Effective theory approach for electroweak boson interactions

Celine Degrande IPPP, University of Durham

KITP, May 2016

Plan

- Introduction to EFT
- EFT for EW bosons
- Implementation in MC tools
- Concluding remarks

What if the new physics is heavy?

C. Degrande

What if the new physics is heavy?

direct detection of new d.o.f as resonance, ...

Indirect detection of new d.o.f as new/modified interaction between SM fields

Fermi theory: $M_{w} \gg m_{b}$ Easier full theory

Use EFT without knowing the full theory
Low energy at the LHC : $\Lambda^{2} \ll p^{2}$

Effective Field Theory

Parametrize any NP but an ∞ number of coefficients

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{d>4} \sum_{i} \frac{C_{i}}{\Lambda^{d-4}} \mathcal{O}_{i}^{d}
$$

- Assumption : $\mathrm{E}_{\text {exp }} \ll \Lambda$

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{6} \quad \begin{gathered}
\text { a finite number of } \\
\text { coefficients =>Predictive! }
\end{gathered}
$$

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP

EFT : Example

$$
\left.|M(x)|^{2}=\overline{\left|M_{S M}(x)\right|^{2}}+\overline{2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)}+\begin{array}{c}
\left|M_{d 6}(x)\right|^{2}+\ldots \\
\Lambda^{0}
\end{array}\right]
$$

Should not be included, be small Error estimate

- SM is $\mathcal{O}\left(\Lambda^{0}\right)$, NP is $\mathcal{O}\left(\Lambda^{-2}\right)$:
- Precision Physics : small effects
- Quantisation of NP constraints
- Hadron vs lepton collider
- Energy range (Assumption, sensitivity)
- Precision (Th, Exp)

Safety tool : Unitarity

THANKS TO THIS SAFETY TOOL
I LAN TELL YOU, EAFTAIN,
TH+T WE ARE SINKING

Unitarity/Perturbativity

 We measure $\frac{C_{i}}{\Lambda^{2}}$, what is Λ ?Assump. OK
(model ind.)

SM $\pm>100 \%$

Assume SM

Unitarity
allowed

+Form

Factor

Perturbativity $\sim \Lambda$

EW operators (CP even)

$$
\begin{aligned}
& \mathcal{O}_{h}=\left(H^{\dagger} H\right)^{3} \\
& \mathcal{O}_{\partial h}=\partial_{\mu}\left(H^{\dagger} H\right) \partial^{\mu}\left(H^{\dagger} H\right) \\
& \mathcal{O}_{H B}=\left(H^{\dagger} H\right) B^{\mu \nu} B_{\mu \nu} \\
& \mathcal{O}_{H W}=\left(H^{\dagger} H\right)\left\langle W^{\mu \nu} W_{\mu \nu}\right\rangle \\
& \mathcal{O}_{W W W}=\left\langle W^{\mu \nu} W_{\nu \rho} W_{\mu}^{\rho}\right\rangle
\end{aligned}
$$

W. Buchmuller, D.Wyler NPB268 (1986) 62I-653
B. Grzadkowski et al JHEPIOIO(2010) 085

$$
\begin{aligned}
& \mathcal{O}_{W}=\left(D_{\mu} H\right)^{\dagger} W^{\mu \nu} D_{\nu} H \\
& \mathcal{O}_{B}=\left(D_{\mu} H\right)^{\dagger} B^{\mu \nu} D_{\nu} H
\end{aligned} \quad \begin{aligned}
& \mathcal{O}_{D h}=\left(H^{\dagger} D_{\mu} H\right)^{\prime}\left(H^{\dagger} D^{\mu} H\right) \\
& \mathcal{O}_{H B W}=\left(H^{\dagger} B^{\mu \nu} W_{\mu \nu} H\right)
\end{aligned}
$$

