- Precision QCD predictions with NNLO calculations

Alexander Mitov

Cavendish Laboratory

[ㅐㅇ․ UNIVERSITYOF
(1) CAMBRIDGE

Part I:

NNLO calculations: status and prospects

Indeed,

it is all about

Stress-testing the Standard Model at the LHC!

Collider physics is complicated!

- Many approaches are needed to probe it comprehensively

I will focus on one aspect: NNLO QCD calculations.

- Is NNLO big deal?
- Yes! But not as much as it was just few years ago!
- Reason:
- Multitude of approaches and calculations made it possible to compute all 2-to-2 LHC processes very fast.
\checkmark Only jets@NNLO is still outstanding but clearly it is only a matter of (short) time.

NNLO approaches (1)

- First were Smith, van Neerven and co.
[Drell-Yan, e+e-] through mid-'90's
- Early modern work was analytic (elegant but couldn't cope with less-inclusive observables)
[Higgs, Drell-Yan] Anastasiou, Dixon, Melnikov Petriello '01-04

Early numeric work based on sector decomposition (lead to tremendous progress; implementation is process dependent)

Binoth and Heinrich '04
[Higgs, Drell-Yan] Anastasiou, Melnikov, Petriello '03

- Antenna subtraction (ongoing progress)

```
[e+e- -> 3 jets] Weinzierl '08-09
    Gerhmann-De Ridder, Gehrmann, Glover, Heinrich '07
[dijets] Currie, Gehrmann-De Ridder, Gerhmann, Glover, Pires, Wells '13-15
[H+j] Chen, Gehrmann, Glover, Jacquier '14
[Z+j] Gehrmann-De Ridder, Gerhmann, Glover, Huss, Morgan '15
[tt (quarks)] Abelof, Gehrmann-De Ridder '14
```

Colorful subtraction (promising development)
del Duca, Somogyi, Trocsanyi '05

```
[Higgs \(\rightarrow \mathrm{bb}\) ] del Duca, Duhr, Somogyi, Tramontano, Trocsanyi '15
\([\mathrm{e}+\mathrm{e}-\rightarrow 3 \mathrm{j}]\) del Duca, Duhr, Kardos, Somogyi, Trocsanyi ' 16
```


NNLO approaches (2)

$-\mathrm{q}_{\mathrm{T}}$-subtraction
$>$ elegant and effortless for colorless final states:

```
    Catani, Grazzini '07
[r\gamma] Catani, Cieri, de Florian, Ferrara, Grazzini '11
[WY, Zy] Grazzini, Kallweit, Rathlev,Torre '13-15
[ZH] Ferrara, Grazzini, Tramontano '14
[WH] Ferrara, Grazzini, Tramontano '11-13
[WW] Gehrmann, Grazzini, Kallweit, Maierhoeffer,von Manteuffel,Pozzorini, Rathlev, Tancredi '14
[ZZ] Cascioli, Gehrmann, Grazzini, Kallweit, Maierhoeffer, von Manteuffel,Pozzorini,
    Rathlev, Tancredi, Weihs '14
```

> being developed for general final states:

```
    Zhu, Li, Li, Shao, Yang '12
    Catani, Grazzini, Torre '14
[tt-offdiagonal] Bonciani, Catani, Grazzini, Sargsyan, Torre '15
```

N-jettiness (new and very promising development) \rightarrow See talks by R. Boughezal, F. Petriello

Gaunt, Stahlhofen, Tackmann, Walsh, '15
[Vj] Boughezal, Focke, Liu, Petriello '15-16
[Zj] Boughezal, Focke, Giele, Liu, Petriello '15
[Hj] Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello '15
[ry] Campbell, Ellis, Li, Williams '16

NNLO approaches (3)

- Sector-improved residue subtraction

```
                    Czakon `10-11
                    Czakon, Heymes '14
                    Boughezal, Melnikov, Petriello, '11
[tt] Barnreuther, Czakon, Fiedler, Heymes, Mitov '12-16
[Hj] Boughezal, Caola, Melnikov, Petriello, Schulze, '13-15
[B-decay] Caola, Czernecki, Liang, Melnikov, Szafron, '14
[t-decay] Brucherseifer, Caola, Melnikov, '13
```

