Theoretical Advances in Jet Substructure

Jesse Thaler

PliT

"Stress-testing the Standard Model at the LHC", KITP — May 23, 2016

p

Simple discriminant requires new calculational techniques

Substructure from First Principles

Probing the Core of QCD

Back to the Future

Substructure from First Principles

Probing the Core of QCD

Back to the Future

Key Substructure Techniques

Jet Cleaning: e.g. ISR/UE/pileup

[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering...; for pileup: Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction...]

W/Z-Tagging @ CMS [JME-14-002, CMS-PAS-EXO-15-002]

[using Larkoski, Marzani, Soyez, JDT, 1402.2657]

Discrimination:

e.g. 1-prong vs. N-prong

[pT Balance, Y-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions, Jet Charge, Jet Pull, Energy Correlation Functions, Dipolarity, pT^D, Zernike Coefficients, LHA, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger, Template Method, Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets...]

[using JDT, Van Tilburg, 1011.2268, 1108.2701]

First-Principles Calculations?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

First-Principles Calculations?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

[[]Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Recent Analytic Progress

Combination of fixed-order, direct resummation, SCET, RG evolution, and new techniques (e.g. Sudakov safety, multi-differential projections)

The Power of Power Counting

Energy correlation functions for W/Z tagging

[Larkoski, Moult, Neill, 1409.6298,1507.03018; using Larkoski, Salam, JDT, 1305.0007; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646] Jesse Thaler — Theoretical Advances in Jet Substructure

The Power of Power Counting

Energy correlation functions for W/Z tagging

[Larkoski, Moult, Neill, 1409.6298,1507.03018; using Larkoski, Salam, JDT, 1305.0007; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646] Jesse Thaler — Theoretical Advances in Jet Substructure

12

Jesse Thaler — Theoretical Advances in Jet Substructure

13

[Soyez, IDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, in 1605.04692]

Factor of 2 differences in tagging performance

Need for precision calculations and revisiting final state parton shower

LHA = $\sum z_i \sqrt{\theta_i}$

Quarks vs. Gluons?

Tagging with Les Houches Angularity

Substructure from First Principles

Probing the Core of QCD

Back to the Future

W/Z Tagging with BDRS

[Butterworth, Davison, Rubin, Salam, 0802.2470; see also Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

W/Z Tagging with BDRS

Groomed angular-ordered clustering tree:

[Butterworth, Davison, Rubin, Salam, 0802.2470; see also Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Calculating Momentum Balance?

Collinear Unsafe \downarrow $p(z_g)$

Calculable order-by-order in α_s \downarrow $p(z_g | \theta_g)$

Calculating Momentum Balance?

[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]

Calculating Momentum Balance?

[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]

 $\beta = 0$

β > 0

β < 0

 $\begin{array}{l} \text{Core Feature} \\ \text{of QCD:} \end{array} \simeq \frac{1}{z_g} \\ \\ \end{array} \\ \text{d}P_{i \rightarrow ig} \simeq \frac{2\alpha_s}{\pi} C_i \frac{\text{d}\theta}{\theta} \frac{\text{d}z}{z} \end{array}$

≈ independent of α_s (!) ≈ independent of jet energy/radius ≈ same for quarks/gluons

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699]

Substructure from First Principles

Probing the Core of QCD

Back to the Future

New calculational technique to extend validity of perturbative quantum field theory

$$p(\boldsymbol{z_g}) = \int \mathrm{d}\boldsymbol{\theta}_g \, p(\boldsymbol{\theta}_g) \, p(\boldsymbol{z_g}|\boldsymbol{\theta}_g)$$

Connections to old ideas?

I. Version of PS/ME Matching

$$p(\mathbf{z_g}) = \int \mathrm{d}\theta_g \, p(\theta_g) \, p(\mathbf{z_g}|\theta_g)$$

$$p(\theta_g) \simeq \frac{\mathrm{d}}{\mathrm{d}\theta_g} \exp\left[-\frac{\alpha_s C_i}{\pi} \left(\beta \log^2 \frac{1}{\theta_g} + 2\log \frac{1}{\theta_g}\log \frac{1}{2 z_{\mathrm{cut}}}\right)\right]$$

$$p(z_g|\theta_g) \simeq \frac{1}{\text{norm}} \frac{1}{z_g} \Theta(z_g - z_{\text{cut}} \theta_g^{\beta})$$

