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Factorizati




e For an observable F' we have

o(l') = 1da 1d a a72 72
(F) ;/@ 77/0 Mo fa/a(Mas 1) fora(n, 1°)

X 5-(0’7 bv MNas Tb, F7 :u2)
+ O(1 GeV?/QAF))

e /12 is an adjustable factorization scale.

e Q*(F) is a hard scale corresponding to the observable F.

e Errors are power suppressed when Q*(F) is large.



The observable

A 1 -
O'(G,,b, 77a>77b>F7 /’LQ) — Z H /dyl H /dplaj dyj d¢]
m ' 71=2
do

X
dyn dpJ_,Q dys dos - - - dpJ_,m AYm, AdPm,
X Fn(p1,02, - - - Pm)

e [ defines, for instance, three jets with given P; values.

e By adding flavor indices, we could describe leptons, photons.

e We can choose F,,(p1,p2,...,Pm) to be symmetric
under interchange of its arguments.



Infrared safety

e For our discussion, F' needs to be infrared safe.

e We can be (a little) more precise by saying that
F is infrared safe at scale Q*(F).

e For partons m and m + 1 becoming collinear,

Pm — 2D

when they are sufficiently collinear,
(Pm + Pm+1)? < Q*(F)

we ask that combining the partons leaves F' unchanged:

Fm—l—l(p17 ¢ .. 7pm—1apmapm—|—1) ~ Fm(p17 ¢ .. 7p771—17p)



e Also when one parton is becoming aligned to the beam axis

_______________________ R

P72n+1,¢ < Q*(F)

we ask that leaving it out leaves F' unchanged:

Fm—l—l(p17 s oo 7pm—17pm;pm—|—1) ~ Fm(p17 b oo 7pm—17pm)



Pythia (1985



e Torbjorn Sjostrand proposed starting at the hardest interaction.

e Then one generates parton
splittings that are softer
and softer.

e Lor initial state splittings,
this means going backwards
in time.

e In 1985, this was quite counterintuitive.
e In 2015, it is standard.

e This makes shower evolution into a renormalization
group equation.



Relation to factorization

e Suppose that we stop the
shower at scale Q4 and
measure an observable F

with Q% < Q*(F).

e

e Then we continue the shower

and measure F' again.

e Since the later splittings have Q% < Q% < Q*(F),
they are unresolvable by F'.

e So o(F') is unchanged.



The perturbative expansion

1 1
F) — Z/ dna/ dnb fa/A(Ua,MQ)fb/A(UbalLZ)
o Jo 0 Pm
X p
X O’(Cl,b, Nas My L MQ) 41
+ O(1 GeV?/Q*(F))

e The function &(a, b, na, np, F, 1?) has a perturbative expansion:

(3'(&,b,77a,77b,F,/L ZOCS CL b T]a,nb,F o )

e However, a parton shower does not evaluate this exactly.

e Rather, each splitting is approximated as being very collinear
or very soft compared to the hardness of the previous splitting.
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NLO matching (2002-2004)

NNLO matching, to 2016

See talks of Hoche and Baur



e The hardest scattering is
LO order only.

e The hardest splitting gives an
approximate NLO correction.

e We can correct this to give
NLO exactly plus some yet
higher order corrections.

e Then running the simple shower further does not affect
the result for o(F) for a large Q*(F) jet cross section.

e This is the basis of NLO matching schemes.

— MC@NLO (Frixione, Webber)
— POWHEG (Nason)

12



Why wasn’t Pythia perfect:




e There is quantum interference between soft gluon emission
from parton [ and gluon emission from parton k.

e The interference is destructive when 6 > 6.

e So radiation from the [-k£ “dipole” is limited to 6 < 0.

e In (old) PyTHIA, the only limit was 6 < 1.

e Thus soft, wide angle radiation was completely wrong.
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How Herwig fixed this (1984)



e Suppose that a gluon splits into two almost collinear gluons.

e Then each daughter radiates a sott, wide angle gluon.

e Or, rather, to an on-shell approximation to the mother.
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Implementing color coherence

e Webber and Marchesini (1984) showed how to implement
this in an event generator.

e This became the basis of Herwig (Webber, 1984).

e Put the wide angle splittings first.

e This involves an approximation for the azimuthal angle
distributions.
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What about Pythia?