- Future developments within this approach:
$>$ Independent implementation in a new code STRIPPER
Czakon, Heymes, van Hameren
> Process-independent (currently used for top production; adding top decay)
$>$ Important stability and numerics-related improvements being implemented
$>$ Linked to fastNLO: could output tables for any process
\checkmark Very useful for pdf studies
Britzger, Rabbertz, Sieber, Stober, Wobisch

NNLO with STRIPPER: the idea

All integrations involving real radiation are done numerically

- All inputs are analytic. Only the minimal input is needed:
> Tree-level amplitudes for RR
> One-loop amplitudes for RV:
- Finite parts
- Singular limits (which are universal)
- Method is exact (basically this is the subtraction method at NNLO)

Logic is simple:
IR singularities appear from soft/collinear radiation from external legs. They are universal.

- Split the whole process into sum of terms, each having one particular singularity:
- At NLO:
$>(1 \rightarrow 2)$ splitting
- At NNLO:
$>(1 \rightarrow 3)$ splitting, or
$>$ two NLO-like splittings: $(1 \rightarrow 2) \&(1 \rightarrow 2)$

NNLO with STRIPPER: the idea

- The splitting is controlled by selector functions (FKS idea)

Introduce a decomposition of unity:

- An example at NLO:

$$
\sum_{i k} \mathcal{S}_{i, k}=1 \quad \mathcal{S}_{i, k}=\frac{1}{D_{1} d_{i, k}}, \quad D_{1}=\sum_{i k} \frac{1}{d_{i, k}} \quad d_{i, k}=\left(\frac{E_{i}}{\sqrt{\hat{s}}}\right)^{\alpha}\left(1-\cos \theta_{i k}\right)^{\beta}
$$

- At NNLO:

$$
\begin{aligned}
& \sum_{i j}\left[\sum_{k} \mathcal{S}_{i j, k}+\sum_{k l} \mathcal{S}_{i, k ; j, l}\right]=1 \quad \mathcal{S}_{i j, k}=\frac{1}{D_{2} d_{i j, k}}, \quad \mathcal{S}_{i, k ; j, l}=\frac{1}{D_{2} d_{i, k} d_{j, l}} \\
& D_{2}=\sum_{i i}\left[\sum_{k} \frac{1}{d_{i j, k}}+\sum_{k l} \frac{1}{d_{i, k} d_{j, l}}\right] . \\
& d_{i j, k}=\left(\frac{E_{i}}{\sqrt{\hat{s}}}\right)^{\alpha_{i}}\left(\frac{E_{j}}{\sqrt{\hat{s}}}\right)^{\alpha_{j}}\left[\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{i k}\right)\left(1-\cos \theta_{j k}\right]^{\beta}\right.
\end{aligned}
$$

Selectors are such that they vanish in any singular limit different from the current one
Introduce (same) parameterization but appropriate for each singular configurations

NNLO with STRIPPER: the idea

- At NLO, all that remains is to parameterize the energy and angle of the emitted parton and the singularirty is automatically factorized:

Apply formula:

$$
\frac{1}{x^{1+a \epsilon}}=-\frac{1}{a \epsilon} \delta(x)+\left[\frac{1}{x^{1+a \epsilon}}\right]_{+} \quad \int_{0}^{1} \mathrm{~d} x\left[\frac{1}{x^{1+a \epsilon}}\right]_{+} f(x)=\int_{0}^{1} \mathrm{~d} x \frac{f(x)-f(0)}{x^{1+a \epsilon}}
$$

Calculate limits:

$$
\lim _{\eta \rightarrow 0}\left[\eta \xi^{2}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(0)}\right\rangle\right], \quad \lim _{\xi \rightarrow 0}\left[\eta \xi^{2}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(0)}\right\rangle\right]
$$

$$
\lim _{\eta \rightarrow 0} \lim _{\xi \rightarrow 0}\left[\eta \xi^{2}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(0)}\right\rangle\right]
$$

- At NNLO it is more complicated because we have overlapping singularities, i.e. no single parameterization will immediately work.
- Idea: use sector decomposition to disentangle the singularities

Czakon '10

- Note: this is different from the original application of sector decomposition because here one parameterizes universal singularities (correspond to universal splittings)

NNLO with STRIPPER: the idea

- It turns out, it is sufficient to split the original integral in 5 terms, called sectors, that are dictated by the overlap of soft and collinear singularities in a $1 \rightarrow 3$ splitting.
- In each one of these 5 sectors one can now introduce a parameterization for the relevant 4 variables (2 energies and 2 angles) such that each sector has only factorized singularities!

