the lightest chargino mass mχc

1
which currently is bounded to be larger than 103.5

GeV [14]. As emphasized above, to generate a large chargino mass or effective µ, we need
to modify the relative velocities of the RG evolutions of m2

Hu
and m2

N . With η shifted from
∼ 1 to ∼ 2, the RG evolution of m2

Hu
to a negative value is slowed down, but that of m2

N is
speeded up. A negative enough m2

N (ΛEW ) and hence a large enough µ are generated. For the
intermediate- or high-scale cases, because of the increased path length of its RG evolution
and the positivity of its beta function, m2

t̃R
(ΛEW ) becomes relatively small, leading to a

small δm2
h1

. In these two cases (also see points A1, A5, A8 and A9 in the low-scale case),
therefore, the main constraint on the model comes from the lightest CP -even Higgs mass
which currently is bounded by 114.4 GeV [15]. It is easy to see according to Eq.(42) that
a small λ and a large κ is helpful in obtaining a large h1 mass. Let us stress that in the
numerical calculations of this paper, only the dominant one-loop corrections to the Higgs
effective potential have been included. One should worry about the latent negative effects
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on the Higgs masses from the higher-loop corrections which may shift down the mass of
the lightest CP -even Higgs by several GeVs, similar to what happens in the MSSM (e.g.,
see [16]). These negative effects may push the lightest CP -even Higgs boson to values below
the current experimental bound. This can be compensated, within our model, by a slight
shift in η and a corresponding shift upwards of the superparticle masses.

The general gauge mediation model discussed in the present work favors heavy scalars
and gauginos, as well as large values of tanβ: 5 ∼ 50. The heaviness of the scalars and
gauginos of the theory is a reflection of the large values of the effective SUSY breaking
scales Λq,l necessary to fulfill the Higgs and/or chargino mass constraints. The preference
for large values of tan β can be easily understood by analyzing the minimization conditions.
First of all, Bµ is relatively small because the boundary value of the soft parameter Aλ at
the messenger scale is highly suppressed in our model. Then, since the term m2

Hd
(ΛEW ) +

m2
Hu

(ΛEW ) in Eq.(34) is typically larger than the other terms in Eq.(34) (see Table(1), (3),
and (5)), only a relatively large tanβ can suppress the RHS of Eq.(34) to make it match
with a small Bµ. The precise value of tan β depends on the messenger scale. A higher
messenger scale ΛM generally leads to a more negative m2

N(ΛEW ) because of the extended
RG evolution path (actually, the enlarged beta function of m2

N due to a larger η required by
phenomenology also has a contribution.) or a larger κvN according to Eq.(35). According to
Eq.(18) and Eq.(34), this indicates a larger Bµ or equivalently, a smaller tan β. Therefore,
for fixed λ and κ, tan β becomes smaller as ΛM increases. On the other hand, for fixed ΛM ,
a larger tanβ often implies a larger λ or a smaller κ. For fixed κ, a larger λ implies a larger
beta function for m2

N or a more negative m2
N (ΛEW ), so a smaller tanβ can be explained

according to the same argument as that in case. For fixed λ, a smaller κ implies a larger vN

or Bµ according to Eq.(35) and Eq.(18). This then leads to a smaller tan β again according
to Eq(34).

A large tanβ is welcomed in phenomenology, due to its role in explaining the mass
hierarchy of top and bottom quarks or realizing the unification of their Yukawa couplings
(e.g., see [17]). In our model, relatively large values of tanβ bring us more than that, since it
helps in avoiding an unacceptably light chargino: in the mass formula of the lightest chargino
Eq.(41), the corrections at the order O( µ

M2
) contain a negative contribution

O
(

µ

M2

)

" −
2µ

|M2|
m2

W sin 2β, (46)

which is suppressed by a large tan β. Moreover, a relatively large tanβ plays a crucial role
in the solution of the light U(1)R peudoscalar problem.

As first pointed out in [6], small |Aλ(ΛEW )| and |Aκ(ΛEW )| (compared to ΛEW ) induce
the presence of a light pseudoscalar. In this limit, the mass of the lightest CP -odd Higgs
boson is approximately given by (e.g., see [18]):

m2
a1

= 3vN

(

3λAλ cos2 θA

2 sin 2β
+ κAκ sin2 θA

)

+ O
(

Aλ

v
,
Aκ

v

)

, (47)

where
a1 = cos θA AMSSM + sin θA AN (48)
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with AMSSM and AN being the doublet and singlet CP -odd gauge eigenstates, respectively,
and 0 ≤ θA ≤ π

2
being their mixing angle. Depending on its composition, a light pseudoscalar

may be in conflict with the strong LEP bounds. As extensively discussed in the literature,
this light pseudoscalar should be understood as the Nambu-Goldstone boson of the global
U(1)R symmetry, since Aλ(ΛEW ) and Aκ(ΛEW ) represent the only two terms explicitly vi-
olating this symmetry. However, from Table (1)-(8), it is easy to see that there is no such
a problem in our model: for the intermediate- and high-scale gauge-mediations, |Aλ(ΛEW )|
is typically large, compared to ΛEW ; for the low-scale case, even though |Aλ(ΛEW )| and
|Aκ(ΛEW )| are small (except point A8), the light pseudoscalar is extremely singlet-like (see
Table(7)), escaping the experimental constraints successfully.