-

e [arly Pythia just imposed a cut on angles.

e This roughly simulates the coherence effect.
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e Parton shower event generators track

e Mostly they use the “leading color”
approximation.

e Gluons carry color 3 x 3
rather than 8.

e Corrections are order 1/N?
(N. = 3).

color.

0
R
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Doing better with color

e A parton shower should track the color density matrix,

> pcm A m) [{etm)({¢ )]
(e} A}

e But this gives exponentials of large matrices.

e So implementing full color in a parton shower
is an unsolved problem.

e DEDUCTOR (Nagy-Soper 2014) has an improved
color treatment, “LC+H.”
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Color and dipoles

e A gluon line has two ends.

e So we can always consider it
to be radiated by a dipole.

e In general, we need color matrices, 17" T7".

e In the leading color approximation,
we consider only pairs of partons
that are color connected.

e Then we have just Cr or Cp instead of matrices.
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Ariadne (1988, 1992



e For gluon emission from a (leading color) dipole,
there are four possible graphs.

Lo > >

e We can combine all four into one.

e Use the approximation that the emitted gluon is soft or
collinear to one of the constituent partons.

AN

e Then one dipole splits to two dipoles. < —

e That is, two partons split to three partons.

e Splittings can be organized by decreasing hardness.
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e This was proposed by Gustafson and Petersson (1988).
e [t was implemented as ARIADNE by Lonnblad (1992).

e | like to call this the dipole antenna picture.

e Note that it nicely captures quantum interference
(at leading color).

e This works well for final state splittings, but not so
well for splittings with an initial state parton.

e Winter and Krauss (2008) devised a reasonable
extension for initial state partons.

o Giele, Kosower, Skands implemented a dipole antenna
shower in VINCIA (2008).

e Ritzmann, Kosower and Skands extended VINCIA to cover
initial state dipoles (2013).
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Partitioned dipo




e For emission of a soft gluon with momentum ¢q from a dipole
with parton momenta p;, pr, there are four possible graphs.

Lo > >

e The sum is the soft eikonal factor

dipole _ 2pl " Pk
. q-D1q- Pk

e Multiply this by 1 = A], + A}, where (for example)

q-pr Qi
q-pr Q -pr+q-p Q- Pk

and () is the total final state momentum after the splitting.

/o
lk —

e T'his partitions the dipole radiation into two terms. .



e The first of the two terms is

dipole 4/ _ 2p1 - pr % Q - i
Vi k=
1k 4P 4P Q- pit+q-p Q- pi
e This has a collinear singularity when ¢ is collinear with p;.

e It has no collinear singularity when ¢ is collinear with py.

e We associate this term with emission from parton [ with
parton k as helper.

e The other term describes emission from parton £ with
parton [ as helper.

e Thus each emission has a definite emitter.

e But we keep the quantum interference. <



Partitioned dipole showers

e DEDUCTOR is a partitioned dipole shower.

e PYTHIA-8 is similar to a partitioned dipole shower
for the final state.

— But not for initial state emissions.
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Partitioned dipole showers
Catani-Seymour style



e The splitting functions of a
properly formulated shower
capture the collinear and
soft gluon singularities of QCD.

® S0 full — shower has
the singularities removed.

e So the shower splitting functions can serve as the
subtractions in an NLO calculation.

e Also, the subtraction terms for an NLO calculation can serve
as the splitting functions for a shower.

e Catani and Seymour (1997) created a subtraction scheme
based on dipoles for doing NLO calculations.

e There are some advantages to using this subtraction scheme

to define splitting functions of a shower (Nagy-Soper, 2006).
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Catani-Seymour dipole showers

e There are small variations among these.