The relevant (singular) part of the PS integration reads:

$$
\begin{aligned}
& \int \mathrm{d} \boldsymbol{\Phi}_{\text {unresolved }} \theta\left(u_{1}^{0}-u_{2}^{0}\right)= \\
& \left(\frac{\mu_{R}^{2} e^{\gamma_{\mathrm{E}}}}{4 \pi}\right)^{2 \epsilon} \int_{\mathcal{S}_{1}^{2-2 \epsilon}} \mathrm{~d} \boldsymbol{\Omega}\left(\theta_{1}, \phi_{1}, \rho_{1}, \ldots\right) \int_{\mathcal{S}_{1}^{2-2 \epsilon}} \mathrm{~d} \boldsymbol{\Omega}\left(\theta_{2}, \phi_{2}, \sigma_{1}, \sigma_{2}, \ldots\right) \int_{0}^{u_{\max }^{0}} \frac{\mathrm{~d} u_{1}^{0}\left(u_{1}^{0}\right)^{1-2 \epsilon}}{2(2 \pi)^{3-2 \epsilon}} \int_{0}^{u_{2 \max }^{0}} \frac{\mathrm{~d} u_{2}^{0}\left(u_{2}^{0}\right)^{1-2 \epsilon}}{2(2 \pi)^{3-2 \epsilon}} \theta\left(u_{1}^{0}-u_{2}^{0}\right)= \\
& \frac{E_{\max }^{4}}{(2 \pi)^{6}}\left(\frac{\pi \mu_{R}^{2} e^{\gamma_{\mathrm{E}}}}{8 E_{\max }^{2}}\right)^{2 \epsilon} \int_{\mathcal{S}_{1}^{1-2 \epsilon}} \mathrm{~d} \boldsymbol{\Omega}\left(\phi_{1}, \rho_{1}, \ldots\right) \int_{\mathcal{S}_{1}^{-2 \epsilon}} \mathrm{~d} \boldsymbol{\Omega}\left(\sigma_{1}, \sigma_{2}, \ldots\right) \int_{0}^{1} \mathrm{~d} \zeta(\zeta(1-\zeta))^{-\frac{1}{2}-\epsilon} \iiint \int_{0}^{1} \mathrm{~d} \eta_{1} \mathrm{~d} \eta_{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2} \sum_{i=1}^{5} \mu_{\mathcal{S}_{i}},
\end{aligned}
$$

	$\mu_{\text {S }}$
\mathcal{S}_{1}	$\eta_{1}^{1-2 \epsilon} \eta_{2}^{-\epsilon} \xi_{1}^{-\epsilon-\epsilon \epsilon} \xi_{2}^{1-2 \epsilon}\left(\left(1-\eta_{1}\right)\left(2-\eta_{1} \eta_{2}\right)\right)^{-\epsilon}\left(\frac{\eta_{31}\left(\eta_{1}, \eta_{2}\right)}{2-\eta_{2}}\right)^{1-2 \epsilon} \xi_{2}^{2-2 e}$
S_{2}	$\eta_{1}^{2-3 \epsilon} \eta_{2}^{1-2 \epsilon \epsilon} \xi_{1}^{3-4} \xi_{2}^{1-2 \epsilon}\left(\left(1-\eta_{2}\right)\left(2-\eta_{1} \eta_{2}\right)\right)^{-\epsilon}\left(\frac{\eta_{1}\left(\eta_{2}, \eta_{1}\right)}{2-\eta_{1}}\right)^{1-2 \epsilon} \xi_{2 \text { max }}^{2-2 \epsilon}$
\mathcal{S}_{3}	$\eta_{1}^{-\epsilon} \eta_{2}^{1-2 \epsilon} \xi_{1} \xi_{1}^{-4 \epsilon} \xi_{2}^{2-3 \epsilon}\left(\left(1-\eta_{2}\right)\left(2-\eta_{1} \eta_{2} \xi_{2}\right)\right)^{-\epsilon}\left(\frac{\eta_{31}\left(\eta_{2}, \eta_{1} \xi_{2}\right)}{2-\eta_{1} \xi_{2}}\right)^{1-2 \epsilon} \xi_{2 \text { max }}^{2-2 \epsilon}$
S_{4}	$\eta_{1}^{1-2 \epsilon \eta_{2}^{1-2 \epsilon} \xi_{1}^{3-4 \epsilon} \xi_{2}^{1-2 \epsilon}\left(\left(1-\eta_{1}\right)\left(2-\eta_{2}\right)\left(2-\eta_{1}\left(2-\eta_{2}\right)\right)\right)^{-\epsilon} \eta_{32}^{1-2 \epsilon}\left(\eta_{1}, \eta_{2}\right) \xi_{2}^{2-2 \epsilon} \text { max }}$
\mathcal{S}_{5}	