These features are due to η and the relatively large tanβ again. Consider the strongly
coupled RG evolutions of At, Ab and Aλ (see RG equations (A.12), (A.13) and (A.15)). At
the messenger scale we have At(ΛM) ∼ Ab(ΛM) ∼ Aλ(ΛM) ∼ 0 in our model. A larger
η implies more negative contributions to the beta functions according to the EW gaugino
soft masses, and less negative contributions according to the gluino soft mass. Since the
latter is absent in the beta function of Aλ, but contributing to those of At and Ab, a large η
necessarily leads to a larger Aλ(ΛEW ), as long as the evolution pathes are long enough. This
explains the relatively large Aλ(ΛEW ) and large U(1)R peudoscalar masses in the contexts of
the intermediate- and high-scale general gauge mediations. Unlike these two cases, the U(1)R

peudoscalar is still light in the low-scale case (except point A8) due to the short RG evolution
path for Aλ. A relatively large tanβ plays a crucial role in avoiding the experimental bound
here. As shown in [18], the mixing angle θA of the U(1)R pseudoscalar a1 satisfies

tan θA =
vN

v sin 2β
+ O(

Aλ

v
,
Aκ

v
) (49)

under the limit of small Aλ(ΛEW ) and Aκ(ΛEW ). Obviously, a relatively large tanβ implies

θA ≈
π

2
(50)

and hence an extremely singlet-like U(1)R pseudoscalar a1 (see Table(7)). This is also true
for the few examples in the intermediate-scale general gauge mediation (points B1, B2 and
B3 in Table (7)). The light U(1)R pseudoscalar problem, therefore, is no longer a problem
in our model.

To end this section, let us take a look at the possible range of λ and κ at the EW
scale in the NMSSM. The most serious constraint is from the requirement of λ and κ to
be perturbative up to the GUT scale. For the case where the gauge couplings are the only
possible tree-level interactions between the observable and messenger sectors, the boundary
between the perturbative and non-perturbative regions has been drawn in Fig.(1), with
ht(ΛEW ) = 0.95, hb(ΛEW ) = 0.5 and ΛM = 1011 GeV. From the figure, it is easy to see
that both large λ(ΛEW ) and large κ(ΛEW ) regions have been excluded, and the only allowed
region is located in the lower-left corner of the λ(ΛEW )−κ(ΛEW ) plane. The boundary in the
figure depends on the Yukawa couplings as well as the messenger scale. But this dependence
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Singlet like CP-even Higgs boson acquires a mass approximately equal to

 This is, in general, larger than the would be MSSM lightest CP-even Higgs. 
Both states mix, with a term equal to 

Then, for large values of             and large                ,  and ignoring 
relatively small stop mixing effects, one gets,

what impliest rather heavy stops in order to avoid LEP bounds.  

For high energy gauge mediated models,  the SU(2) singlet stop may be 
lighter than 1 TeV, but then the heaviest stop should be heavier than a few 
TeV

The lightest CP-even Higgs is SM-like but, as emphasized before, it may 
decay into two CP-odd Higgs bosons.  

CP-even Higgs Bosons

m2
H2

= 4 κ2 v2
N

2 λ v vN

tanβ vN ! v

m2
H1

= M2
Z −

λ2v2

κ2
+ loop corrections



Energy Scale, Spectrum and Collider 
Phenomenology

We considered low scale, intermediate scale and high scale gauge 
mediated models. The three are distinguished by the length of the RG 
running.  In the latest cases we assume negligible hidden sector effects.

We considered nine characteristic points, within the perturbative region 
for the three cases considered

Figure 1: Boundary between the perturbative and the non-perturbative regions on the
λ(ΛEW )−κ(ΛEW ) plane. In the perturbative region (blank one), λ and κ keep perturbative
up to the GUT scale. The stars on the plane denote the sample points we are studying. The
boundary has a weak dependence on Yukawa couplings and the messenger scale. Here we
set ht(ΛEW ) = 0.95, hb(ΛEW ) = 0.5 and ΛM = 1011 GeV.
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Table 1: Parameters of the low-scale general gauge mediation.

Input Parameters
Pts λ(ΛEW ) κ(ΛEW ) ΛM (GeV) η
A1 0.15 0.075 2.50 × 105 2.1160
A2 0.15 0.15 5.00 × 105 2.2708
A3 0.15 0.40 5.00 × 106 2.5151
A4 0.15 0.60 2.00 × 107 2.7869
A5 0.30 0.20 2.50 × 105 1.9356
A6 0.30 0.40 2.50 × 105 2.1383
A7 0.30 0.55 5.00 × 105 2.2800
A8 0.45 0.35 2.00 × 106 2.2509
A9 0.45 0.50 2.50 × 105 2.1083

