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PERTURBATIVE QCD CALCULATIONS 

• High-precision theoretical predictions needed for the LHC

• NLO calculations in QCD are now standard
• NNLO exists for an increasing number of processes
• NNNLO has been completed for Higgs

• Many observables at LHC characterized by multiple scales Qi

• Multi-scale problems are affected by perturbative logarithmic 
   corrections αsn logm(Qi/Qj)
• When αsn logm(Qi/Qj)~1 fixed order PT is no longer justified
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WHERE DO LOGARITHMS COME FROM ?
• Real emissions diagrams are singular for soft/collinear emissions
• These singularities are cancelled by virtual counterparts
• Finite logarithmic pieces are left over, e.g.

• These corrections are important for observables V that insist on only 
   small deviations from lowest order kinematics (V~0)
• Real radiation is constrained to a small corner of phase space and 
   the logarithms are large

• event (jet) shapes, e.g. thrust (jet mass): V=1-T (V= mjet/pT)
• production at threshold:  V=1-M2/s
• transverse momentum:  V= pT/M   ...

3

↵s

Z
d✓

✓

dz

z
⇥ (� z✓)� ↵s

Z
d✓

✓

dz

z
= �↵s

Z
d✓

✓

dz

z
[⇥ (z✓ � )]

= �1

2
↵s ln

2 
real emission virtual correction

V = 



RESUMMATION: A SKETCH
• All-order calculations are based on factorization 

• Matrix element factorization in soft/collinear limit

• this can be generalized to the multi-gluon case
• phase space factorization usually in a conjugate space, e.g.

•although other approaches are possible (e.g. CAESAr framework)
• factorization then leads to exponentiation 
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resummation is a 
systematic re-arrangement of 

perturbation theory

NNLLLL NLL
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RESUMMATION IN ACTION

Phys.Lett. B705 (2011) 415-434
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1) it’s necessary for describing 
    data in particular kinematic 
    limits

Figure 8: Fixed-order and resummed K-factors for Higgs production at the LHC.

The impact of higher-order corrections is sometimes presented through the K-factors, defined
as the ratio of the cross section evaluated at each corresponding order over the LO result. The
K-factors are shown in Fig. 8, where the bands are obtained, as in Sect. 4.1, by varying the scales
µR and µF (simultaneously and independently) in the range 0.5MH ≤ µF , µR ≤ 2MH , with the
constraint 0.5 ≤ µF/µR ≤ 2. The LO result that normalizes the K-factors is computed at the
default scale MH in all cases. We see that the effect of the higher-order corrections increases with
MH . We also see that the soft-gluon resummation effects are more important at higher values of
MH . This is expected, since by increasing MH we are closer to the hadronic threshold, where soft-
gluon effects are larger. When MH increases, the scale dependence after resummation is smaller
than at the corresponding fixed orders. In the case of a light Higgs boson (MH ∼< 200 GeV), the
NNLO K-factor is about 2.1–2.2, which corresponds to an increase of about 20% with respect to
the NLO K-factor. In this low-mass range, the effects of resummation are also moderate: at NNLL
accuracy the central value of the cross section increases by about 6% with respect to NNLO.

In Fig. 9 we plot the NNLO and NNLL cross sections, with the corresponding scale-dependence
bands (computed as in Fig. 8), in the range MH =100–300 GeV. The corresponding numerical
results are given in Table 1, where σmin, σmax and σref correspond to the minimum, maximum and
central values in the bands.

5.3 Tevatron

Here we study the phenomenological impact of soft-gluon resummation on the production of the
SM Higgs boson at the Tevatron Run II.

As in the previous subsection, we show in Fig. 10 the scale dependence of the fixed-order and

24

2) it reduces theoretical 
    uncertainty

Catani, de Florian, Grazzini, Nason (2003)

3) it can be used to 
    approximate higher orders
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SOFT COLLINEAR EFFECTIVE THEORY

• Direct QCD (dQCD) resummation based on factorization of QCD         
   matrix elements and phase space in the soft/collinear limit

• An alternative framework for resumming large logs is SCET

• In SCET

• hard modes are integrated out

• effective Lagrangian for soft & 
   collinear fields

• separation of scales leads to 
   factorisation

• resummation is achieved by 
   RG evolution

hard

collinear

soft

7



• Hadronic final-state (jets) resummation discussed in J. Thaler’s and A. 
Larkoski’s talks

• Here, I will concentrate on other aspects, trying to underlying recent 
directions in

• large-x resummation
• small-x resummation
• QT resummation

• A few words on combining resummation

OUTLINE

Topic is vast, so a lot of personal taste went into selecting the material
(excusatio non petita, accusatio manifesta)
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LARGE-X RESUMMATION
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PRODUCTION AT THRESHOLD
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Thus, emissions are forced to be soft, leading 
to log-enhanced contributions order-by-order 
in perturbation theory

Absolute threshold: the initial-state 
energy is just enough to produce 
the final state with invariant mass Q
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WHY THRESHOLD AT THE LHC ?
Gluon PDF shows a steep increase at 

low x

ŝ = x1x2s

Region of partonic threshold is 
enhanced in the convolution

• More precise argument in Mellin space: a saddle-point 
approximation indicates the region that gives the bulk of the 
contribution to the inverse Mellin integral.