At this point proceed as we discussed at NLO
For full details see arxiv:1408.2500

The bottom line on NNLO calculations

-Good progress; makes us feel good
\checkmark (Especially because another wish-list is completed ;)

- The questions we need to ask are:
-What's the value of these result in terms of physics?
-What's next on the to-do list?
- I'll address both in the following.

Out of the box NNLO's: how useful are they?

- Scales: important but importance perhaps underappreciated!
(it was great that many of the discussion during the last few days involved scale choices!)
- Fixing scales is just like developing new software:
$>$ Come up with an idea,
$>$ make it work, > make it optimized!

How to store results and make them accessible and useable?

- Plots in papers (not useful)
- Electronic files (could be used, if nothing else available)
\checkmark fastNLO, etc tables (convenient and fast; binning etc is rigid)
- N-tuples - library of results (fully flexible but still non-existent)

NNLO: future needs and directions

- Establishing a connection between various processes:
\Rightarrow Access all (many) processes under the same roof
- NLO is a good lead (although should not be followed verbatim due to computational cost at NNLO):
- MCFM

Talk by: Walter Giele

- MC@NLO
- Powheg
- Sherpa
- ...
- Matching NNLO to showers and description of realistic final states

Talks by: Stefan Hoeche
Christian Bauer

- Exploring new frontiers (beyond 2-to-2)
- (Some of) the NNLO methods can in principle cope with any-multiplicity processes.
- Numerics is however another issue...
- However, no 2-loop amplitude is known beyond 2-to-2

Part II:

NNLO precision applications

Choice of dynamic scales in top production

Several tried and tested choices:

$$
\begin{aligned}
& \mu_{0} \sim m_{t}, \\
& \mu_{0} \sim m_{T}=\sqrt{m_{t}^{2}+p_{T}^{2}}, \\
& \mu_{0} \sim H_{T}=\sqrt{m_{t}^{2}+p_{T, t}^{2}}+\sqrt{m_{t}^{2}+p_{T, \bar{t}}^{2}}, \\
& \mu_{0} \sim H_{T}^{\prime}=\sqrt{m_{t}^{2}+p_{T, t}^{2}}+\sqrt{m_{t}^{2}+p_{T, \bar{t}}^{2}}+\sum_{i} p_{T, i}, \\
& \mu_{0} \sim E_{T}=\sqrt{\sqrt{m_{t}^{2}+p_{T, t}^{2}} \sqrt{m_{t}^{2}+p_{T, \bar{t}}^{2}}}, \\
& \mu_{0} \sim H_{T, \text { int }}=\sqrt{\left(m_{t} / 2\right)^{2}+p_{T, t}^{2}}+\sqrt{\left(m_{t} / 2\right)^{2}+p_{T, \bar{t}}^{2}}, \\
& \mu_{0} \sim m_{t \bar{t}},
\end{aligned}
$$

What are we looking for here?

- A scale that ensures fastest perturbative convergence (and agreement with data at low P_{T}, where lots of data is available and well understood)

$$
\mu_{0}= \begin{cases}\frac{m_{T}}{2} & \text { for : } p_{T, t}, p_{T, \bar{t}} \text { and } p_{T, t / \bar{t}} \\ \frac{H_{T}}{4} \text { for : all other distributions }\end{cases}
$$

NNLO differential with various dynamic scales ($M_{t t} @ 8$ TeV)

NNLO and scales: some lessons

L Lessons for the TEV range:
Recent result of NNLL resummation (soft and soft-collinear) of differential top production

Large difference between NLO and NLO + resummation may be an indication of suboptimal scale choice.