Soft SUSY-breaking Parameters at the EW Scale (GeV or GeV2)
Pts M1,2,3 m2

Hd
m2

Hu
m2

N Aλ Aκ

A1 888.7, 2225.8, 3518.0 −1.88 × 106 −7.58 × 106 −1.55 × 104 -5.0 0.7
A2 1087.3, 2768.7, 4076.2 −5.61 × 106 −1.04 × 107 −2.24 × 104 -34.0 1.0
A3 3561.3, 9274.7, 12311.1 −9.01 × 107 −1.18 × 108 −2.07 × 105 -268.9 5.0
A4 3792.8, 10085.2, 12069.8 −8.80 × 107 −1.15 × 108 −3.55 × 105 -241.4 7.3
A5 1176.0, 2881.1, 4978.1 −1.71 × 105 −1.71 × 107 −9.29 × 104 7.7 4.1
A6 906.6, 2276.4, 3560.4 −2.63 × 106 −7.72 × 106 −5.66 × 104 -13.3 2.8
A7 1055.3, 2689.6, 3943.7 −4.27 × 106 −9.83 × 106 −8.27 × 104 -24.0 3.8
A8 2070.8, 5262.9, 7810.5 3.62 × 107 −5.04 × 107 −1.93 × 106 219.1 37.9
A9 898.7, 2248.9, 3567.5 3.14 × 106 −8.05 × 106 −2.20 × 105 45.6 8.3

Output Parameters
Pts ht, hb Λq (GeV) tanβ µ (GeV) Bµ (GeV2)
A1 0.949, 0.753 3.90 × 105 43.57 173.8 1.41 × 104

A2 0.948, 0.833 4.52 × 105 48.44 105.1 7.38 × 103

A3 0.948, 0.880 1.37 × 106 51.05 121.8 6.55 × 103

A4 0.948, 0.882 1.34 × 106 52.41 106.0 1.92 × 104

A5 0.949, 0.637 5.46 × 105 36.93 321.8 7.11 × 104

A6 0.948, 0.780 3.95 × 105 45.30 124.2 1.88 × 104

A7 0.948, 0.809 4.38 × 105 46.89 109.9 1.94 × 104

A8 0.950, 0.307 8.68 × 105 17.80 1276.6 1.54 × 106

A9 0.949, 0.533 2.50 × 105 30.87 296.7 1.11 × 105

24



Table 2: Mass spectrum of particles and superparticles in the low-scale general gauge medi-
ation.

Particle Masses (TeV)
Pts mg̃ mt̃1,2

mb̃1,2
mτ̃1,2

A1 3.44 5.55, 6.36 5.86, 6.35 0.80, 2.84
A2 3.95 6.37, 7.36 6.60, 7.35 0.89, 3.53
A3 11.17 18.63, 22.24 19.08, 22.24 2.27, 11.90
A4 10.98 17.78, 22.18 18.26, 22.18 1.67, 12.98
A5 4.76 7.89, 8.98 8.54, 8.97 1.14, 3.69
A6 3.48 5.62, 6.42 5.89, 6.42 0.80, 2.90
A7 3.83 6.16, 7.14 6.43, 7.14 0.88, 3.43
A8 7.30 12.01, 14.72 14.15, 14.72 2.33, 6.85
A9 3.49 5.63, 6.57 6.23, 6.57 0.92, 2.88

Particle Masses (GeV)
Pts mχc

1
mχ0

1
mh1,2,3 ma1,2

A1 173.4 155.8 118.3, 187.3, 1751.6 15.7, 1751.6
A2 105.0 103.7 136.6, 211.1, 1616.8 20.3, 1616.8
A3 121.7 121.7 152.6, 644.3, 3544.8 71.3, 3544.8
A4 106.0 105.8 152.4, 843.6, 3564.4 98.0, 3564.3
A5 321.4 311.1 117.4, 433.3, 2825.2 53.8, 2825.1
A6 123.9 119.8 133.1, 331.2, 1656.8 43.3, 1656.7
A7 109.7 107.1 137.5, 401.8, 1754.8 54.3, 1754.6
A8 1276.2 1272.4 116.2, 1973.2, 6596.7 337.4, 6596.6
A9 296.1 289.8 121.9, 659.6, 2430.1 96.1, 2429.9
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Table 3: Parameters of the intermediate-scale general gauge mediation.

Input Parameters
Pts λ(ΛEW ) κ(ΛEW ) ΛM (GeV) η
B1 0.15 0.075 1.00 × 1011 4.180
B2 0.15 0.15 1.00 × 1011 4.512
B3 0.15 0.40 1.00 × 1011 4.292
B4 0.15 0.60 1.00 × 1011 4.126
B5 0.30 0.20 1.00 × 1011 3.981
B6 0.30 0.40 1.00 × 1011 4.360
B7 0.30 0.55 1.00 × 1011 4.620
B8 0.45 0.35 1.00 × 1011 4.019
B9 0.45 0.50 1.00 × 1011 4.542

Soft SUSY-breaking Parameters at the EW Scale (GeV or GeV2)
Pts M1,2,3 m2

Hd
m2

Hu
m2

N Aλ Aκ

B1 781.9, 2225.5, 1762.6 7.98 × 106 −2.23 × 106 −1.42 × 105 379.6 11.6
B2 443.3, 1274.9, 935.4 1.82 × 106 −4.37 × 105 −4.41 × 104 177.8 6.2
B3 1177.2, 3362.9, 2593.9 2.41 × 106 −4.34 × 106 −2.19 × 105 215.8 13.1
B4 2138.5, 6076.2, 4875.4 3.85 × 106 −1.76 × 107 −4.93 × 105 229.8 19.5
B5 1360.7, 3846.7, 3199.0 2.63 × 107 −9.56 × 106 −1.66 × 106 649.5 80.0
B6 762.0, 2181.3, 1656.3 7.41 × 106 −1.89 × 106 −5.00 × 105 357.5 42.7
B7 475.6, 1371.9, 983.1 2.46 × 106 −5.17 × 105 −1.73 × 105 205.9 24.4
B8 1678.7, 4752.2, 3914.6 3.95 × 107 −1.66 × 107 −5.37 × 106 730.5 214.8
B9 747.1, 2150.0,1567.1 7.86 × 106 −1.96 × 106 −1.04 × 105 356.4 92.8

