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[ATLAS, 1506.00962]
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Back to the Future

Substructure from First Principles

Probing the Core of QCD

Outline
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Key Substructure Techniques 

Jet Cleaning:

Discrimination:

⇒
[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering…;	
for pileup:  Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction…]

[pT Balance, Y-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions,	
Jet Charge, Jet Pull,  Energy Correlation Functions, Dipolarity, pT

D, Zernike Coefficients,	
LHA, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger,  Template Method,	
Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets…]

e.g. ISR/UE/pileup

e.g. 1-prong vs. N-prong
vs.

0 50 100 150 200

E
v
e
n
ts

 /
 4

 G
e
V

0

100

200

300  Data

 j)→ Top (W 

 j)→ Top (q 

 j)→ Top (g 

 Other bkgs.

 (8 TeV)-119.7 fb

CMS

Preliminary

=-1 [GeV]β 
SD

M

0 50 100 150 200

P
u
ll

-4

-2

0
2

4

[JME-14-002, CMS-PAS-EXO-15-002]

Soft	
Drop
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First-Principles Calculations?

Pythia 6 Simulation
Trimmed	
Jet Mass:

3 TeV quark jets
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e.g. Jet Trimming

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

extensively	
used by ATLAS

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]
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Pythia 6 Simulation
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Jet Mass:
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Recent Analytic Progress

1-prong:

	 Jet mass:  Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky, 1207.1640; Chien, Kelley, Schwartz, Zhu, 1208.0010;	                
	 	 Jouttenus, Stewart, Tackmann, Waalewijn, 1302.0846	                            
	 Jet shapes:  Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014; Banfi, Dasgupta, Khelifa-Kerfa, Marzani, 1004.3483;	             
	 	 Li, Li, Yuan, 1107.4535; Larkoski, Neill, JDT, 1401.2158; Hornig, Makris, Mehen, 1601.01319	                            
	 Angular scaling:  Jankowiak, Larkoski, 1201.2688; Larkoski, 1207.1437	      
	 Quarks vs. gluons:  Larkoski, Salam, JDT,1305.0007; Larkoski, JDT,  Waalewijn, 1408.3122;	  
	 	 Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber, 1501.04794	                            
	 QCD grooming:  Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Dasgupta, Fregoso, Marzani, Powling, 1307.0013;	     
	 	 Larkoski, Marzani, Soyez, JDT, 1402.2657; Frye, Larkoski, Schwartz, Yan, 1603.06375, 1603.09338	                            
	Double differential:  Larkoski, JDT, 1307.1699; Larkoski, Moult, Neill,1401.4458; Procura, Waalewijn, Zeune, 1410.6483	
	 In heavy ions:  Chien, Vitev, 1405.4293; Chien, 1411.0741	         
	 pT balance:  Larkoski, Marzani, JDT,1502.01719	             
	 Small R jets:  Dasgupta, Dreyer, Salam, Soyez, 1411.5182, 1602.01110           

2-prong:
	 Signal grooming:  Rubin, 1002.4557; Dasgupta, Powling, Siodmok, 1503.01088	     
	2-prong jet shapes:  Feige, Schwartz, Stewart, JDT, 1204.3898; Isaacson, Li, Li, Yuan, 1505.06368	 
	 Separation power:  Larkoski, Moult, Neill, 1409.6298, 1507.03018; Dasgupta, Schunk, Soyez, 1512.00516  

3-prong:
	 Planar flow:  Field, Gur-Ari, Kosower, Mannelli, Perez, 1212.2106	           
	 Fractional jets:  Bertolini, JDT,  Walsh, 1501.01965	       
	 Power counting:  Larkoski, Moult, Neill, 1411.0665     

Non-pert.:
	 Jet charge:  Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Waalewijn, 1209.3019	             
	 Track-only shapes:  Chang, Procura, JDT, Waalewijn, 1303.6637, 1306.6630  

•

See Andrew’s Talk

Combination of fixed-order, direct resummation, SCET, RG evolution,	
and new techniques (e.g. Sudakov safety, multi-differential projections)
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[Larkoski, Moult, Neill, 1409.6298,1507.03018; using Larkoski, Salam, JDT, 1305.0007; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646]

vs.