$$p(z_g) \simeq \sqrt{\frac{\alpha_s C_i}{\beta}} \frac{1}{z_g} \exp\left[\frac{\alpha_s C_i}{\pi \beta} \log^2 \frac{1}{2z_{\text{cut}}}\right] \operatorname{erfc}\left[\sqrt{\frac{\alpha_s C_i}{\pi \beta}} \log \frac{1}{\min[2z_{\text{cut}}, 2z_g]}\right]$$

$$\Rightarrow \frac{1}{\text{norm}} \frac{1}{z_g} \Theta(z_g - z_{\text{cut}}) \quad (\beta = 0)$$

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699; Larkoski, Marzani, Soyez, JDT, 1402.2657]

Generalized Fragmentation Functions

e.g. Weighted Jet Charge...

...on Firm Theoretical Ground

$$\begin{split} \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \, D_i(Q,\kappa,\mu) &= \frac{1}{2} \sum_j \int \mathrm{d}Q_1 \, \mathrm{d}Q_2 \, \mathrm{d}z \, \gamma^D_{ij}(z,\mu) \\ &\times D_j(Q_1,\kappa,\mu) D_{a(ij)}(Q_2,\kappa,\mu) \\ &\times \delta[Q-z^\kappa Q_1-(1-z)^\kappa Q_2] \end{split}$$

[Feynman, Field, 1978]

[Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Waalewijn, 1209.3019] [see also Chang, Procura, JDT, Waalewijn, 1303.6637, 1306.6630; Larkoski, JDT, Waalewijn, 1408.3122]

3. Learning from our Elders

$$\frac{2\pi}{\sigma_0} \frac{d\sigma}{d\varphi} = \frac{1 + O(\alpha_s(Q^2)) + \frac{\alpha_s(Q^2)}{\pi} (\frac{16}{3} \ln \frac{3}{2} - 2) \cos 2\varphi}{1 - Born \ cross \ section \ despite \ ambiguity \ (!)}$$

Exploits generalized notion of "observable"

Summary

Substructure from First Principles

Growing catalog of observables, growing toolbox of approaches

Probing the Core of QCD

Exposing the universal singularity structure of gauge theories

Back to the Future

Old/new ways to extend validity of perturbative quantum field theory

July 18–22, 2016
Backup Slides

CMS Experiment at LHC, CERN Data recorded: Sun Jul 12 07:25:11 2015 CEST Run/Event: 251562 / 111132974 Lumi section: 122 Orbit/Crossing: 31722792 / 2253

[CMS, 1506.03062] [using Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848; using Ellis, Vermilion, Walsh, 0903.5081, 0912.0033]

CMS Experiment at LHC, CERN Data recorded: Sun Jul 12 07:25:11 2015 CEST Run/Event: 251562 / 111132974 Lumi section: 122 Orbit/Crossing: 31722792 / 2253

[CMS, 1506.03062] [using Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848; using Ellis, Vermilion, Walsh, 0903.5081, 0912.0033]

600

Boosted

[CMS, 1506.03062]

Jesse Thaler — Theoretical Advances in Jet Substructure

p

Textbook QCD: Universal Collinear Limit

$$\mathrm{d}P_{i\to jk} = \frac{\mathrm{d}\theta}{\theta} \,\mathrm{d}z \,P_{i\to jk}(z)$$

Collinear singularity

Altarelli-Parisi splitting function

Textbook QCD: Universal Collinear Limit

QCD Splitting Functions

Basis for DGLAP evolution of PDFs, parton shower generators, fixed-order subtractions, kt jet clustering...

Jet Substructure Discrimination

$$- \frac{z}{z} \theta \Big|^2$$

Splitting Function $I \rightarrow 2$

Jesse Thaler — Theoretical Advances in Jet Substructure

Calculating Groomed Jet Mass

Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470]

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft Drop

$$z > z_{\rm cut} \, \theta^{\beta}$$

More	≈ Mass Drop	Less
Grooming	I	Grooming
β < 0	β = 0	β > 0

Soft-Dropped Jet Mass

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

β=-0.5 0.15 R=1, p_t>3 TeV z_{cut}=0.1

Jesse Thaler — Theoretical Advances in Jet Substructure

Small Tweak to the Textbooks?