Output Parameters
Pts ht, hb Λq (GeV) tanβ µ (GeV) Bµ (GeV2)
B1 0.950, 0.331 1.98 × 105 19.11 541.4 3.51 × 105

B2 0.949, 0.550 1.05 × 105 31.88 150.3 4.91 × 104

B3 0.949, 0.780 2.91 × 105 45.17 126.0 6.92 × 104

B4 0.948, 0.832 5.47 × 105 48.15 126.2 9.22 × 104

B5 0.953, 0.183 3.59 × 105 10.57 1406.6 2.22 × 106

B6 0.949, 0.340 1.86 × 105 19.62 384.5 3.33 × 105

B7 0.949, 0.465 1.10 × 105 26.97 163.5 8.23 × 104

B8 0.957, 0.125 4.39 × 105 7.16 2188.5 5.30 × 106

B9 0.953, 0.173 1.76 × 105 10.03 673.5 7.40 × 105

26



Table 4: Mass spectrum of particles and superparticles in the intermediate-scale general
gauge mediation.

Particle Masses (TeV)
Pts mg̃ mt̃1,2

mb̃1,2
mτ̃1,2

B1 1.82 1.98, 4.03 3.23, 4.02 0.90, 3.07
B2 1.00 0.98, 2.16 1.56, 2.16 0.32, 1.74
B3 2.61 2.84, 5.58 3.59, 5.58 1.00, 4.49
B4 4.72 5.52, 10.16 6.42, 10.16 2.11, 8.07
B5 3.19 3.69, 7.21 6.04, 7.21 1.75, 5.34
B6 1.72 1.79, 3.86 3.02, 3.85 0.87, 3.01
B7 1.05 1.00, 2.33 1.71, 2.32 0.45, 1.88
B8 3.86 4.42, 8.87 7.44, 8.87 2.20, 6.60
B9 1.63 1.60, 3.76 2.96, 3.75 0.97, 2.98

Particle Masses (GeV)
Pts mχc

1
mχ0

1
mh1,2,3 ma1,2

B1 540.3 520.5 121.4, 536.5, 2931.9 97.1, 2931.9
B2 149.4 144.7 121.1, 297.6, 1416.9 54.0, 1416.9
B3 125.9 124.4 135.3, 663.8, 2367.7 115.8, 2367.6
B4 126.1 125.4 142.2, 997.6, 3227.7 172.5, 3227.6
B5 1405.5 1342.6 120.6, 1843.4, 5383.5 473.7, 5383.4
B6 383.7 380.6 126.1, 1009.0, 2803.2 192.7, 2136.1
B7 162.6 159.3 122.0, 590.0, 1623.6 150.5, 1623.3
B8 2187.3 1676.5 117.7, 3331.0, 6768.7 1045.5, 6768.5
B9 671.8 658.9 118.6, 1464.2, 2911.0 457.8, 2910.5

27



Table 5: Parameters of the high-scale general gauge mediation.

Input Parameters
Pts λ(ΛEW ) κ(ΛEW ) ΛM (GeV) η
C1 0.15 0.075 1.00 × 1015 4.695
C2 0.15 0.15 1.00 × 1015 4.980
C3 0.15 0.40 1.00 × 1015 5.060
C4 0.15 0.60 1.00 × 1015 4.930
C5 0.30 0.20 1.00 × 1015 4.639
C6 0.30 0.40 1.00 × 1015 5.110
C7 0.30 0.55 1.00 × 1015 5.240
C8 0.45 0.35 1.00 × 1015 4.755
C9 0.45 0.50 1.00 × 1015 5.560

Soft SUSY-breaking Parameters at the EW Scale (GeV or GeV2)
Pts M1,2,3 m2

Hd
m2

Hu
m2

N Aλ Aκ

C1 864.5, 2506.8, 1749.5 1.26 × 107 −2.73 × 106 −2.96 × 105 742.4 32.1
C2 628.2, 1834.5, 1207.0 5.67 × 106 −9.95 × 105 −1.54 × 105 498.5 22.8
C3 833.5, 2438.6, 1579.2 3.85 × 106 −1.57 × 106 −2.01 × 105 392.7 24.6
C4 1469.9, 4287.5, 2849.6 3.34 × 106 −5.76 × 106 −3.79 × 105 466.2 33.2
C5 1103.6, 3195.32, 2257.0 2.07 × 107 −5.90 × 106 −1.86 × 106 877.1 161.5
C6 742.4, 2174.7, 1394.5 9.02 × 106 −1.59 × 106 −7.82 × 105 608.1 101.4
C7 705.1, 2071.2, 1295.2 7.34 × 106 −1.24 × 106 −5.69 × 105 549.1 84.3
C8 1981.9, 5755.8, 3966.3 6.35 × 107 −2.35 × 107 −1.21 × 107 1332.5 611.7
C9 781.5, 2310.7, 1361.8 9.85 × 106 −2.04 × 106 −1.67 × 106 586.9 222.2