The Power of Power Counting	
Energy correlation functions for W/Z tagging
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[Larkoski, Moult, Neill, 1409.6298,1507.03018; using Larkoski, Salam, JDT, 1305.0007; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646]
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The Power of Power Counting	
Energy correlation functions for W/Z tagging
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Quarks vs. Gluons?	
Tagging with Les Houches Angularity
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[Soyez,  JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper,  in 1605.04692]

Factor of 2 differences in tagging performance	
Need for precision calculations and revisiting final state parton shower

e+e– → quarks (CF = 4/3) e+e– → gluons (CA = 3)
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Back to the Future

Substructure from First Principles

Probing the Core of QCD
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W/Z Tagging with BDRS

Angular-ordered	
clustering tree:

[Butterworth, Davison, Rubin, Salam, 0802.2470; see also Dasgupta, Fregoso, Marzani, Salam, 1307.0007]  
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W/Z Tagging with BDRS

Groomed 
angular-ordered	
clustering tree:

[Butterworth, Davison, Rubin, Salam, 0802.2470; see also Dasgupta, Fregoso, Marzani, Salam, 1307.0007]  
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W/Z Tagging with BDRS

Groomed 
angular-ordered	
clustering tree:
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Calculating Momentum Balance?

zg ??

p(zg) =

Collinear Unsafe

zg

1–zg

zg

1–zg

θgvs.

) p(zg|θg)

Calculable	
order-by-order in αs 

θg

[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]
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Calculating Momentum Balance?
zg

1–zg
θg

p(zg) =

Z
dθg p(θg) p(zg|θg)

Calculable	
order-by-order in αs ?!
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[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]
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[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]

Calculating Momentum Balance?

p(zg) =

Z
dθg p(θg) p(zg|θg)

“Sudakov Safe”
Calculable	

order-by-order in αs 

- ( )

( )

Form factor suppresses	
singularities at all orders in αs 

zg

1–zg
θg

vs.
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β < 0 β = 0 β > 0

Less Grooming

β → ∞β → –∞

More Grooming

z > zcut θ
β

zg

1–zg

[Larkoski, Marzani, JDT, 1502.01719; using techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699; Larkoski, Marzani, Soyez, JDT, 1402.2657]

Soft Drop
q/g

Cq = 4/3	
Cg = 3

21

First-Principles QCD

ATLAS 8 TeV	
Diboson Search

= =
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β < 0 β = 0 β > 0

Less Grooming

β → ∞β → –∞

More Grooming

z > zcut θ
β

zg

1–zg

[Larkoski, Marzani, JDT, 1502.01719; using techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699; Larkoski, Marzani, Soyez, JDT, 1402.2657]

Soft Drop
q/g

Cq = 4/3	
Cg = 3
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β < 0 β = 0 β > 0

Less Grooming

β → ∞β → –∞

More Grooming

z > zcut θ
β

zg

1–zg

[Larkoski, Marzani, JDT, 1502.01719; using techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699; Larkoski, Marzani, Soyez, JDT, 1402.2657]
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Less Grooming

β → ∞β → –∞

More Grooming

z > zcut θ
β

zg

1–zg

[Larkoski, Marzani, JDT, 1502.01719; using techniques in Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Larkoski, JDT, 1307.1699; Larkoski, Marzani, Soyez, JDT, 1402.2657]
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≈ independent of αs (!)	
≈ independent of jet energy/radius	
≈ same for quarks/gluons

'

1

zg

Core Feature 
of QCD:

= =
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= -
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= =

>

>

>

>

First-Principles QCD Simulated LHC Data

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699]
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Actual	
LHC Data?
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Simone MarzaniAndrew Larkoski Alexis Romero Aashish Tripathee Wei Xue
CMS advice from	

Sal Rappoccio
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Simone MarzaniAndrew Larkoski Alexis Romero Aashish Tripathee Wei Xue
CMS advice from	

Sal Rappoccio
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Back to the Future

Substructure from First Principles

Probing the Core of QCD
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p(zg) =

Z
dθg p(θg) p(zg|θg)

Connections to old ideas?