* No fermions, no gluons

Example : basis translation

More operators than measurable operators
Rosetta, A Falkowski et al EPJC75 (2015) no.I2, 583

$$
\mathcal{O}_{W}=\left(D_{\mu} H\right)^{\dagger} W^{\mu \nu} D_{\nu} H
$$

Integration by part

$$
=-\left(D_{\nu} D_{\mu} H\right)^{\dagger} W^{\mu \nu} H-\left(D_{\mu} H\right)^{\dagger} D_{\nu} W^{\mu \nu} H
$$

$$
D_{\nu} D_{\mu} \rightarrow\left[D_{\nu}, D_{\mu}\right]=c_{1} W_{\mu \nu}+c_{2} B_{\mu \nu}
$$

$$
D^{\mu} W_{\nu \mu}^{I}=i g\left(H^{\dagger} \sigma^{I} D_{\nu} H-D_{\nu} H^{\dagger} \sigma^{I} H\right)
$$

$$
=a_{1} \mathcal{O}_{H W}+a_{2} \mathcal{O}_{H B W}+a_{3} \mathcal{O}_{D H}+a_{4} \mathcal{O}_{\partial H}
$$

Basis choice

$$
\begin{array}{ll}
\mathcal{O}_{h}=\left(H^{\dagger} H\right)^{3} & \text { to avoid redefinition : } \\
\hline \mathcal{O}_{\partial h}=\partial_{\mu}\left(H^{\dagger} H\right) \partial^{\mu}\left(H^{\dagger} H\right) & \left(H^{\dagger} H\right) \rightarrow\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \\
\hline \mathcal{O}_{H B}=\left(H^{\dagger} H\right) B^{\mu \nu} B_{\mu \nu} & \\
\hline \frac{\mathcal{O}_{H W}}{}=\left(H^{\dagger} H\right)\left\langle W^{\mu \nu} W_{\mu \nu}\right\rangle & h \rightarrow h\left(1-\frac{\left.c_{\partial h} \Lambda^{2}\right)}{\Lambda^{2}}\right) \\
\underline{\mathcal{O}_{W W W}}=\left\langle W^{\mu \nu} W_{\nu \rho} W_{\mu}^{\rho}\right\rangle & \\
\hline \underline{\mathcal{O}_{W}}=\left(D_{\mu} H\right)^{\dagger} W^{\mu \nu} D_{\nu} H & \mathcal{O}_{D h}=\left(H^{\dagger} D_{\mu} H\right)^{\dagger}\left(H^{\dagger} D^{\mu} H\right)
\end{array}
$$

Redefinition of the A/Z, EW

 vector boson masses!no redefinition of SM input!

Anomalous couplings

K. Hagiwara et al. PLB283 (1992) 353-359, PRD48 (1993) 2182-2

$$
\begin{aligned}
\mathcal{L}= & i g_{W W V}\left(g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu}-W^{+\mu} W_{\mu \nu}^{-}\right) V^{\nu}+\kappa \nu\right. \\
& +i g_{4}^{V} W_{\mu}^{+} W_{\nu}^{-}\left(\partial^{\mu} V^{\nu}+\partial^{\nu} V^{\mu}\right)-i g^{V} \\
& +\tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu \nu}+\frac{\tilde{\lambda}_{V}}{m^{2}}{ }^{2} M_{W}^{2} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu} \\
& g_{W W Z}=-e \cot \theta_{W} \quad g_{W W \gamma}=-e
\end{aligned}
$$

EM giauge invariance implies : $g_{1}^{\gamma}=1 \quad g_{4}^{\gamma}=g_{5}^{\gamma}=0$.

$$
11(5+6) \text { parameters }
$$

Anomalous couplings

$\mathcal{L}=i g_{W W V}\left(g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu}-W^{+\mu} W_{\mu \nu}^{-}\right) V^{\nu}+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}+\frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu}\right.$

$$
+i g_{4}^{V} W_{\mu}^{+} W_{\nu}^{-}\left(\partial^{\mu} V^{\nu}+\mid \partial^{\nu} V^{\mu}\right)-i g_{5}^{V} \epsilon^{\mu \nu \rho \sigma}\left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-}-\partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}\right) V_{\sigma}
$$

$$
\left.+\tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu \nu}+\frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu}\right)
$$

$$
+\frac{g_{2}^{V}}{M_{W}^{2}}\left(W_{\mu \nu}^{+} W^{-\mu}-W^{+\mu} W_{\mu \nu}^{-}\right) \partial^{\rho} \partial_{\rho} V^{\nu}
$$