Output Parameters
Pts ht, hb Λq (GeV) tanβ µ (GeV) Bµ (GeV2)
C1 0.951, 0.220 1.98 × 105 12.63 792.6 8.99 × 105

C2 0.949, 0.391 1.37 × 105 22.64 285.4 2.23 × 105

C3 0.948, 0.702 1.79 × 105 40.79 122.3 8.75 × 104

C4 0.948, 0.794 3.23 × 105 46.05 112.8 1.03 × 105

C5 0.958, 0.124 2.56 × 105 7.10 1524.2 2.87 × 106

C6 0.951, 0.233 1.58 × 105 13.47 492.5 6.20 × 105

C7 0.949, 0.342 1.47 × 105 19.86 306.8 3.38 × 105

C8 0.967, 0.087 4.49 × 105 4.99 3406.1 1.35 × 107

C9 0.958, 0.123 1.54 × 105 7.09 891.2 1.39 × 106
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Table 6: Mass spectrum of particles and superparticles in the high-scale general gauge me-
diation.

Particle Masses (TeV)
Pts mg̃ mt̃1,2

mb̃1,2
mτ̃1,2

C1 1.80 1.17, 4.37 3.33, 4.37 1.18, 3.68
C2 1.27 0.61, 3.07 2.15, 3.06 0.68, 2.67
C3 1.63 0.68, 3.82 2.08, 3.81 0.89, 3.43
C4 2.84 1.54, 6.61 3.14, 6.61 2.08, 5.95
C5 2.29 1.48, 5.62 4.37, 5.61 1.59, 4.71
C6 1.46 0.52, 3.65 2.64, 3.65 1.00, 3.19
C7 1.36 0.31, 3.41 2.36, 3.40 0.84, 3.02
C8 3.90 2.07, 9.98 7.71, 9.98 2.89, 8.48
C9 1.43 0.71, 3.76 2.64, 3.76 1.14, 3.40

Particle Masses (GeV)
Pts mχc

1
mχ0

1
mh1,2,3 ma1,2

C1 791.3 768.6 120.7, 777.4, 3665.7 194.8, 3665.7
C2 284.6 280.6 122.2, 559.6, 2443.0 139.6, 2442.9
C3 122.1 119.9 126.8, 639.4, 2207.5 155.3, 2207.4
C4 112.7 111.6 134.2, 878.8, 2792.8 211.2, 2792.7
C5 1522.3 1101.0 116.6, 1972.0, 4872.1 698.9, 4871.9
C6 491.3 486.7 121.2, 1274.9, 3068.7 446.3, 3068.4
C7 306.0 303.1 120.4, 1086.4, 2765.9 376.0, 2765.6
C8 3404.4 1981.1 120.1, 5084.2, 8909.4 2193.7, 8909.2
C9 889.0 771.4 117.2, 1884.6, 3306.1 806.7, 3305.3
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Table 7: Composition of light Higgs bosons (≤ 115GeV). Here “Re” and “Im” denote the real
and imaginary components of the neutral Higgs fields, respectively. All light Higgs bosons
appearing in this paper are CP -odd, related to the explicitly breaking of the global U(1)R

symmetry. However, all of them can satisfy the current experimental bounds since they are
extremely singlet-like.

Composition of Light Higgs Bosons (LHB)
Pts LHBs Im(Hd) Im(Hu) Im(N)
A1 a1 −1.2 × 10−3 −8.8 × 10−4 0.999999
A2 a1 −2.0 × 10−3 −1.1 × 10−5 0.999998
A3 a1 −2.2 × 10−3 9.4 × 10−4 0.999997
A4 a1 −2.1 × 10−3 −7.5 × 10−5 0.999998
A5 a1 −2.0 × 10−4 3.3 × 10−5 > 0.9999995
A6 a1 1.3 × 10−4 −1.7 × 10−6 > 0.9999995
A7 a1 1.1 × 10−4 6.1 × 10−5 > 0.9999995
A9 a1 4.6 × 10−3 1.2 × 10−4 0.999989
B1 a1 −7.0 × 10−5 −1.0 × 10−5 > 0.9999995
B2 a1 3.8 × 10−4 1.7 × 10−5 > 0.9999995

Table 8: Composition of the lightest neutralino or the NLSP in the low-scale general gauge
mediation.

Composition of Lightest Neutralinos
Pts B̃ W̃ 0 H̃d H̃u Ñ
A1 0.021 -0.017 -0.451 -0.515 0.728
A2 -0.026 0.020 0.678 0.713 -0.173
A3 0.009 -0.006 0.710 -0.704 -0.024
A4 0.009 -0.006 0.710 -0.704 -0.019
A5 -0.020 0.017 0.658 0.687 -0.308
A6 -0.030 0.024 0.671 0.721 -0.172
A7 -0.027 0.020 0.679 0.722 -0.124
A8 -0.009 0.009 0.703 0.706 -0.083
A9 -0.026 0.022 0.686 0.711 -0.152
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Collider Signatures
Low scale supersymmetry breaking all squarks and sleptons too heavy to 
be produced at the Tevatron or LHC.  

Light charginos and neutralinos  Higgsino-like and close in mass.