New calculational technique to extend	
validity of perturbative quantum field theory
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[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699; Larkoski, Marzani, Soyez, JDT, 1402.2657]

1.  Version of PS/ME Matching	

p(zg) =

Z
dθg p(θg) p(zg|θg)
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[Larkoski, Marzani, JDT, 1502.01719]

2.  Renormalization Group Flow

Collinear Unsafe? Absorb singularities into universal 
nonperturbative function (cf. PDFs)

fragmentation	
function

collinear	
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Generalized Fragmentation Functions

[Feynman, Field, 1978]

52 R.D. FieM, R.P. Feynman / A parameterization of the properties of quark ]ets 
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Fig. 21. Same as fig. 20 but  where the power p is taken to be 0.5. d-quark, (Qw) = - 0 . 1 5 ,  

u-quark,  (Qw) = 0.26. 

4 .  P r o p e r t i e s  o f  t h e  q u a r k  r a p i d i t y  p l a t e a u  

4.1. Rapidity correlations 

4.1.1. Correlations between adjacent-rank mesons 

There are two sources of  correlations in our model. Naturally, there is the corre- 

lation among secondary particles that are the decay products of  the same primary 

meson. In addition, however, the primary mesons are not formed at random in 

rapidity. Primary mesons adjacenf in rank are correlated in both flavor and rapidity 

since they each contain a quark (or antiquark) that came from the same q?t pair. 

The two primary mesons of  adjacent rank tend to occur near each other in rapidity, 

Yz, as shown in fig. 22. The mean [AYz[ between mesons adjacent in rank is about 

1.8 units, where all the decay products of  a particular primary meson are assigned 

the rank of  that meson (see fig. 1). Fig. 22 also shows the distribution of  IAYzl 

between mesons with the same rank ((IAYzl) = 0.9). All flavor correlations in the 

quark jets occur between primary mesons of  adjacent rank. The flavor o f  a meson 

e.g. Weighted Jet Charge… …on Firm Theoretical Ground

50 R.D. ~eld, R.P. Feynman / A parameterization of the properties of quark ]ets 

must be an integer and thus a random variable. There is an unavoidable noise depend- 

ing on whether a particular charged particle in the plateau happens to have Pz greater 

or less than zero. Even though the plateau is neutral and all the difference of u- and d- 

quark jets lies far away at higher z, one is trying to sum a long series like +1-1+1+1-1 

+ 1 - 1 - 1  ... not knowing where to stop, but knowing only that +1 and - 1  become 

more and more equally likely to occur as we go further down the series (to lower z). 

The proper thing to do is, of course, the analogue of Abel summation, weigh the 

terms with a gradually decreasing weight as we go down the series. If  the weight falls 

gradually enough from unity at the beginning, the excess charge there will be accu- 

rately picked up. However, the random +1 far down where the weight has fallen 

toward zero will produce no fluctuations. That is, if particle i has "z rapidity" Yz i 

and charge qi, we form the "weighted" charge 

Qw(p) = ~ qi exp(-pYz  i) = ~ zPqi , (3.9) 
i i 

where p is a small number. This quantity will have a mean (close to (Q) as p ~ 0) 

distinct for u- and d-quark jets. Furthermore, the "noise" or fluctuations expected 

from having to stop the sum below some f'mite Zmi n is +gPin which can be made 

small as long as Zmi n can be made small enough. 