• This region turns out to be fairly narrow around the (real) saddle-
point.
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THRESHOLD RESUMMATION
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where we have used the same symbols, with different arguments, for a function and its Mellin transform.
Note that threshold resummation only affects the gg channel: we therefore suppress the flavours indices
and implicitly focus on the gg channel. We will later comment on the role of the quark channels. The
N -space resummed coefficient function has the form (see [13] and reference therein):
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where ḡ0(↵s, µ
2
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dependence and we have chosen the factorization scale µF as the scale of the running coupling ↵s =
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2
F). The three-loop coefficients of A(↵s) and D(↵s) have been known for a while (see for instance

Refs. [39–41]), while the O�
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3
s

�
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ḡ0 has been recently computed [9]. The four-loop
contribution to A(↵s), which is needed to achieve full N3LL accuracy, is unknown. However, a Padé
estimate [40] can suggest the size of its value, and a numerical analysis shows that its impact in a
resummed result is essentially negligible.

The integrals in Eq. (3.3) can be computed at any finite logarithmic accuracy by using the explicit
solution of the running coupling, in terms of ↵s at a given reference scale, which we can also choose
to be µF in first place. At this point we have a result which depends on a single scale µF, with ↵s

always computed at µF (note that, while the µF dependence of ¯S is explicit, the one of ḡ0 can be
recovered by imposing µF-independence of the full cross section). In order to write the result in a
canonical way, we further evolve ↵s from µF to µR using the explicit solution of the running coupling
equation at sufficiently high order, and propagating the resulting logarithms in the various terms at
each fixed-order (in ḡ0) and logarithmic-order (in ¯S) accuracy. Then, the final result explicitly depends
on both µR and µF.

The computation of the integrals in Eq. (3.3) is rather cumbersome when performed exactly. The
resulting expression was called A-soft in Ref. [13]. The computation is much simpler when performed
in the large-N limit, where the result of the integrals is written as a function of lnN only. We call
the result in this limit N -soft. Explicit expressions for ¯S in the N -soft limit up to N3LL are given in
Ref. [40]4 with full µF and µR dependence.

In Ref. [13] two of us proposed a variant of the N -soft resummation based on the simple replace-
ment

lnN !  0(N), (3.7)
4To be precise, the expressions in Ref. [40] are for the logarithmic part of the exponent, and not for the N -independent

terms.

– 6 –

Momentum space:  singular and distributional terms for z →1
  Mellin space: terms that do not vanish at large N

Catani et al. (2002)
Moch, Vogt (2005)

Laenen, Magnea (2005) […]

Anastasiou et al. (2014)

• constants can go in the exponent of in front of it
• state of the art N3LL (but the 4-loop cusp)
• next-to-eikonal can be important (e.g. (1-z)2/z)
• systematic studies underway Laenen et al. (2015),

Larkoski, Neill, Stewart (2015)



AN EXAMPLE: HIGGS IN GLUON FUSION
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Bonvini, SM (2014), 
Bonvini, SM, Muselli, Rottoli (2016)
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see also Catani et al. (2014), Ahmed et al. (2014/2015), Schmidt and Spira (2015), … 
also Becher et al. in SCET

• resummed (and matched) 
converges faster than pure FO

• resummation is perturbative, i.e. 
captures the effect of the first few 
orders, so that N3LO+N3LL ~ 
N3LO 

• they provide further handles to 
estimate uncertainty from missing 
higher orders (e.g. subleading logs)

deviation (of the order of 1 pb). Keeping in mind the limitation of this analysis, we are tempted to
consider this result as a good candidate for the all-order sum of the series. Interestingly, this result is
perfectly compatible with (and very close to) our best N3LO+N3LL result at µ0 = mH/2 well within
its ±1.9 pb uncertainty. This provides another valuable validation of our proposal for estimating
missing higher-order uncertainty from resummation. On the other hand, it is not compatible with the
N3LO result within its asymmetric scale-variation band, while it is considering a CH error already at
68% DoB (see Tab. 4).

6 Conclusions

We have presented threshold-resummed results for the inclusive Higgs cross section in gluon fusion at
N3LL, matched to an implementation of the recent N3LO result [9–12]. We have considered several
variants of the resummation as a portal to carefully estimate subleading effects at higher orders. We
have proposed a conservative estimate of the uncertainty from missing higher orders based on the
envelope of the resummed predictions obtained using the various resummation variants, as well as
canonical scale-variation. We have demonstrated that resummed results with this conservative error
manifest a good perturbative convergence, as opposed to the fixed-order expansion, the convergence
of which is very poor relative to the uncertainty coming from a canonical 7-point scale variation.