Dimension-six

$$
\sigma(p p \rightarrow W W)=\sigma_{S M}+g_{1}^{V}\left(1+\frac{g_{2}^{V}}{g_{1}^{V}} \frac{s}{M_{W}^{2}}\right) \sigma_{1}
$$

 arbitrarily fixed coefficients

Anomalous coupling

$$
\begin{aligned}
\mathcal{L}=i g_{W W V}(& g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu}-W^{+\mu} W_{\mu \nu}^{-}\right) V^{\nu}+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}+\frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu}+i g_{4}^{V} W_{\mu}^{+} W_{\nu}^{-}\left(\partial^{\mu} V^{\nu}+\partial^{\nu} V^{\mu}\right) \\
& \left.-i g_{5}^{V} \epsilon^{\mu \nu \rho \sigma}\left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-}-\partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}\right) V_{\sigma}+\tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu \nu}+\frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu}\right)
\end{aligned}
$$

CP even Operators

$$
\begin{gathered}
\mathcal{O}_{W W W}=\left\langle W^{\mu \nu} W_{\nu \rho} W_{\mu}^{\rho}\right\rangle \\
\mathcal{O}_{W}=\left(D_{\mu} H\right)^{\dagger} W^{\mu \nu} D_{\nu} H \\
\mathcal{O}_{B}=\left(D_{\mu} H\right)^{\dagger} B^{\mu \nu} D_{\nu} H
\end{gathered}
$$

CP odd operators

$$
\begin{aligned}
& \mathcal{O}_{\tilde{W} W W}=\left\langle\tilde{W}^{\mu \nu} W_{\nu \rho} W_{\mu}^{\rho}\right\rangle \\
& \mathcal{O}_{\tilde{W}}=\left(D_{\mu} H\right)^{\dagger} \tilde{W}^{\mu \nu}\left(D_{\nu} H\right)
\end{aligned}
$$

EFT/AC

	EFT	AC
Lorentz	\checkmark	\checkmark
$S U(2)_{L}$	\checkmark	x
$U(1)_{E M}$	\checkmark	(\checkmark)
Scale suppression	\checkmark	x
\# parameters (TGC)	5	$11+$
Different processes	\checkmark	x

Unitarity

CD et al. AP 335 (2013) 2|-32

Form factors are not needed!

LEP @ 68\%

$$
\begin{aligned}
& c_{W W W} / \Lambda^{2} \in[-11.9,-1,94] \\
& c_{W} / \Lambda^{2} \in[-8.48,1.44]
\end{aligned}
$$

Perturbativity

Expansion breaks

Expansion and errors

NP is suppressed : Bad estimate of the scale
C. Degrande

Expansion and errors

Expansion breaks

Expansion and errors

 $\mathrm{pp} \rightarrow W_{L} W_{L} @ \operatorname{LHC} 14 \mathrm{TeV}$ with $C_{W} / \Lambda^{2}=6.25 \mathrm{TeV}^{-2}=1 /(400 \mathrm{GeV})^{2}$

Expansion breaks

QGC from EFT

- Same operators than for TGC give WWWW, WWZA,WWAA,WWZZ vertices
- gauge invariance requires 3 and 4 legs vertices to be related

QGC's alone are

VBS/Triple prod.

$$
\left.\begin{array}{l}
\mathcal{O}_{\partial h}=\partial_{\mu}\left(H^{\dagger} H\right) \partial^{\mu}\left(H^{\dagger} H\right) \\
\mathcal{O}_{H B}=\left(H^{\dagger} H\right) B^{\mu \nu} B_{\mu \nu} \\
\mathcal{O}_{H W}=\left(H^{\dagger} H\right)\left\langle W^{\mu \nu} W_{\mu \nu}\right\rangle
\end{array}\right\} \quad \begin{aligned}
& h \rightarrow h\left(1-\frac{c_{\Phi d}}{\Lambda^{2}} v^{2}\right) \\
& \mathcal{O}_{H B}=\left(H^{\dagger} H-v^{2}\right) B^{\mu \nu} B_{\mu \nu} \\
& \mathcal{O}_{H W}=\left(H^{\dagger} H-v^{2}\right)\left\langle W^{\mu \nu} W_{\mu \nu}\right\rangle
\end{aligned}
$$

	ZWW	AWW	HWW	HZZ	HZA	HAA	WWWW	ZZWW	ZAWW	AAWW
$\overline{\mathcal{O}_{W W W}}$	X	X					X	X	X	X
\mathcal{O}_{W}	X	X	X	X	X		X	X	X	
\mathcal{O}_{B}	X	X		X	X					
			X	X						
$\mathcal{O}_{H B}$				X	X	X		No ne	w ope	erators
									all eff	ects

Constraints from Higgs

Combination

VBS/Triple prod.