For a given experimental circumstance, however, Zmi n is fixed and the criteria 

that p be small and that ZPmin alSO be small are opposed. For sufficiently small Zrnin 

there is no problem, but because of the wide fluctuations in rapidity that the par- 

ticles in our model suffer, we have found that in practice the method does not work 

as well as we hoped. For groin = 0.1, with p = 0.5, for example, the fluctuating un- 

certainty gPmin is 0.3 times less than the gross sum Q = ~ qi ; but such a large p means 

that Q(P) does not average as large as (Q). Even worse is that for such a large p the 

contributions of high-z particles depend so strongly on the precise z value they 

actually have. 

Figs. 20 and 21 show the distribution of Qw (/7) with p = 0.2 and 0.5, respectively, 

for a u- and d-quark jet of energy Pq = 10 GeV (including all hadrons with 

Pz > 0). The p = 0.2 distributions are considerably broader than the p = 0.5 case; 

however, the former has mean values ~Qw) that are more widely separated 

(~Qw)u - (Qw)a = 0.64 for p = 0.2 and only 0.41 for p = 0.5). In both cases, there 

is a clear separation of the u- and d-jets. By the use of table 14, we fred a reliability 

of 0.37 if we assign jets with Qw f> 0 as u-quark type and those jets with Qw < 0 as 

d-quark type with p = 0.2. The efficiency of this criterion is excellent (99% since we 

include only those jets with at least one charged hadron). One can obtain a higher 

reliability (but lower efficiency) by excluding from consideration those jets with Qw 

values occurring in the overlap region of the u- and d-quark jet distributions. For 

example, table 15 shows that if we assign jets with Q~v t> 0.4 as u-type and those 

with Qw < -0 .3  as d-type, then forp  = 0.5 we get a 58% reliability with 46% effi- 

ciency. This "weighted" charge technique gives us better reliability factors than the 
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[Krohn, Schwartz, Lin, Waalewijn, 1209.2421;  Waalewijn, 1209.3019]	
[see also Chang, Procura, JDT, Waalewijn, 1303.6637, 1306.6630; Larkoski, JDT, Waalewijn,1408.3122]
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(a) 

e- 

-e 
q 
9 

e+ 

4 

(b) 

Fig. 1. Second order QCD diagrams for e+e- --f y* + hadrons: 

(a) diagram interfering with the Born graph, (b) and (c) dia- 

grams for gluon production. 

e- Beam Axis 

2 

Beam Polarization Axis Thrust Axis 

Fig. 2. Definition of angles 0, X and @. The thrust axis is along 

@while the q, q and g momenta lie in the plane (x, z). The 

(v, z) plane divides the final state into two hemispheres. 

Gdefines the hemisphere in which to find the antiquark 

(quark) in case of the thrust axis being given by the quark 

(antiquark) momentum. If the gluon is most energetic sde- 

fines the hemisphere in which to find the quark. The angles 

8, x and $ vary between 0 < 0 d n, 0 4 x < 2~ and 0 $ @ G 2n. 

When talking about the thrust distribution &! will be defined 

according to A and B. 

that the (non-perturbative) quark and gluon fragmentation into hadron is characterized by a limited @I} x 400 

MeV, this becomes negligible with respect to the transverse momentum of each jet at high energies so that a dis- 

tinct signal of primary qqg production should emerge. 

Following Sterman and Weinberg [4], various authors [5,6] have proposed variables for measuring the jet topo- 

logy which are infrared insensitive and, hence, can be reliably calculated in QCD perturbation theory. Among 

those are thrust T, spherocity S and acoplanarity A i 

For algebraic convenience we shall put the quark mass equal to zero *’ . For unpolarized electrons and positrons 

the functional form of the basic partial cross section for e+e- + y* + q(pI)4&)g&) is given by PI  

2n 
d40 d20U d2uL 

=~(1tc0s20)~+~sin2B------- + 3 sin26 
d20T 3 

2x--- 
d2uI 

cos - - sin 28 cos x - 
d cos 8 dx dx, dx, dxldx2 dXldX2 24 dxldx2 ’ 1 2 

wherexi=2pi/@(xl +x2+x 

(1) 
3 = 2). 0 is the angle between the incoming electron beam and the thrust axis 

while x is the azimuthal angle between the qqg-production plane and the beam axis (fig. 2). The thrust axis coincides 

with the direction of the maximum‘momentum which can be carried by either quark, antiquark or gluon. 