Gravitino lightest SUSY particle  

Observe that the Higgs, in some of the cases studied, tends to decay into 
two CP-odd Higgs bosons of intermediate mass, about half of Mz. 

Such a Higgs can also be studied in standard production channels at the 
Tevatron and the LHC

is very weak: there is only a mild shift as these parameters vary in the region in which we
are interested. The stars on the λ(ΛEW ) − κ(ΛEW ) plane denote the sample points we are
studying in this paper. It is easy to see that these points cover almost the whole perturbative
region on the λ(ΛEW )− κ(ΛEW ) plane. In particular, all of them lead to reasonable particle
mass spectra which satisfy the current experimental bounds5. Therefore, the µ/Bµ problem
is solved in the context of the general gauge mediated SUSY breaking model analyzed in
this work.

4 Collider Signals

Although a detailed analysis of the collider signatures of these models is beyond the scope
of this article, we would like to stress some relevant properties of these models and their
associated phenomenology.

For the low scale gauge mediation, all colored particles are very heavy and therefore
very difficult to detect at hadron colliders. One promising way to test these models is by
analyzing the production and two-body decay of the next-to-lightest superparticle (NLSP)
to gravitino (G̃α) which is described by

L ∼
1

F
∂µG

αjµ
α + h.c., (51)

Here
√

F is the SUSY breaking scale, and jµ
α is the supercurrent. In our model, the NLSP

generally is the lightest neutralino which is typically Higgsino-like, and in most cases whose
mixing with singlino is suppressed (see Table(8) for the case with low-scale gauge mediation).
So the most important experimental signature would be the di-Z and di-h1 productions (if
allowed by phase space)

χ0
1 → ZG̃ : ZZ + X+ %E

χ0
1 → h1G̃ : h1h1 + X+ %E (52)

here X is any collection of leptons and jets, and %E denotes the missing energy. Explicitly,
under the Higgsino-like limit (with the mixing with the singlino suppressed), the decay rates
to Z-boson and h1 are given by [19]

Γ(χ0
1 → ZG̃) ≈

1

2
|cH̃d

cos β + cH̃u
sin β|2

m5

χ0
1

16πF 2



1 −
m2

Z

m2

χ0
1





4

,

Γ(χ0
1 → h1G̃) ≈

1

2
|cH̃d

sin α − cH̃u
cos α|2

m5

χ0
1

16πF 2



1 −
m2

h1

m2

χ0
1





4

. (53)

5Actually, if the requirements of perturbativity (up to ΛGUT ) for the couplings are given up, the nice
features of these examples could be extended into the non-perturbative region on the λ(ΛEW ) − κ(ΛEW )
plane as long as these couplingss stay perturbative at the messenger scale.
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• Intermediate scale scenarios: Lighter gluino, still heavy 
scalars.

• NLSP is long lived at detector level. Small gap between 
chargino and neutralino make trilepton signals impractical. 
Best channels:

• High scale scenario: Gluino and lightest stop at the reach of 
LHC.  Stop mainly right-handed, which can decay into 
charginos or neutralinos

• Four top signatures, plus missing energy. They deserved to 
be study in much more detail !

even if kinematically allowed, is also suppressed by a F−2 factor. In such a case, the stop may
have interesting implications on both cosmology and collider signatures. For more details,
readers may refer to [30].

As for the intermediate-scale scenario, even though an abundant production of gluinos
at LHC is also expected for many cases, the mass of the lightest stop is typically larger than
that of gluinos. Whenever the gluino mass is within kinematic reach of the LHC, they will
decay only through off-shell squarks

g̃ → qq′χ0
i , g̃ → qq′χc

i . (57)

Since the neutralinos and charginos appearing in the intermediate states have multiple de-
cay modes, there will be many competing gluino decay chains whose branching ratios are
quite sensitive to the parameters of this model. Interested readers may refer to [31] and its
references.

5 Discussions and Conclusions

The general gauge mediation provides a simple way to solve the µ/Bµ problem in the
NMSSM. In this context, reasonable values for µ/Bµ can be generated by properly mod-
ifying the RG evolutions of m2

Hu
and m2

N by a choice of η window. The EW scale is then
stabilized, and phenomenologically interesting spectra of particles and superparticles are
also achieved. These features apply to most of the perturbative (up to the GUT scale)
λ− κ parameter region in the NMSSM and to all phenomenologically interesting messenger
scales. In addition, there is no light U(1)R pseudoscalar problem in our model. For the
intermediate- and high-scale gauge-mediations, due to a relatively heavy spectrum of gaugi-
nos, large |Aλ(ΛEW )| or |Aκ(ΛEW )|, comparable with ΛEW are typical, so the lightest Higgs
pseudoscalar is not too light. For the low-scale case, even though |Aλ(ΛEW )| and |Aκ(ΛEW )|
are not always large, the lightest Higgs pseudoscalar is extremely singlet-like due to a rel-
atively large tan β favored by our model, escaping the experimental constraints on a light
Higgs boson.