Despite the conservativeness of our method, we find that the Higgs cross section at 13 TeV, for the
central scale µR = µF = mH/2, has a small (yet reliable) uncertainty of ±1.9 pb, which corresponds to
±4%. The shift in the central value and the uncertainty, though computed within the framework of the
(rescaled) large-mt effective theory, are likely to remain unchanged after inclusion of quark mass effects
and Electro-Weak corrections. For the most reliable predictions the inclusion of quark mass effects is
important, and can be performed straightforwardly at resummed level [13, 16] with TROLL. Moreover,
a fully consistent resummed result, would require the use threshold-improved parton distribution
functions, which have recently become available [49].

We have compared our proposal with different methods for estimating the uncertainty from missing
higher orders. Our findings are summarized in the following table, which refers to the central scale
µR = µF = mH/2:

order � [pb]

N3LO 48.1

+0.1
�1.8 scale variation

N3LO 48.1 ± 2.0 CH at 95% DoB
N3LO+N3LL 48.5 ± 1.9 scale+resummation variations
all-order estimate 48.7 from accelerated fixed-order series
all-order estimate 48.9 from accelerated resummed series

First, we have considered the Cacciari-Houdeau Bayesian approach, which employs the known pertur-
bative orders to construct a probability distribution for the subsequent unknown order. In its modified
incarnation (CH), the method gives an uncertainty of ±2 pb at 95% degree of belief, fully compatible
with the estimate obtained from resummation, and similar to the fixed-order scale variation uncer-
tainty if the latter is symmetrized. Second, we have considered several algorithms to accelerate the
convergence of the perturbative series, based on non-linear sequence transformations. By performing
a survey of different algorithms, we found that both the fixed-order and resummed series exhibit good
convergence properties at mH/2 (and also at mH/4). Noticeably, the mean of each distribution is very
close to the N3LO+N3LL prediction. In conclusion, these tests provide a solid support to our method,

– 20 –

N3LO: Anastasiou et al. (2015)



A SECOND EXAMPLE: ttH
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Motivation Threshold Resummation Application for 2 ! 3 Hard matching coefficient Numerical Results

Results

[Kulesza, Motyka, Stebel, VT, ’15]

PDFs used: MMHT2014NLO
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Motivation Threshold Resummation Application for 2 ! 3 Hard matching coefficient Numerical Results

Eikonal integrals
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!
Using feynman rules approximated for soft gluon emission (eikonal)

Threshold resummation for tt̄H 10 V. Theeuwes

color structure (same as tt*): 
dealing with many dipoles and 

matrices

more complicated final state, different 
choices for threshold variable
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Broggio, Ferroglia, Pecjak, Signer, Yang (2015)
Alessandro Broggio    5/5/2016 15

nNLO: distributions
Uncertainty due to scale variation and formally subleading terms
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Figure 9. Differential distributions at nNLO (orange band) compared to the NLO calculation
carried out with MG5 (blue band). In this case the uncertainty bands are obtained by considering
different sets of subleading corrections and by varying the scale in the range [µ0/2, 2µ0]. NLO
distributions are evaluated with NLO PDFs, nNLO distributions with NNLO PDFs.

ored partons, and thus provide an essential building block for NNLL resummations for

such processes.

As a first application of our formalism to phenomenology, we studied the soft-gluon

corrections in the form of approximate NNLO formulas, which are a fixed-order truncation

of the resummed results. In particular, we implemented the NNLO corrections obtained

from the soft-gluon resummation formalism into a bespoke parton-level Monte Carlo pro-

gram, which can be used to calculate the total cross section along with arbitrary differential

distributions depending on the momenta of the massive final-state particles. We illustrated
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distributions are evaluated with NLO PDFs, nNLO distributions with NNLO PDFs.
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*extensive work on tt by eg. Beneke et al. and Ferroglia et al.
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PDFs AT LARGE X
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Resummations in this talk

Large-x threshold resummation:

x ! 1

due to soft gluon emissions

resums double logs
⇣

logk(1�x)
1�x

⌘

+

in Mellin space, logN at N ! 1
[MB,Marzani,Rojo,Rottoli,Ubiali,Ball,Bertone,

Carrazza,Hartland 1507.01006]

Small-x high-energy (BFKL) resummation

x ! 0

due to high-energy gluon emissions

resums single logs 1
x

log

k

x

in Mellin space, poles 1/(N � 1) in the limit N ! 1

[MB,Marzani,Peraro,NNPDF (in preparation)]
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Figure 1: The kinematical coverage in the
�
x, Q

2
�

plane of the NNPDF3.0 dataset. For hadronic data,
leading-order kinematics have been assumed for illustrative purposes. The green stars mark the data
already included in NNPDF2.3, while the circles correspond to experiments that are novel in NNPDF3.0.

same process are available from the ATLAS Collaboration [92], but are given at the hadron level
and thus cannot be directly included in our fit (though they could be included by for example
estimating a hadron-to-parton correction factor using MadGraph5 aMC@NLO).