The cross sections uu, uL, T u and uI have the following interpretation. uU(uL) is the cross section for unpolar- 

ized transverse (longitudinally polarized) photons with helicity axis 5, i.e., the thrust axis (fig. 2). am corre- 

sponds to the interference of helicity +l and -1 amplitudes (the real part of helicity +l and 0 interference). 

In calculating the various partial cross sections we have to distinguish between three kinematical regions (fig. 3): 

I: XL >X2, X3 ; II: X2>Xl,X3; III: x3 >Xl ,x2. 

In region I (II) the thrust axis coincides with the direction of the outgoing quark (antiquark) while in region III 

the thrust axis corresponds to the gluon momentum. 

*’ Our results for massive quarks will be published elsewhere [ 71. 
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φ well-defined

φ ambiguous

[Pi, Jaffe, Low, 1978; Kramer, Schierholz, Willrodt, 1978]

e+ e–

φ

thrust	
axis

VOLUME 41, +UMBER 3 PHYSICAL REVIEW LETTERS 17 JUx,Y 1978

C

FIG. 2. Definition of azimuthal angle y for a specific
event. T and 6' are the experimentally measured thrust

and coplanarity axes. k is either beam direction. T
and k define the x-z plane.

ton and the usual conservation laws it follows

that the most general form is

do/d p =A+Bcos2 y. (3)

To prove this write the squared amplitude as jlU1 ~'

= l„,L"", where l„, is the trace over the lepton
currents

lq„(ko, qk, „+k,„k,q Zqpk, -k, ) (4)

and L"' is the analogous trace over hadronic-
current matrix elements. Since we observe only

T and C the most general form of L"" in the cen-
ter-of-mass frame is

L ~=L~ =A, T~+~ C~,1 2

l. &=7,T T~+ ~,('T C~+ r~C')

+ Z,C C~ ~,C'C'+ ~,6",

where &„(n = 0, l, . . ., 6) are invariant functions

and &' and C' are the Cartesian components of T

and C. Contracting ~„„with L"' and using the co-
ordinate system of Fig. 2 we find two sources of

q dependence: Terms proportional to ~4 yield a

sin0cos0cosy dependence which is odd in 0-m-0
and therefore integrates to zero, and terms pro-
portional to A, which yield a term proportional to
sin'icos'y. This establishes Eq (3). Notice. that
our proof nowhere depends on the definitions of
the vectors T and C. We conclude that Eq. (3) is
the correlation to be expected between any two

orthogonal vectors characterizing the final state
of e'e -hadrons. Thus, for example, the two-

.« "'o'(Q')"
= Z ' (A„+B„cos2y),

d& n=o
(6)

where the A„and B„coefficients are finite con-
stants. We have calculated the coefficient B,. It
is given by

B, = (Q'& /2m)('- ln-' —2), (7)

where o, is the lowest-order e'e annihilation
cross section into hadrons. Therefore,

——= 1+ O(n, (Q )) + ' (- la-, —2) cos2y2wdo, o,(Q'),.
0'o d P 7r 3

~ O(~.'(Q')).

Equation (7) is obtained from the diagrams
shown in Fig. 3. To first order in e, the final
qqG state defines a plane

e'(k, )+e (k,)»q(p, )+q(p, )+ G(p,). (9)