- Go to dim-8 operators
- dim-8 effects are smaller than dim-6 if EFT is valid
- Lot of operators (~ 20 QGC without TCG)
- EFT are worse for dim-8

Unitarity/Perturbativity

Perturbativity $\sim \Lambda$

$$
\begin{aligned}
\mathcal{L}^{n T G C} & =\mathcal{L}_{S M}+\frac{\sqrt{0}}{\uparrow}+\sum_{i} \underbrace{\frac{C_{i}}{\Lambda^{4}}} \\
& \text { No dim-6 operators }
\end{aligned}
$$

I CP-even operator
$\mathcal{O}_{\tilde{B} W}=i H^{\dagger} \widetilde{B}_{\mu \nu} W^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H \longrightarrow$ Only AZZ
3 CP-odd operators

$$
\begin{aligned}
\mathcal{O}_{B W} & =i H^{\dagger} B_{\mu \nu} W^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H \\
\mathcal{O}_{W W} & =i H^{\dagger} W_{\mu \nu} W^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H \\
\mathcal{O}_{B B} & =i H^{\dagger} B_{\mu \nu} B^{\mu \rho}\left\{D_{\rho}, D^{\nu}\right\} H
\end{aligned}
$$

nTGC

$$
\begin{array}{rlrl}
f_{5}^{\gamma} & =\frac{v^{2} M_{Z}^{2}}{4 c_{w} s_{w}} \frac{C_{\widetilde{B} W}}{\Lambda^{4}} & f_{5}^{Z} & =0 \\
h_{3}^{Z} & =\frac{v^{2} M_{Z}^{2}}{4 c_{w} s_{w}} \frac{C_{\widetilde{B} W}^{Z}}{\Lambda^{4}} & h_{4}^{Z} & =0 \\
& h_{3}^{\gamma} & =0 \\
h_{4}^{\gamma} & =0
\end{array}
$$

$$
-1.3 \mathrm{TeV}^{-4}<\frac{C_{\tilde{B} W}}{\Lambda^{4}}<1.44 \mathrm{TeV}^{-4}
$$

$$
\begin{aligned}
& \overline{\overline{(1)}} i e \Gamma_{Z Z)}^{\alpha \beta \mu}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right)=\frac{-e\left(\mathrm{q}_{3}^{2}-m_{V}^{2}\right)}{M_{Z}^{2}}\left[f_{4}^{V}\left(\mathrm{q}_{3}^{\alpha} g^{\mu \beta}+\mathrm{q}_{3}^{\beta} g^{\mu \alpha}\right)-f_{5}^{V} \epsilon^{\mu \alpha \beta \rho}\left(\mathrm{q}_{1}-\mathrm{q}_{2}\right)_{\rho}\right] \\
& \begin{aligned}
i e \Gamma_{Z(Z \gamma V}^{\alpha \beta \mu}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right) & =\frac{-e\left(\mathrm{q}_{3}^{2}-m_{V}^{2}\right)}{M_{Z}^{2}}\left\{h_{1}^{V}\left(\mathrm{q}_{2}^{\mu} g^{\alpha \beta}-\mathrm{q}_{2}^{\alpha} g^{\mu \beta}\right)+\frac{h_{2}^{V}}{M_{Z}^{2}} \mathrm{q}_{3}^{\alpha}\left[\left(\mathrm{q}_{3} \mathrm{q}_{2}\right) g^{\mu \beta}-\mathrm{q}_{2}^{\mu} \mathrm{q}_{3}^{\beta}\right]\right. \\
& \left.\left.-h_{3}^{V}\right)^{\mu \alpha \beta \rho} q_{2 \rho}-\frac{h_{4}^{V}}{\bar{M}_{Z}^{2}} \mathrm{q}_{3}^{\alpha} \epsilon^{\mu \beta \rho \sigma} \mathrm{q}_{3 \rho} q_{2 \sigma}\right\}
\end{aligned}
\end{aligned}
$$

EFT in MC tools

- Automated MC tools (any process)
- Madgraph5_aMC@NLO
- Sherpa

Model from
 FeynRules

- Dedicated MC tools (process by process)
- VBFNLO
- MCFM
- POWHEG Box
- Disclaimer : my apologies if anything is missing