Finally, we include the LHCb Z ! ee rapidity distributions from the 2011 dataset [61],
which are more precise than the previous data from the 2010 run. The forward kinematics of
this data provide constraints on PDFs at smaller and large values of x than the vector boson
production data from ATLAS and CMS. Further LHCb data from the 2011 run for Z boson
rapidity distributions in the µµ channel [93] and for low mass Drell-Yan production [94] are still
preliminary.

Concerning inclusive jet production from ATLAS and CMS, we include the CMS inclusive
jet production measurement at 7 TeV from the full 5 fb�1 dataset [62], which has been pro-
vided with the full experimental covariance matrix, and which supersedes previous inclusive jet
measurements from CMS [95]. This data has a large kinematical coverage: for example, in the
central rapidity region, the CMS data reaches up to jet transverse momenta of more than 2
TeV, thus constraining the large-x quark and gluon PDFs [96,97]. From ATLAS, we include the
new inclusive cross section measurement at

p
s = 2.76 TeV [63], which is provided with the full

correlation matrix with the corresponding
p

s = 7 TeV measurement. Measuring the ratio of jet
cross-sections at two di�erent center of mass energies enhances the PDF sensitivity thanks to the
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Marco Bonvini Resummations in PDF fits 3

Processes in a global (NNPDF) PDF fits (arXiv:1507.01006)

Process observable resummation available

DIS d�/dx/dQ

2 (NC, CC, charm, ...) YES
DY Z/� d�/dM

2
/dY YES

DY W di↵erential in the lepton kinematics NO
t

¯

t total � YES
jets inclusive d�/dp

t

/dY YES/NO

Including DY W requires threshold resummation at fully di↵erential level: not
available (yet?)

Jets are currently available at NLO and NLL, but partial NNLO results indicate that
NLL is very poor: we excluded them

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms)

www.ge.infn.it/⇠bonvini/troll

t

¯

t available from top++ www.alexandermitov.com/software

Marco Bonvini Resummations in PDF fits 6

it should be easy to compute

two different calculations exist at NLL 
but no implementation

de Florian, Vogelsang (2007, 2013), Kidonakis Owens (2000)

Processes in a global (NNPDF) PDF fits (arXiv:1507.01006)

Process observable resummation available

DIS d�/dx/dQ

2 (NC, CC, charm, ...) YES
DY Z/� d�/dM

2
/dY YES

DY W di↵erential in the lepton kinematics NO
t

¯

t total � YES
jets inclusive d�/dp

t

/dY YES/NO

Including DY W requires threshold resummation at fully di↵erential level: not
available (yet?)

Jets are currently available at NLO and NLL, but partial NNLO results indicate that
NLL is very poor: we excluded them

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms)

www.ge.infn.it/⇠bonvini/troll

t

¯

t available from top++ www.alexandermitov.com/software

Marco Bonvini Resummations in PDF fits 6

�(x, Q) = �0C

✓
x

x1x2
, ↵s(µ)

◆
⌦ f1(x1, µ)⌦ f2(x2, µ)

• coefficient functions contain large-x logs
• PDF evolution doesn’t (in MSbar)

Pgg(x) ⇠
A(↵s)

(1� x)+

• performing a resummed fit is 
relatively straightforward

• data set is restricted: no jets



PDFs WITH THRESHOLD RESUMMATION
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Impact on PDF fits: PDFs
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Bonvini et al. (2015), Beenakker et al. (2015)

Impact on phenomenology

Higgs:
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Marco Bonvini Resummations in PDF fits 11

• effects on SM Higgs 
negligible

• more pronounced at 
high-mass but still 
within PDF errors

• Resummed still PDFs 
not competitive 
because of missing jet 
data
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SMALL-X RESUMMATION
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LHC KINEMATICS 

18

DGLAP

BFKL

• PDFs are largely 
unconstrained at low x

• LHC does probe this region
• Is DGLAP enough to 

describe this region?
• Do we need BFKL?

d

d ln(Q2/µ2)
G(N, Q2) = ⇥(N, �s)G(N, Q2)

d

d ln(1/x)
G(x, M) = ⇥(M,�s)G(x, M)

DGLAP: Q2 evolution for N moments of the parton density

BFKL: small-x evolution for M moments of the parton density

lnk 1
x
� 1

Nk+1

lnk Q2

µ2
� 1

Mk+1Mellin moments:

logs� poles



• Recent work in SCET and work in progress for DIS applications

BASICS OF HIGH-ENERGY RESUMMATION

19

• Small-x logs present both in coefficient functions and in the evolution   
   of the parton densities

• Evolution:
• one constructs a resummed anomalous dimension from the BFKL kernel    
   at next-to-leading log 
• however naive procedure leads to results not supported by HERA data

• Coefficient functions:
• the resummation here is known at leading log level
• first developed for heavy quarks and DIS

• (subleading) running coupling terms are important

Altarelli, Ball, Forte
Ciafaloni, Colferai, Salam, Stasto

Catani, Ciafaloni, Hautmann (1991)
Catani, Hautmann (1994)

Ball (2008)