The angle y is determined once the T and C axes
are identified. The maximum directed momen-
tum [Eq. (1)]is simply the momentum of the
most energetic particle i. Therefore the thrust
axis will be in the direction of p; (T—=p;). Note
that any of the three final quanta may be most

particle (P„P,) inclusive distribution (where we

associate T with p, and C with the component of

p, normal to p, ) will also show a cos2y depen-
dence, where we are in general unable to calcu-
late the B coefficient in Eq. (3).
However, when T is the thrust axis and C the

coplanarity axis, do/dy satisfies the criterion of
Sterman and Weinberg and, if they are right, can
be reliably calculated in perturbation theory.
This is because our definition of y does not dis-
tinguish between an event with a quark of momen-

tum p and energy E on the one hand, and an event

with a quark momentum p„and energy E„ac-
companied by a gluon with momentum p, and en-
ergy E, such that p, + p, =p and E,+E,=Eon the
other. The same is true for a gluon with momen-
tum p and a quark-antiquark pair with momenta

p, and p, such that again p, + p, = p and E, +E,=E.
provided, I then, that higher-order corrections to
do/dy contain no infrared divergences, the only
possible Q' dependence will be associated with
o'. ,(Q'), where n, (Q') [=g'(Q')/4m] is the renor-
malization-group running charge of QCD. There-
fore, «/dp will be given by a power series in

o', (Q'),
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Born cross section despite ambiguity (!)

Exploits generalized notion of “observable” 

3.  Learning from our Elders



35Jesse Thaler — Theoretical Advances in Jet Substructure

Back to the Future

Substructure from First Principles

Probing the Core of QCD

Summary

Growing catalog of observables, growing toolbox of approaches

Exposing the universal singularity structure of gauge theories

Old/new ways to extend validity of perturbative quantum field theory
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July 18–22, 2016
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Backup Slides
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[CMS, 1506.03062]	
[using Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848; using Ellis, Vermilion, Walsh, 0903.5081, 0912.0033]
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Welcome to the Boosted Regime
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Textbook QCD:  Universal Collinear Limit

Collinear	
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Soft	
singularity
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QCD Splitting Functions	
Basis for DGLAP evolution of PDFs, parton shower generators, fixed-order subtractions, kt jet clustering…
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[Gavin Salam FCC talk, March 2015]

Jet Substructure Discrimination

vs.
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Calculating Momentum Balance?
zg

1–zg

undefined

??

??

infinity

??

infinity2
dσ

dzg
=

⇣ ⌘

+ αs

⇣ ⌘

+ α
2

s

⇣ ⌘

+ . . .

Collinear Unsafe*	
Can’t make prediction from perturbative QCD (?)

zg

*unless you simultaneously restrict jet mass
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Calculating Groomed Jet Mass

Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470]

DFMS	
single logs

Mass-Dropped Jet Mass

[Larkoski, Marzani, Soyez, JDT, 1402.2657]
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Small Tweak to the Textbooks?

IRC Safe:

Also IRC Safe?

In IRC limit:

Take IRC limit of 

Infrared Collinear
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=
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More About R2 D2
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D2:  Test for 2-Prong Substructure

Energy	
correlation	

functions: e
(β)
3 =

X

i<j<k

zi zj zk (RijRjkRki)
β

e
(β)
2 =

X

i<j

zi zj (Rij)
β

momentum fraction	
z = pT/pTjet

C2 =
e3

(e2)2

D2 =
e3

(e2)3

Discriminants:

[Larkoski, Salam, JDT, 1305.0007; see also	
Banfi, Salam, Zanderighi, hep-ph/0407286;	

Jankowiak, Larkoski, 1104.1646]

W/Z

Natural choice?

[Larkoski, Moult, Neill, 1409.6298]

Provably best choice!

pair-wise	
angles

adjustable exponent	
ATLAS: β=1

X2 → 0 for exactly 2-prong

key!
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[Larkoski, Moult, Neill, 1409.6298, 1507.03018]

Power Counting:  1-prong Background
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[Larkoski, Moult, Neill, 1409.6298, 1507.03018; collinear-soft modes and soft-collinear modes also appear in Bauer, Tackmann, Walsh, Zuberi, 1106.6047;	
Procura, Waalewijn, Zeune, 1410.6483; Larkoski, Moult, Neill, 1501.04596; Chien, Hornig, Lee, 1509.04287; Pietrulewicz, Tackmann,  Waalewijn, 1601.05088;	

see also coft modes in Becher, Neubert, Rothen, Shao, 1508.06645, 1605.02737]
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Unlike C2, clean separation	
of 1-prong from 2-prong	

!