It is worth emphasizing that the introduction of the parameter η does not affect
the successful prediction of the gauge coupling unification at the GUT scale. Recall the
threshhold corrections to the gauge coupling unification due to the little hierarchy between
the EW scale and the soft SUSY breaking scale, where Λsoft

ΛEW
∼ 10 and many charged particle

species are involved. In the general gauge mediation scenario described in this article, the
correction to the prediction of α3(MZ) induced by the messenger threshold corrections may
be estimated by

∆α3(MZ) $
9

14π
α3(MZ)2 ln

(

〈Sq〉
〈Sl〉

)

(58)

On the other hand, the introduction of η also modifies the sparticle threshold corrections,
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Here cH̃d
and cH̃u

are composition coefficients of χ0
1, and α is the h1−h2 Higgs mixing angle.

If the singlino component of χ0
1 is not small, e.g., at A1 point, the di-a1 decay can also provide

useful collider signals. Note that in our model independently of that 〈Sq〉 ∼ 〈Sl〉 ∼ ΛM or

〈Sq〉 ∼ η〈Sl〉 ∼ Λ2
M/〈Sl〉 is assumed, we typically have

√
F ∼

√

FqFl between a few 105

GeV and a few 106 GeV, which implies non-prompt di-boson decays [20]. This is important
since the background for any of the final state signatures can be greatly reduced (due to the
displaced vertices and distinguished angular distribution of the displaced jets from Z or h1

decays) if the χ0
L decay is non-prompt but contained in the tracking region.

It is also important to stress that in the low scale gauge mediated scenario, the
Higgs decays may be affected by the presence of the light pseudoscalars, a1. Although the
lightest pseudoscalar is mostly a singlet state (see Table 7), it will decay into bottom quark
and τ pairs through its mixing with the pseudoscalar component of the Higgs doublet Hd.
Therefore, the Higgs decay into two a1 states will induce decays into either four bottom
quarks, two bottom quark and two τ ’s, or four τ ’s final states. The final signatures of the
di-h1 channel in 52, necessarily, will also be affected. In all the scenarios we presented, the
lightest CP-even Higgs is sufficiently heavy as to evade the stringent LEP constraints on a
light CP-even Higgs decaying into four bottom quark final states [27]. The presence of these
new decay channels will demand new strategies for the search for CP-even Higgs bosons at
the Tevatron and the LHC, as has been recently analyzed in Refs. [28].

The gravitino collider signals are seriously suppressed for intermediate- and high-
scale gauge mediations, since the neutralino lifetime will be enhanced by the factor F 2

and therefore it will decay beyond the detector. Moreover, whenever light, the charged
and neutral Higgsinos would be approximately degenerate in mass and therefore difficult to
detect by direct production at hadron colliders. However, colored particles become lighter
and therefore they provide the most important search channels at the LHC. In the high-scale
case, the gluino mass mg̃ is typically around 1.5 TeV or even smaller, implying an abundant
production of gluinos at LHC, according to the gluino (g̃) pair production

pp → g̃g̃. (54)

Meanwhile, given that the lightest stop t̃1 is mainly right-handed and much lighter than
gluino in this case, one could expect to see the signatures at LHC according to the decaying
channels

g̃ → tt̃1 → ttχ0
1,

g̃ → tt̃1 → tbχc
1. (55)

Therefore, the final state will be given by four top quarks or two top and two bottom quarks
with large missing energy. An analysis of similar gluino decay channels at the LHC has been
performed in Ref. [29]. Even though we typically have mχ0

1
< mt̃1 in the high-scale scenario,

C9 point is an exception, where t̃1 is lighter than χ0
1 and τ̃1. The light stop t̃1 is long-lived

because its two-body decay to gravitino

t̃1 → tG̃, (56)
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Unification of Couplings
• The value of gauge couplings evolve with scale according to the

corresponding RG equations:

1
αi(Q)

=
bi

2π
ln

(
Q

MZ

)
+

1
αi(MZ)

(8)

• Unification of gauge couplings would occur if there is a given scale at
which couplings converge.

1
α3(MZ)

=
b3 − b2

b1 − b2

1
α1(MZ)

+
b3 − b1

b2 − b1

1
α2(MZ)

(9)

• This leads to a relation between α3(MZ) and

sin2 θW (MZ) = αSM
1 /

(
αSM

1 + αSM
2

)
.

13



Results for the MSSM

Only hint comes from Unification of Couplings

Valules of            of order 1 TeV preferred.  For this, gluino 
mass should be of the order of the wino mass. Standard 
relation leads to large values of the strong gauge coupling, 
which may be only accomodated with GUT threshold effects. 

TSUSY

α3(MZ) ! 0.125− 19 α2
3(MZ)

28π
ln

(
TSUSY

MZ

)

TSUSY ! |µ|
(

MW̃

Mg̃

)3/2
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Additional Thresholds
In this case, gluino becomes of the order or lighter than wino, which 
improves the unification prediction

However, additional threshold exists, associated with the messenger 
sector                                                          ,

which should be added to 

In the case that                                        then 

Alternatively, for                   and 

In both cases, corrections are negative, leading to a better unification 
prediction than in the             case 

even if kinematically allowed, is also suppressed by a F−2 factor. In such a case, the stop may
have interesting implications on both cosmology and collider signatures. For more details,
readers may refer to [30].
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On the other hand, the introduction of η also modifies the sparticle threshold corrections,
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One could compute the difference in the prediction of α3(MZ) with respect to the
case η = 1. Let us consider two cases. In the first one, the ratio of effective SUSY breaking
scales Λl/Λq ∼ 〈Fl〉/〈Fq〉 ! η, and therefore 〈Sq〉/〈Sl〉 ∼ 1. In such a case,

∆ηα3(MZ) ! −
57

56π
α2

3(MZ) ln η. (60)

Alternatively, one can consider 〈Fq〉 ∼ 〈Fl〉 and therefore 〈Sq〉/〈Sl〉 ! η. In this case,

∆ηα3(MZ) ! −
21

56π
α2

3(MZ) ln η. (61)

In both cases, the total correction is negative, leading, for η ! 2–6 to a somewhat better
agreement between the predicted and measured values of α3(MZ) than in the η = 1 case 6.