Rothstein and Stewart (2016) Pathak at al. in progress



SMALL-X RESUMMATION FROM HELL
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•  Problem studied by different groups in late ‘90s /early ‘00s
•  The main interest was DIS at low x                                        

 for a comparative review see HERA-LHC Proc. arXiv:0903.3861

•  Key ingredients:
-  stable solution of the running coupling BFKL equation
-  match to standard DGLAP at large N (x)
-  important subleading effects
- resummed coefficient functions (DIS, DY, HQ…)

Little phenomenology because a comprehensive code was missing

Small-x resummation: overview

Small-x resummation based on k

t

-factorization

A↵ects both evolution (known to LLx and NLLx) and coe�cient functions (known
only at lowest logarithmic order, which is often NLLx)

We follow the ABF [Altarelli,Ball,Forte 1995,...,2008] procedure to resum splitting
functions and coe�cient functions [MB,Marzani,Peraro (work in progress)]

We are preparing a public code
HELL: High-Energy Large Logarithms
which will deliver resummed splitting functions and coe�cient functions.

The resummed evolution from HELL has been already successfully interfaced to
APFEL [see Valerio’s talk]

We performed a first NLO+NLLx fit
with resummed evolution only

Next step: include resummed coe�cient
function for a fully consistent fit

Marco Bonvini Resummations in PDF fits 12

Bonvini, SM, Peraro (2016-hopefully!)

http://arxiv.org/abs/arXiv:0903.3861
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Small-x resummation: overview
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only at lowest logarithmic order, which is often NLLx)

We follow the ABF [Altarelli,Ball,Forte 1995,...,2008] procedure to resum splitting
functions and coe�cient functions [MB,Marzani,Peraro (work in progress)]

We are preparing a public code
HELL: High-Energy Large Logarithms
which will deliver resummed splitting functions and coe�cient functions.

The resummed evolution from HELL has been already successfully interfaced to
APFEL [see Valerio’s talk]

We performed a first NLO+NLLx fit
with resummed evolution only

Next step: include resummed coe�cient
function for a fully consistent fit
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theory inputs: splitting functions and coefficient functions

Small-x resummation: preliminary results

Take f(x,Q0 = 2GeV) as an input

Evolve it to Q = 100 GeV with either
NLO or NLO+NLLx evolution
(using APFEL)

Plot the ratio !

Refit PDFs including resummed
NLO+NLLx evolution

Plot the ratio to NLO PDFs !

Including resummed coe�cient functions will

likely compensate some of the e↵ect
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Small-x resummation: preliminary results
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NLO or NLO+NLLx evolution
(using APFEL)
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Refit PDFs including resummed
NLO+NLLx evolution
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PDFs with resummed evolution re-fitted PDFs with resummed evolution
Small-x resummation: preliminary results

Take f(x,Q0 = 2GeV) as an input

Evolve it to Q = 100 GeV with either
NLO or NLO+NLLx evolution
(using APFEL)

Plot the ratio !

Refit PDFs including resummed
NLO+NLLx evolution

Plot the ratio to NLO PDFs !

Including resummed coe�cient functions will

likely compensate some of the e↵ect

Marco Bonvini Resummations in PDF fits 13



QT RESUMMATION
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TRANSVERSE MOMENTUM
RESUMMATION

23

• One of the most studied distribution both in Higgs and DY
• High-accuracy NNLO+NLO calculations exist both in dQCD and SCET
• Codes available such DYQT, DYRES, Resbos, CuTe, etc.

e.g. Collins, Soper, Sterman; Catani et 
al.; Becher, Neubert; Neill, Rothstain 

Vaidya; Monni, Re.

d⇥

dQ2
T

'
Z 1

0
db b J0(bQT )e�R(b)�(x1, x2, cos �⇤, bM)

resummed exponent

non-log terms and PDFs

�(2)

 
nX

i=1

kTi + Q
T

!
=

1
(2⇥)2

Z
d2beib·Q

T

nY

i=1

eib·kT i

• resummation often performed in b-space



RELATED VARIABLES
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Ta

La

(2)
T

p(1)
T

p TQ
φΔ

acopφ

 t 
Recoil

⇥⇤ = tan (⇥
acop

/2) sin �⇤

aT =
Q

T
⇥ (pT

(1) � pT
(2))

|pT
(1) � pT

(2)|

Vesterinen and Wyatt et al. 
(2008/10)

• Variables introduced by the DØ collaboration for studying the transverse 
momentum of the Z boson

• Experimental viewpoint: one wants to measure angles rather than momenta

d⌅

d⇧⇤
=

⇤�2

sNc

Z 1

0
d(bM) cos(bM⇧⇤)e�R(b)

⇥�(x1, x2, cos ⇥⇤, bM)

resummation closely related to QT

Banfi, Dasgupta, SM, Tomlinson (2010)
Guzzi, Nadolsky, Wang (2014)



COMPARISON TO DATA: NEED FOR BETTER 
PRECISION
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W/Z+1jet
• They provide stringent tests on the SM, as they are measured 
with small errors over a large energy range. Important for 
improving PDFs, and detector calibration as well. 