IRC Safe:
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{N} \int \mathrm{d}\Phi_{N} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{N}} \delta \left[\mathcal{O} - \hat{\mathcal{O}}(\Phi_{N}) \right]$$
$$\prod_{N \in \mathbb{N}} \delta \left[\hat{\mathcal{O}}(\Phi_{N-1}) \right]$$

Also IRC Safe?
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{N} \int \mathrm{d}\Phi_{N} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{N}} \frac{f(\mathcal{O}, \Phi_{N})}{\uparrow\uparrow}$$
$$\text{Take IRC limit of } f(\mathcal{O}, \Phi_{N+1})$$

More About R2 D₂

D₂: Test for 2-Prong Substructure

correlation

[Larkoski, Salam, JDT, 1305.0007; see also Banfi, Salam, Zanderighi, hep-ph/0407286; [ankowiak, Larkoski, 1104.1646]

Discriminants: $X_2 \rightarrow 0$ for exactly 2-prong

$$C_2 = \frac{e_3}{(e_2)^2}$$

Natural choice?

$$D_2 = \frac{e_3}{(e_2)^3}$$

Provably best choice!

[Larkoski, Moult, Neill, 1409.6298]

Power Counting: I-prong Background

[Larkoski, Moult, Neill, 1409.6298, 1507.03018]

Jesse Thaler — Theoretical Advances in Jet Substructure

Power Counting: 2-prong Signal

 C_1C_2 S z_{cs} $e_2 \simeq R_{12}$ $z_i \simeq$ Z_S C_1C_2C C₁C₂ or CC_S SX C_1C_2S $C_1C_2C_S$ CC $e_3 \simeq R_{12} z_s + R_{12}^2 R_{cc} + R_{12}^3 z_{cs}$ $R_{ij} \simeq R_{cc}$ R_{12} 1

[Larkoski, Moult, Neill, 1409.6298, 1507.03018; collinear-soft modes and soft-collinear modes also appear in Bauer, Tackmann, Walsh, Zuberi, 1106.6047; Procura, Waalewijn, Zeune, 1410.6483; Larkoski, Moult, Neill, 1501.04596; Chien, Hornig, Lee, 1509.04287; Pietrulewicz, Tackmann, Waalewijn, 1601.05088; see also coft modes in Becher, Neubert, Rothen, Shao, 1508.06645, 1605.02737]

 $D_2 = \frac{e_3}{(e_2)^3}$

Unlike C₂, clean separation of I-prong from 2-prong

> Basis for ATLAS "R2 D₂" tagger

Novel QCD calculation based on merging two SCET factorization theorems (!) and projecting triple-differential cross section (!)

(n.b. e^+e^- calculation with $\beta = 2$)

ATLAS I 3 TeV Baseline: "R2 D2"

 $R_{sub} = 0.2$ trimming with D_2 tagging

ATLAS 13 TeV Baseline: "R2 D2"

First 13 TeV results

[ATLAS-CONF-2015-068, -071, -075, -080]

More About Quarks vs. Gluons

Quarks vs. Gluons on One Slide

[based on Berger, Kucs, Sterman, hep-ph/0303051; Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014] [see also Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 1401.2158] [For a more complete catalog, see Gallicchio, Schwartz, 1106.3076, 1211.7038]

What is a Quark Jet?

From lunch/dinner discussions

Les Houches Angularity: Quarks Hadron level, R=0.6, e^+e^- @ Q=200 GeV

Les Houches Angularity: Gluons Hadron level, R=0.6, e^+e^- @ Q=200 GeV

LHA: Quark/Gluon Separation Hadron level, R=0.6, e^+e^- @ Q=200 GeV

Total Separation Power *Hadron level, R=0.6, e⁺e⁻*

Opportunities for Analytics/Tuning *Hadron level, R=0.6, e⁺e⁻ @ Q=200 GeV*

Puzzling trends require deeper study

More About Open Data

Additional zg Theory Plots

[Larkoski, Marzani, JDT, 1502.01719]

Jesse Thaler — Theoretical Advances in Jet Substructure

CMS Jet Primary Data Set Triggers

Corrected Jet pT Spectrum

Jet Kinematics

Simple Substructure

2-prong Substructure

Track-Only Substructure

Changing z_{cut}