Based on our study, perturbative convergence with $M_{t t}$-based scales is not optimal.

NNLO and scales: BLM/PMC

- At least one alternative to the usual scale setting exists
- Been applied to top production in a number of papers.

Example: top quark $A_{F B}$ at the Tevatron
Wang, Wu, Si, Brodsky, Mojaza '12-15
$>B L M / P M C$ versus usual scales (from arXiv:1601.05375v1)

- Difference is simply huge!

- Recent application to Higgs physics

Wang, Wu, Brodsky, Mojaza '16

Precision NNLO applications: PDF's

- Precision predictions require pdf's.
- Compare predictions based on different pdf sets (NNPDF3.0, CT14, MMHT2014):
- Absolute P_{T} distributions for each pdf set:
- Ratios of pdf sets (wrt NNPDF3.0):

Czakon, Heymes, Mitov, to appear

Preliminary

Precision NNLO applications: PDF's

- Precision predictions require pdf's.
- Compare predictions based on different pdf sets (NNPDF3.0, CT14, MMHT2014):
- Absolute $M_{t t}$ distributions for each pdf set:

Preliminary

- Ratios of pdf sets (wrt NNPDF3.0):

Czakon, Heymes, Mitov, to appear

Precision NNLO applications: PDF's

Understanding the large K-factors at NNLO:

- a pdf effect - not scale related.

Czakon, Heymes, Mitov, to appear

Precision NNLO applications: PDF's

- Precision predictions require pdf's.
- Compare predictions based on different pdf sets (NNPDF3.0, CT14, MMHT2014):
- And $Y_{t t}$:

Czakon, Heymes, Mitov, to appear

Precision NNLO applications: PDF's

- Clearly, we see strong dependence on the choice of pdf set
- This is very significant because it easily exceeds scale variation
- One way or another, top measurements offer the possibility to fix pdf's
> In fact, it appears, precision progress in the TeV range will only be possible once improved pdf's appear.
- How much can we say about the pdf's from existing data (i.e. 8 TeV data)?

Fixing pdf's from existing top data

- Scale variation not included; only pdf error.

Fixing pdf's from existing top data

- Scale variation not included; only pdf error.

Hartland, Nocera, Rojo, Czakon, Mitov, to appear

Fixing pdf's from existing top data

- Scale variation not included; only pdf error.

Fixing pdf's from existing top data

- Scale variation not included; only pdf error.

Fixing pdf's from existing top data

Gluon PDF before/after inclusion of ATLAS+CMS top data

Preliminary

Hartland, Nocera, Rojo, Czakon, Mitov, to appear

Precision NNLO applications: top mass

- Another application: top mass from differential distributions at D0

D0 Collaboration + Fiedler, Czakon, Heymes, Mitov, to appear

- Idea:
\checkmark evaluate the main differential distributions for a set of values of $m_{\text {top }}$
- Consider separately unnormalized and normalized distributions
- Extract best mass from a chi fit
- The expectation is: extraction should be similar to the D0 one from the total cross-section

The hope is: the constraining power could be stronger due to correlations through the full spectrum (and not only close to threshold)

- It turns out there is good sensitivity to $\mathrm{m}_{\text {top }}$ in both un/normalized distributions!

This is important because the normalization is strongly dependent on $\mathrm{m}_{\text {top }}$
(will not show any normalized data - not yet public)
A good pilot study for the very precise future LHC data!

Precision NNLO applications: top mass

- Unnormalized:
($\mathrm{m}_{\text {top }}$ dependence only close to threshold)

Normalized:
($\mathrm{m}_{\text {top }}$ dependence "reappears" in all bins!)

Relative scale error

Precision NNLO applications: top mass

Unnormalized:

Relative scale error

Conclusions

Global lessons from NNLO:

- Precision is generally good (compared to NLO) and makes a difference

A large class of processes (2-to-2) has been cleared (only dijets missing)

- So far this is an incoherent set of calculations
- To be truly useful we have to take this to the next level
- Revisit scale choices
- Ensuring access to calculations and results
- Fixing pdf's: soon progress will be hampered by the pdf's
- Open issues and future directions:
- comprehensive NNLO libraries
- Matching to showers
- Going to 2-to-3: requires new level of results for 2-loop amplitudes (none exist)