Total experimental 
uncertainty up to 
200GeV for the PTZ 
is < 1%

• experimental uncertainty below 1% !
• NNLL+NLO not adeguate (uncertainty 10%)

recent theory developments make N3LL +NNLO possible in the near future! 

Boughezal et al. (2015),
Gehrmann-De Ridder et al. (2016)

Li, Zhu (2016)Include these data in PDF fits ?

btw: what’s going on here? 
“wrong” scale??



COMBINING RESUMMATIONS
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LARGE X & Small x

28

Coefficient functions in N-space are analytic (meromorphic)  function of 
complex variable N

Re N

↵n
s ln2n N

poles at integer N BFKL (single) pole

Basic idea from complex calculus:  an analytic function can be 
reconstructed from the knowledge of its singularities 

(Muselli) Ball, Bonvini, Forte, SM, 
Ridolfi (2013/14)

Modify threshold resummation so that it doesn’t spoil analyticity 
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Figure 1. Perturbative K-factors at NLO (top left), NNLO (top right) and N3LO (bottom) as a function of
the collider energy, for mH = 125 GeV.

In order to illustrate our findings, we now focus on the dominant gg channel, and consider the
“n-th order K-factor” K(n)

gg , defined as the contribution to the K-factor coming from C

(n)
gg only, namely

K

(n)
gg = L �1

gg (⌧)

Z 1

⌧

dz

z

Lgg

⇣
⌧

z

⌘
C

(n)
gg (z,m

2
H,m

2
t ) (2.7)

such that
Kgg = 1 + ↵sK

(1)
gg + ↵

2
sK

(2)
gg + ↵

3
sK

(3)
gg + . . . (2.8)

In Fig. 1 we show the results for the NLO, NNLO and N3LO K-factors as a function of the collider
energy

p
s, for fixed Higgs mass mH = 125 GeV, and top pole mass mt = 172.5 GeV. We use the

PDF4LHC15_nnlo_100 PDF set [34–38]. Results obtained in the large-mt EFT are shown in dashed
blue, while solid black curves also contain finite-mt corrections (we remind the Reader that the mt

dependence is fully accounted for at NLO, while it is treated as a power expansion at NNLO). In all
cases, differences between large-mt and finite-mt is small, but it increases with

p
s, as expected.

At N3LO, we computed the EFT result using the exact expressions for ˜

C

(1)
ij and ˜

C

(2)
ij in Eq. (2.6),

– 4 –

used to construct approx N3LO 
(Higgs and tt)

work in progress for full 
resummation

@13 TeV 0.36 vs 0.43+/-0.06



Small QT & Small x
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• Complementary work on this topic: 
• from saturation to Sudakov
• double differential in SCET 
• from QT to low-x

Mueller, Xiao, Yuan (2013)

Procura, Waalewiin, Zeune (2015)

SM (2015)

d⇥

dQ2
T

'
Z 1

0
db b J0(bQT )e�R(b)�(x1, x2, cos �⇤, bM)

R left unchanged to LLx

PDFs and coefficient functions 
are small-x resummed

• Low-x DY with kt-cut advocated for PDF studies
Oliveira, Martin, Ryskin (2012)

• I plan to do phenomenological studies with HELL

Forte, Muselli (2015)



LARGE X & Small QT
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•Formalism to perform joint resummation developed a while back
Laenen,  Sterman, Vogelsang (2000)

•NLL (in both variables) resummation performed for Higgs, DY and 
implemented in the code RESUMMINO Kulesza,  Sterman, Vogelsang (2002)

Fuks et al. (2013)
• A very recent come back

FERMILAB-PUB-16-090-PPD-T
MIT-CTP-4795

An Exponential Regulator for Rapidity Divergences

Ye Li,1 Du↵ Neill,2 and Hua Xing Zhu2

1Fermilab, PO Box 500, Batavia, IL 60510, USA
2Center for Theoretical Physics, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA

Finding an e�cient and compelling regularization of soft and collinear degrees of
freedom at the same invariant mass scale, but separated in rapidity is a persistent
problem in high-energy factorization. In the course of a calculation, one encounters
divergences unregulated by dimensional regularization, often called rapidity diver-
gences. Once regulated, a general framework exists for their renormalization, the
rapidity renormalization group (RRG), leading to fully resummed calculations of
transverse momentum (to the jet axis) sensitive quantities. We examine how this
regularization can be implemented via a multi-di↵erential factorization of the soft-
collinear phase-space, leading to an (in principle) alternative non-perturbative reg-
ularization of rapidity divergences. As an example, we examine the fully-di↵erential
factorization of a color singlet’s momentum spectrum in a hadron-hadron collision
at threshold. We show how this factorization acts as a mother theory to both tra-
ditional threshold and transverse momentum resummation, recovering the classical
results for both resummations. Examining the refactorization of the transverse mo-
mentum beam functions in the threshold region, we show that one can directly
calculate the rapidity renormalized function, while shedding light on the structure
of joint resummation. Finally, we show how using modern bootstrap techniques, the
transverse momentum spectrum is determined by an expansion about the thresh-
old factorization, leading to a viable higher loop scheme for calculating the relevant
anomalous dimensions for the transverse momentum spectrum.
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[…] We show how this factorization acts as a mother theory 
to both traditional threshold and transverse momentum 
resummation, recovering the classical results for both 
resummations […]