POWHEG Box

Anomalous Triple gauge boson couplings

$$
\begin{aligned}
\mathcal{L}= & i g_{W W V}\left(g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu}-W^{+\mu} W_{\mu \nu}^{-}\right) V^{\nu}+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}+\frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu}\right. \\
& +i g_{4}^{V} W_{\mu}^{+} W_{\nu}^{-}\left(\partial^{\mu} V^{\nu}+\partial^{\nu} V^{\mu}\right)-i g_{5}^{V} \epsilon^{\mu \nu \rho \sigma}\left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-}-\partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}\right) V_{\sigma} \\
& \left.+\tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu \nu}+\frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu}\right),
\end{aligned}
$$

MCFM

- TGC : anomalous couplings

- Higgs

$$
\begin{aligned}
\mathcal{L}_{H A C}= & -\frac{1}{4} g_{h z z}^{(1)} Z_{\mu \nu} Z^{\mu \nu} h-g_{h z z}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu \nu} h+\frac{1}{2} g_{h z z}^{(3)} Z_{\mu} Z^{\mu} h-\frac{1}{4} \tilde{g}_{h z z} Z_{\mu \nu} \tilde{Z}^{\mu \nu} h \\
& -\frac{1}{2} g_{h w w}^{(1)} W^{\mu \nu} W_{\mu \nu}^{\dagger} h-\left[g_{h w w}^{(2)} W^{\nu} \partial^{\mu} W_{\mu \nu}^{\dagger} h+\text { h.c. }\right]+g_{h w w}^{(3)} W_{\mu} W^{\dagger \mu} h-\frac{1}{2} \tilde{g}_{h w w} W^{\mu \nu} \tilde{W}_{\mu \nu}^{\dagger} h \\
& -\frac{1}{2} g_{h a z}^{(1)} Z_{\mu \nu} F^{\mu \nu} h-g_{h a z}^{(2)} Z_{\nu} \partial_{\mu} F^{\mu \nu} h-\frac{1}{2} \tilde{g}_{h a z} Z_{\mu \nu} \tilde{F}^{\mu \nu} h
\end{aligned}
$$

VBFNLO

TGC : AC and Dimension-six operators

QGC as dimension-eight operators
Higgs - Vector - Vector vertex

$$
T^{\mu \nu}=a_{1}(x, y) g^{\mu \nu}+a_{2}(x, y)\left[x \cdot y g^{\mu \nu}-y^{\mu} x^{\nu}\right]+a_{3}(x, y) \varepsilon^{\mu \nu \rho \sigma} x_{\rho} y_{\sigma}
$$

+ translation to other parametrisation

$$
\begin{aligned}
\mathcal{L}= & \frac{g_{5 e}^{H Z}}{2 \Lambda_{5}} H Z_{\mu \nu} Z^{\mu \nu}+\frac{g_{5 o}^{H Z Z}}{2 \Lambda_{5}} H \tilde{Z}_{\mu \nu} Z^{\mu \nu}+\frac{g_{5 e}^{H W W}}{\Lambda_{5}} H W_{\mu \nu}^{+} W_{-}^{\mu \nu}+\frac{g_{5 o}^{H W W}}{\Lambda_{5}} H \tilde{W}_{\mu \nu}^{+} W_{-}^{\mu \nu} \\
& +\frac{g_{5 e}^{H Z \gamma}}{\Lambda_{5}} H Z_{\mu \nu} A^{\mu \nu}+\frac{g_{5 o}^{H Z \gamma}}{\Lambda_{5}} H \tilde{Z}_{\mu \nu} A^{\mu \nu}+\frac{g_{5 e}^{H \gamma}}{2 \Lambda_{5}} H A_{\mu \nu} A^{\mu \nu}+\frac{g_{5 o}^{H \gamma \gamma}}{2 \Lambda_{5}} H \tilde{A}_{\mu \nu} A^{\mu \nu}
\end{aligned}
$$