One interesting feature on this model is the arising of one physical CP -phase according
to the gaugino soft masses. In the NMSSM with general gauge mediation, there are four
independent complex parameters: λ, κ, and two of the soft gaugino masses M1, M2 and
M3. Among them, the phase of λ is not physical and can be resolved by the CKM matrix.
In addition, κ and gaugino soft mass are not invariant under the Peccei-Quinn symmetry
and U(1)R symmetry, respectively. The phase of κ and one phase in the gaugino mass
sector hence can be rotated away. So there is one physical phase left in the soft mass sector
of gauginos. On the other hand, it is well-known that the CKM phase is not enough and
extra CP -violating sources are required to explain the origin of the baryon asymmetry in the
Universe today. The physical CP phase appearing in our model may provide a nice chance to
understand this cosmic mystery. For example, in the EW baryogenesis mechanism (see [22]
for a review or [23] for its realization in different supersymmetric models), such a phase may
induce a net amount of left-chiral weak fermions during the EW phase transition, which
is then switched to the baryon asymmetry in the Universe according to the EW sphaleron
effect. But, the same as the CP phases appearing in any other supersymmetric models, the
physical CP -phase in our model also needs to satisfy the EDM bounds of electron, neutron
and mercury atoms. Since the masses of the first two family squarks in our model are typically
heavier than 2−3 TeV, it might be viable to suppress its one-loop contributions to the EDMs
according to the heavy squark mechanism [24]. In addition, it is claimed recently [25] that
in a context similar to ours, a large CP -phase of order O(1) can be consistent with all EDM
bounds according to some cancellation effects, with no necessity to require the squarks of
the first two families to be heavy.

6Successful unification in the η = 1 case requires the threshold scale |µ|(α2/α3)3/2 ! 1TeV .
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CP-Violating Phases

It is easy to count the number of phases that may be elliminated by field 
redefinition in this model

One can show that a physical phase, beyond the one appearing in the SM 
appears, and may be related to the relative phase of the gaugino masses

New phases are necessary in order to implement the mechanism of 
electroweak baryogenesis

Heavy scalars help in preventing problems with electric dipole moments

Claim in the literature that, under precisely these conditions, constraints 
may be avoided even for lighter scalars in our framework.

arg (M∗
2 M3)
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Conclusions

The so-called                   in supersymmetric theories is intimately 
related to electroweak symmetry breaking

A relation between a supersymmetric mass parameter and 
supersymmetry breaking terms must be enforced

This solution should appear in a framework that leads to a solution to 
the flavor problem. Gauge mediation provides such a framework. 

We have explored the possibility of solving the problem in a simple 
modification of minimal gauge mediation

Heavy scalars and gauginos are required, and there are interesting 
phenomenological consequences

Unification conditions are improved and a physical phase appears in 
the spectrum

Dark matter, among other questions, must be explored
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Higgs Fields

• Two Higgs fields with opposite hypercharge.
(S = 0) (S = 1/2)
H1 H̃1 (1,2,-1/2)
H2 H̃2 (1,2,1/2)

• Both Higgs fields acquire v.e.v. New parameter, tanβ = v2/v1.

• It is important to observe that the quantum numbers of H1 are
exactly the same as the ones of the lepton superfield L.

• This means that one can extend the superpotential P [Φ] to contain
terms that replace H1 by L.
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Baryon and Lepton Number Violation

• General superpotential contains, apart from the Yukawa couplings of
the Higgs to lepton and quark fields, new couplings:

P [Φ]new = λ′ LQD + λ LLE + λ′′ UDD (41)

• Assigning every lepton chiral (antichiral) superfield lepton number 1
(-1) and every quark chiral (antichiral) superfield baryon number 1/3
(-1/3) one obtains :

– Interactions in P [Φ] conserve baryon and lepton number.

– Interactions in P [Φ]new violate either baryon or lepton number.

• One of the most dangerous consequences of these new interaction is
to induce proton decay, unless couplings are very small and/or
sfermions are very heavy.
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Proton Decay

s or b

d

u

u u

L

Q
λ′′ λ′

• Both lepton and baryon number violating couplings involved.

• Proton: Lightest baryon. Lighter fermions: Leptons
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R-Parity

• A solution to the proton decay problem is to introduce a discrete
symmetry, called R-Parity. In the language of component fields,

RP = (−1)3B+2S+L (42)

• All Standard Model particles have RP = 1.

• All supersymmetric partners have RP = −1.

• All interactions with odd number of supersymmetric particles, like
the Yukawa couplings induced by P [Φ]new are forbidden.

• Supersymmetric particles should be produced in pairs.

• The lightest supersymmetric particle is stable.

• Good dark matter candidate. Missing energy at colliders.
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