NIKHEF 2016-016

Joint transverse momentum and threshold resummation beyond NLL

Gillian Lustermans,1, 2 Wouter J. Waalewijn,1, 2 and Lisa Zeune1

1
Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

2
ITFA, University of Amsterdam, Science Park 904, 1018 XE, Amsterdam, The Netherlands

To describe the transverse momentum spectrum of heavy color-singlet production, the joint resum-
mation of threshold and transverse momentum logarithms is investigated. We obtain factorization
theorems for various kinematic regimes valid to all orders in the strong coupling, using Soft-Collinear
E↵ective Theory. We discuss how these enable resummation and how to combine regimes. The new
ingredients in the factorization theorems are calculated at next-to-leading order, and a range of con-
sistency checks is performed. Our framework goes beyond the current next-to-leading logarithmic
accuracy (NLL).

I. INTRODUCTION

In heavy particle production the additional radiation
tends to be soft, due to the steeply falling parton distribu-
tion functions (PDFs). This implies that threshold loga-
rithms of 1�z ⌘ 1�Q2/ŝ in the partonic cross section are
large, where Q is the heavy particle invariant mass and
ŝ the partonic center-of-mass energy. The corresponding
threshold resummation can significantly modify the cross
section. Well-known examples are top-quark pair pro-
duction or the production of supersymmetric particles.
When the pT of the heavy particle(s) is parametrically
di↵erent from Q, the transverse momentum resumma-
tion of the logarithms of pT /Q is important as well.

In this letter we study the joint resummation of thresh-
old and transverse momentum logarithms. A formalism
that achieves this at next-to-leading logarithmic (NLL)
order has been developed some time ago [1] (see also
Ref. [2]). Here resummation is simultaneously performed
in Mellin moment (of z) and impact parameter (Fourier
conjugate to pT ), accounting for the recoil of soft gluons
using non-Abelian exponentiation and including this in
the kinematics of the hard scattering. This framework
has been applied to prompt-photon [3], electroweak [4],
Higgs boson [5], heavy-quark [6], slepton pair [7] and
gaugino pair [8] production.

We introduce a framework for joint resummation us-
ing Soft-Collinear E↵ective Theory (SCET) [9–14], which
enables us to go beyond NLL. We need to assume a rel-
ative power counting between the threshold parameter
1�z and transverse momentum pT to derive factoriza-
tion theorems, and identify the following three regimes

1. 1 ⇠ 1 � z � pT /Q: transverse mom. factorization

2. 1 � 1 � z � pT /Q: intermediate regime

3. 1 � 1 � z ⇠ pT /Q: threshold factorization

The factorization theorems for regimes 1 and 3 are sim-
ply a more di↵erential version of the standard transverse
momentum and threshold resummation. The intermedi-
ate regime 2 requires us to extend SCET with additional
collinear-soft (csoft) degrees of freedom. Such theories,
typically referred to as SCET+, have recently been used
to describe a range of joint resummations [15–21]. We

will elaborate on how the factorization in SCET leads to
resummation using the renormalization group (RG) evo-
lution. As a byproduct, this implies an all order relation
between the anomalous dimension of the thrust soft func-
tion and threshold soft function. We discuss how to com-
bine the di↵erent factorization theorems describing the
three regimes, finding that regime 2 can be obtained from
regime 1 by a proper choice of renormalization scales,
but that regime 3 contains additional corrections beyond
NLL. By using SCET, gauge invariance is manifest, and
the ingredients in factorization theorems have matrix el-
ement definitions. We will focus on the production of a
color neutral state pp ! V + X with V = Z, W, h, . . . ,
working in momentum space. All ingredients will be col-
lected for joint resummation at next-to-next-to-leading
logarithmic order (NNLL).

This letter is organized as follows. In Sec. II we present
the factorization theorem for joint resummation in each
regime, and derive consistency relations between them.
All ingredients entering the factorization formula are col-
lected at next-to-leading order (NLO) in Sec. III, and the
consistency between regimes is verified. The renormal-
ization group equations are given in Sec. IV, providing
an internal consistency check on each individual regime.
In Sec. V we discuss how to perform the resummation
and combine the cross section in the three regimes. We
conclude in Sec. VI.

II. FACTORIZATION

In this section we present the factorization theorems
that enable the joint resummation of threshold and trans-
verse momentum logarithms, address a subtlety that
arises at partonic threshold, and derive consistency re-
lations between the regimes.