Basis for ATLAS	
“R2 D2” tagger

( )

( )

+ -

[ ] =

[Larkoski, Moult, Neill, 1409.6298,1507.03018]

Optimal 2-prong Discriminant:

Novel QCD calculation based on	
merging two SCET factorization theorems (!)	

and projecting triple-differential cross section (!)	
!

(n.b. e+e– calculation with β = 2)
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(
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[ATLAS, 1510.05821]

ATLAS 13 TeV Baseline:  “R2 D2”

W/Zvs.q/g

Rsub = 0.2 trimming with D2 tagging
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More About Quarks vs. Gluons
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[Larkoski, JDT, Waalewijn,1408.3122]	
[based on Berger, Kucs, Sterman, hep-ph/0303051; Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014]	

[see also Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 1401.2158]	
[For a more complete catalog, see Gallicchio, Schwartz, 1106.3076, 1211.7038] 
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What is a Quark Jet?	
From lunch/dinner discussions

A quark parton	

A Born-level quark parton	

The initiating quark parton in a final state shower	

An eikonal line with baryon number 1/3 
and carrying triplet color charge	

A quark operator appearing in a hard matrix element 
in the context of a factorization theorem	

A parton-level jet object that has been quark-tagged 
using a soft-safe flavored jet algorithm (automatically 
collinear safe if you sum constituent flavors)	

A phase space region (as defined by an unambiguous 
hadronic fiducial cross section measurement) that yields 
an enriched sample of quarks (as interpreted by some 
suitable, though fundamentally ambiguous, criterion)

Ill-Defined

Well-Defined What we mean

What people 

sometimes 

think we mean

Quark 

as adjective

Quark 

as noun
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Les Houches Angularity:  Quarks	
Hadron level, R=0.6, e+e– @ Q=200 GeV
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Les Houches Angularity:  Gluons	
Hadron level, R=0.6, e+e– @ Q=200 GeV
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LHA:  Quark/Gluon Separation	
Hadron level, R=0.6, e+e– @ Q=200 GeV
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Total Separation Power	
Hadron level, R=0.6, e+e–
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Opportunities for Analytics/Tuning	
Hadron level, R=0.6, e+e– @ Q=200 GeV
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More About Open Data
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Corrected Jet pT Spectrum	
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Jet Kinematics	
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Simple Substructure	
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2-prong Substructure
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Track-Only Substructure	
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Changing zcut	
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zg

0

2

4

6

8

10

1

σ

dσ

dzg

CMS 2010 Open Data

Theory (MLL)

Pythia 8.215

Herwig 7

Sherpa 2.2.0

Anti–kt: R = 0.5

pT > 150 GeV; η < 2.4

Soft Drop: β = 0; zcut = 0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zg

0.6
0.8
1.0
1.2
1.4

Ratio
to

Theory

Prelim. (20%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zg

0

2

4

6

8

10

12

14

16

18

1

σ

dσ

dzg

CMS 2010 Open Data

Theory (MLL)

Pythia 8.215

Herwig 7

Sherpa 2.2.0

Anti–kt: R = 0.5

pT > 150 GeV; η < 2.4

Soft Drop: β = 0; zcut = 0.05

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zg

0.6
0.8
1.0
1.2
1.4

Ratio
to

Theory

Prelim. (20%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zg

0

2

4

6

8

10

1

σ

dσ

dzg

CMS 2010 Open Data

Theory (MLL)

Pythia 8.215

Herwig 7

Sherpa 2.2.0

Anti–kt: R = 0.5

pT > 150 GeV; η < 2.4

Soft Drop: β = 0; zcut = 0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
zg

0.6
0.8
1.0
1.2
1.4

Ratio
to

Theory

Prelim. (20%)