1. Dinsdale, Ternick and Weinzierl (2007).
2. Schumann and Krauss (2008) (default in SHERPA ).

3. Platzer and Gieseke (2011, 2012) (available in HERWIG).

4. Hoche and Prestel (2015) (available in SHERPA and PYTHIA).
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Choices in partitioned dipole
showers
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Momentum mapping

e In a final state splitting, the
mother parton was on-shell.

o Afterwards, we see that mother
parton is off-shell.

e In an initial state splitting, the
mother parton had zero p| .

e Afterwards, we see that the
mother parton must have
NON-ZETo P |

e To make this work, some other partons must pay a
momentum tax.
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e In DEDUCTOR, all of the other final state partons
pay according to their momentum wealth.

e In the Catani-Seymour scheme, this also applies
for an IS splitting with an IS spectator.

e Otherwise in the Catani-Seymour scheme, a single parton
pays the momentum tax: the dipole partner parton.

but

e Platzer and Gieseke take the momentum from all final
state particles for all initial state splittings.

e For the p | distribution in the Drell-Yan process,
this allows the vector boson to recoil against all initial
state radiation.
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The partitioning function

e DEDUCTOR uses

q - Pk Q'pz
q-pr Q -pr+q-p Q- px

/o
lk —

In the Q = 0 frame, this is a function only of the directions
of (j, ﬁl and ﬁk

e The Catani-Seymour dipole subtraction scheme uses

;o q - Pk
lk —
q-Pk T q-Di

This i1s simple.



Splitting functions

e The splitting functions have to match QCD
in the soft and collinear collinear limits.

e This implies that the splitting functions approach the
DGLAP kernels P,;(z) in the collinear limit.

e Away from the soft and collinear collinear limits
there are no sure guidelines.

e Catani and Seymour have a simple choice.
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Evolution variable

e One needs a hardness variable to order splittings
from hardest to softest.

e The hardness variable needs to vanish for an exactly
collinear splitting and for emission of a zero momentum
parton.

e k7 is the most popular choice.

e Usually k| is defined in the rest frame of a dipole.

e DEDUCTOR uses ¢°/E where ¢ is the virtuality
and F is the energy of the mother parton as
measured in a fixed frame.

e To my knowledge, no choice is demonstrably best.



The Sudakov or




o Let ‘p(t)) represent the probability distribution of
parton variables after the shower has run for time ¢.

o |p(t)) is a density matrix in color space.

e That is, |p(t)) is the state of the system as described
by quantum statistical mechanics.

e Evolution:

% p(t)) = Hi(t) — S)]|p(t))

H1(t) = real emissions.
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e Define the Sudakov or “no splitting” operator:

Ns(1,ty) = T exp —/ dr' S(7")
B to i

e Then the solution of the evolution equation is

() = Ns(t, to)|plte)) + / dr Nis(t, 7)H1(T)Ns (7, to) | p(to))

to

t T2
n / i, / dry Ns(t, 7a)H 1 (r2)Ns(r2 71 )M (11)Ns (11, t0) | p(to))
to to

AT



e Beware:

% p(t)) = [Hi(t) — S]] p())

does not conserve the Born-level cross section
under shower evolution:

/,(1\[%1(@ —~S(t)] #0

totally inclusive
measurement

e Thus people substitute

% ‘p(t)) = [H(t) — V(t)HP(t))

where

(1M1 (1) — V(£)] = 0
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e Nagy and I argue that it is better to use S(t).

e Then the parton shower sums “threshold logarithms.”

e Example: one jet inclusive cross section do/(dPy) with

DEDUCTOR(std.) with V

DeEDUCTOR(full) with S
- includes also a factor for redefinition

of parton distribution functions

NLO
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do /dPr [nb/GeV]

One jet inclusive cross section

DEDUCTOR (full) & NLO

DEDUCTOR (std.) ——

-]

0.5

1.5 2 2.9 3
PT [TGV]

3.9

S
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Conclusions

e There has been considerable development of parton shower
algorithms since the beginning, but especially in the past
fifteen years.

e The essential physics input is factorization and quantum
interference.

e There are choices that are not fixed by this input.

e Partons carry quantum spin, but I have skipped a discussion
of spin issues.

e Partons carry quantum color, which I have discussed.

e Implementing full color is an outstanding problem.

e One can sum (approximately) threshold logarithms. .



There 1s more to understand

e What is the relation of parton showers to summing
large logarithms?

- Can parton showers account for rapidity logarithms,
as in HIGH ENERGY JETS (Andersen and Smillie, 2010)?

e What would one mean by a parton shower algorithm with
the splitting functions defined beyond order ay.