and the dimension-six

FeynRules

FeynRules outputs

UFO : output with the full information used by several generators

C. Degrande

FR modelUFO for EW

$$
\begin{aligned}
& \mathcal{O}_{h}=\left(\text { U土 }^{\dagger}\right)^{2} \\
& \mathcal{O}_{\partial h}=\partial_{\mu}\left(H^{\dagger} H\right) \partial^{\mu}\left(H^{\dagger} H\right) \\
& \mathcal{O}_{H B}=\left(H^{\dagger} H\right) B^{\mu \nu} B_{\mu \nu} \\
& \mathcal{O}_{H W}=\left(H^{\dagger} H\right)\left\langle W^{\mu \nu} W_{\mu \nu}\right\rangle \\
& \mathcal{O}_{W W W}=\left\langle W^{\mu \nu} W_{\nu \rho} W_{\mu}^{\rho}\right\rangle \\
& \mathcal{O}_{W}=\left(D_{\mu} H\right)^{\dagger} W^{\mu \nu} D_{\nu} H \\
& \mathcal{O}_{B}=\left(D_{\mu} H\right)^{\dagger} B^{\mu \nu} D_{\nu} H
\end{aligned}
$$

Full UFO model :

All the vertices (up to 6 ext)

Any process

Ingredients

- Madgraph5_aMC@NLO : automated NLO+PS for the SM
- Required ingredients :
- Tree-level vertices
- R2 vertices
- UV counterterms vertices
- Result : UFO at NLO

Done for renomalizable models (<=dim4)

done for EFT - 4F

Loop computation

$$
\begin{aligned}
\mathcal{A}^{1-\text { loop }} & =\sum_{i} d_{i} \operatorname{Box}_{i}+\sum_{i} c_{i} \text { Triangle }_{i}+\sum_{i} b_{i} \text { Bubble }_{i} \\
& +\sum_{i} a_{i} \operatorname{Tadpole}_{i}+R
\end{aligned}
$$

- Box,Triangle, Bubble and Tadpole are known scalar integrals
- Loop computation $=$ find the coefficients
- Unitarity
- Multiple cuts
- Tensor reduction (OPP)

$$
\bar{A}(\bar{q})=\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q}^{\frac{\bar{D}}{0} \bar{D}_{1} \ldots \bar{D}_{m-1}}, \quad \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

$$
R_{2} \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q}^{\frac{\tilde{N}}{\bar{D}_{0}} \bar{D}_{1} \ldots \bar{D}_{m-1}}
$$

Finite set of vertices that can be computed once for each model

Needed by Madgraph5_aMC@NLO (tool-dep.)

R_{1}

Due to the \mathcal{E} dimensional parts of the denominators

Like for the 4 dimensional part but with a different set of integrals

$$
\begin{aligned}
\int d^{n} \bar{q} \frac{\tilde{q}^{2}}{D_{i} \bar{D}_{j}} & =-\frac{i \pi^{2}}{2}\left[m_{i}^{2}+m_{j}^{2}-\frac{\left(p_{i}-p_{j}\right)^{2}}{3}\right]+\mathcal{O}(\epsilon), \\
\int d^{n} \frac{\tilde{q}^{2}}{\overline{D_{i}} \bar{D}_{j} \bar{D}_{k}} & =-\frac{i \pi^{2}}{2}+\mathcal{O}(\epsilon), \\
\int d^{n} \overline{\bar{q}} \frac{\tilde{Q}^{4}}{D_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{l}} & =-\frac{i \pi^{2}}{6}+\mathcal{O}(\epsilon) .
\end{aligned}
$$

Only $R=R_{1}+R_{2}$ is gauge invariant

UV

$$
\bar{A}(\bar{q})=\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \ldots \bar{D}_{m-1}}=K \frac{1}{\epsilon}+\mathcal{O}\left(\epsilon^{0}\right)
$$

Relations fixed by the Lagrangian (finite part)

Finite set of vertices that can be computed once for each model

EFT@NLO

- EFT are renormalizable order by order

Need EFT not ano. vertices!

- mixing of operators
- full set to basis
- Higher powers of the loop momentum in the vertices and in the numerators of the integrals

EW boson interations at

 NLO in QCDNo QCD correractions

Recipe $=$ SM with NLO QCD (i.e. tree-level vertices, R2 and UV) + LO(tree-level only) EW dim6

EW gauge boson interations at NLO in QED

- FR/MG5_aMC are starting NLO in QED for the SM and renomalizable (dim<=4) BSM
- All the issues of NLO for EFT
- $\alpha_{\mathrm{EW}}=0.01$

Concluding remarks

- EFT : probe/constrain heavy new physics
- EFT for EW : few operators \Rightarrow combination (VV,H,VVV,VBS, ...)
- LHC challenges (Validity, precision)
- Available in MC
- NLO in QCD for EW gauge boson interactions : Done (Trivial)