A. Factorization theorems

In the introduction we identified three kinematic
regimes, depending on the relative power counting of
the transverse momentum and threshold parameter. The
corresponding modes are summarized in Table I, using
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NNLL in both variables 
Ferrera, SM, Theeuwes (work in progress)
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CONCLUSIONS

• I have discussed a personal selection of topics in resummation

• large-x resummation: high-precision & PDFs
• small-x resummation: vast kinematic plane, towards low-x PDFs
• QT resummation: data challenge theory

• A recent renaissance for joint resummation(s)

THANK YOU VERY MUCH  
FOR YOU ATTENTION



BACKUP

soft-gluon resummation
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The standard resummed result

Higgs in gg fusion

• g1, g2 and g3 are known, g4 partly. They don’t depend on mt .

• All the mt dependence is in the constant g0

• g0,1 known exactly
• g0,2 known as a power expansion in mH/mt

• g0,3 recent landmark calculation (Anastasiou et al.)

• (Almost) all ingredients for N3LL′ resummation
• All non vanishing terms appearing at N3LO level are known  
   (i.e. soft+virtual approximation)

Cres =g0(↵s) exp


1

↵s
g1(↵s lnN) + g2(↵s lnN) + ↵sg3(↵s lnN) + . . .

�

g0(↵s) = 1 + ↵sg0,1 + ↵2
sg0,2 + ↵3

sg0,3 + . . .

33



A simple example: NLO
• Let’s consider first NLO in the heavy top limit (OK for soft)

C(1) = 4Ag(z)D̃(z) +
✓

4CA

⇡
⇣2 +

11
2⇡

◆
�(1� z)� 11

2⇡

(1� z)3

z

D̃(z) =

"
ln 1�zp

z

1� z

#

+

, Ag(z) =
CA

⇡

1� 2z + 3z2 � 2z3 + z4

z

constant contribution highly suppressed
at large N

logarithmic terms

Upon Mellin transform:

D̃1(N) =
1
2

⇥
 2

0(N) + 2�E 0(N) + �2
E

⇤

 0(N) = lnN +O
✓

1
N

◆ How well does the soft 
contribution approximate 

the full NLO ?
34



• Let’s expand the resummation to first non-trivial order 

• This captures the correct large-N behavior but has a cut at 
 finite N

• Wrong type of singularity! What does it look like in z space ?
• The inverse Mellin contains

 with k=1 (and a delta contribution)
• This is not what we find at fixed order

NLO: soft approximation

Cres = 1 + ↵sC
(1)
res +O(↵2

s)

C(1)
res = g1,2 ln2 N + g2,1 lnN + g0,1

Dlog

k =

 
lnk ln 1

z

ln 1

z

!

+
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Three improvements
The analytic structure at finite N can be restored by a more careful 
study of the kinematics

1. Poles vs cuts: 

2. Phase-space for soft gluon emission:

which suggests the replacement

Dlog

1

(z)! D
1

(z) =
✓

ln(1� z)
1� z

◆

+

D1(z)! D̃1(z) =

 
ln 1�zp

z

1� z

!

+

pgg(z)
Z M (1�z)p

z

⇤

dkt

kt
=

Ag(z)
1� z

✓
ln

1� zp
z

+ ln
M

⇤

◆

Forte, Ridolfi (2002)
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3. Collinear improvement

• resummation of logs only requires Ag(1)=1
• the full splitting function accounts for collinear emissions (but at 

least 1/N suppressed)

• We keep first and second order (contribution to our uncertainty)
• We cannot keep the full because of double poles (more later) 

pgg(z)
Z M (1�z)p

z

⇤

dkt

kt
=

Ag(z)
1� z

✓
ln

1� zp
z

+ ln
M

⇤

◆

Three improvements

Ag(z) =
CA

⇡

⇥
1� (1� z) + 2(1� z)2 + . . .

⇤

soft1 :

˜D1(N)! ˜D1(N + 1)

soft2 :

˜D1(N)! 2

˜D1(N)� 3

˜D1(N + 1) + 2

˜D1(N + 2)
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Final prescription for soft
• These improvements can be generalized to higher orders
• Write the standard resummed result in the following form

• Substitute the fully improved functions to obtain*

• The various expressions only differs for terms that vanish at large N
• Note that there’s a reshuffling of the constant terms  
   (always adjusted for in the plots for known orders)

C
res

(N,↵s) = g
0

(↵s) exp

1X

n=1

↵n
s

nX

k=0

bn,k Dlog

k (N)

C
soft1

(N,↵s) = ḡ
0

(↵s) exp

1X

n=1

↵n
s

nX

k=0

bn,k
ˆDk(N + 1)

C
soft2

(N,↵s) = ḡ
0

(↵s) exp

1X

n=1

↵n
s

nX

k=0

bn,k

h
2

ˆDk(N)� 3

ˆDk(N + 1) + 2

ˆDk(N + 2)

i
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Comparison to exact results
We expand the soft resummation(s) to finite order and compare to 
known NLO and NNLO 
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• Our approximations (soft1 and soft2) reproduce the FO down to N~2
• Soft+virt in z-space (soft-0) undershoots both NLO and NNLO
• N-soft (no improvements) also good, especially at NLO:

lnk ln 1
z

ln 1
z

=
p

z

1� z
lnk 1� zp

z
⇥

h
1 +O ⇥

(1� z)2
⇤ i
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