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Why do we think 
there’s Physics beyond 
the Standard Model?
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Outline

• The Standard Model and its problems

• What is Dark Matter made of ?

• Do the Forces of Nature unify ?

• Is there Supersymmetry ?

• What is the origin of neutrino masses ?
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The Standard Model
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The Standard Model
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The Standard Model
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Problems of the Standard Model
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Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many free parameters

Higgs mass problem

No grand unification
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Problems of the Standard Model
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Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many free parameters

Higgs mass problem

No grand unification
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Parameters of the Standard Model

• 19 arbitrary numbers

• Huge ranges:

★ mt/me = 3,500

★ mt/mu = 90,000
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Composite quarks?
• Start from atoms:

★ Many elements, all made of electrons & a nucleus

✦ Nuclei made of protons & neutrons (nucleons)

✤ Nucleons made of quarks

✴ Quarks made of  ???

• No consistent theory (so far)

• How would we look for ??? 
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Next talk!
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Problems of the Standard Model
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Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many free parameters

Higgs mass problem

No grand unification
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Dark Matter
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Dark Matter

• Present composition of the Universe
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Evidence for Dark Matter
• Rotation curves of galaxies
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Dark Matter
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Evidence for Dark Matter

• Bullet cluster galaxies collide

★ Normal matter slows down

★ Dark matter keeps going       weakly interacting
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Candidates for Dark Matter

• Dark stars, black holes, planets etc. (MACHOS)

★ Largely ruled out by lack of microlensing
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Gravitational Microlensing
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• See more light as MACHO passes between

★ Star brightens briefly
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Gravitational Microlensing
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Gravitational Microlensing
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Jan Skowron, data from OGLE home page, CC BY-SA 2.5, 
https://commons.wikimedia.org/w/index.php?curid=730506
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Candidates for Dark Matter

• Dark stars, black holes, planets etc.

★ Largely ruled out by lack of microlensing

• Neutrinos 

★ Would disrupt structure formation
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Candidates for Dark Matter

• Dark stars, black holes, planets etc.

★ Largely ruled out by lack of microlensing

• Neutrinos 

★ Would disrupt structure formation

• Weakly Interacting Massive Particles

★ Preferred Mc2 ~ TeV:  LHC can make them!
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Candidates for Dark Matter

• Dark stars, black holes, planets etc.

★ Largely ruled out by lack of microlensing

• Neutrinos 

★ Would disrupt structure formation

• Weakly Interacting Massive Particles

★ Preferred Mc2 ~ TeV:  LHC can make them!

• Axions: cold, ultra-light (mc2<<eV), very weakly 
interacting particles:  LHC can’t make them!
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Problems of the Standard Model
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Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification
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Unification of Forces
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Standard Model Forces
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The SM is an SU(3)xSU(2)xU(1) gauge theory

3 independent couplings              , g1, g2, g3

�1,2 are electroweak:
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Running Coupling ‘Constants’
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The QCD Running Coupling
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sea quark distribution some reduction in their uncertainty is visible at high x.
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FIGURE 4. Left: The running of the strong coupling as a function of Q. Results from HERA and Tevatron colliders are shown with
the results from the four CMS measurements covering 1 TeV region. Rght: The PDF fit outcome from the HERAPDF method at
the starting scale of the evolution of Q2 = 1.9 GeV2. The band around the central fit result represents the total uncertainty including
the CMS inclusive jet data.

SUMMARY

The large dataset of pp collisions has been accumulated by CMS during the Run I data taking period. The CMS
collaboration has already provided extensive list of measurements on the jets and the strong coupling constant based
on different observables. All measurements are found to have good agreement with the world average value and the
running of αS is confirmed for the first time at the TeV scale. The inclusive jet spectrum is used to provide additional
constraints to PDFs, thus improving the gluon and the valence-quark distributions.
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[9] T.Sjö strand, S.Mrenna, and P.Skands, JHEP 05 (2006) 026.
[10] M. Bahr et al., Eur. Phys. J. C 58 p.639707 (2008).
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The QCD Running Coupling
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SUMMARY

The large dataset of pp collisions has been accumulated by CMS during the Run I data taking period. The CMS
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on different observables. All measurements are found to have good agreement with the world average value and the
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Grand Unification?

• Schematic vision …
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(Almost) Grand Unification

31
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Problems of the Standard Model

32

Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification
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Higgs Mass Problem

33

The Higgs mass receives large quantum corrections

H
f

f

H0 0

Needs high-energy cutoff �

If      is at the GUT/Planck scale (1016-19 GeV)�
there is a huge (~30 d.p.) cancellation!
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Higgs Mass Solution?

34

�s = g2
f �

H
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0 H0

A scalar (spin-zero) particle would give a contribution

�M2
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16⇥2

�
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S ln(�/MS)
⇥

So if there are two scalar particles for every fermion, with
coupling             , the quadratic     dependence cancels

This happens in theories with supersymmetry (SUSY)
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Supersymmetry
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The Standard Model

QUARKS
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Supersymmetric Standard Model
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Characteristics of SUSY

38

Superpartners can get mass without breaking
gauge symmetries

TeV-scale masses are ‘natural’:

Solve the Higgs mass problem

Lead to Grand Unification
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(Almost) Grand Unification
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SUSY Grand Unification
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Characteristics of SUSY

41

Superpartners can get mass without breaking
gauge symmetries

TeV-scale masses are ‘natural’:

Solve the Higgs mass problem

Lead to Grand Unification
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Supersymmetric Standard Model

42

WIMPs!
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Characteristics of SUSY

43

Superpartners can get mass without breaking
gauge symmetries

TeV-scale masses are ‘natural’:

Solve the Higgs mass problem

Lead to Grand Unification

Lightest SUSY particle = Dark Matter candidate 

Should be produced at LHC
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Characteristics of SUSY

44

Superpartners can get mass without breaking
gauge symmetries

TeV-scale masses are ‘natural’:

Solve the Higgs mass problem

Lead to Grand Unification

Lightest SUSY particle = Dark Matter candidate 

Should be produced at LHC
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Simulated SUSY Event

• Momentum imbalance        invisible particle(s)
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Summary
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Problems of the Standard Model

47

Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification
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Problems of the Standard Model

48

Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification
substructure??
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Problems of the Standard Model
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Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification

SUSY??

) substructure??
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Problems of the Standard Model

50

Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification

supersymmetry??

) substructure??

??)
another story …
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Lots of Other Ideas!
• Extra Higgs bosons

• Composite Higgs bosons

• Extra spatial dimensions (flat, warped, …)

• String theory

• Etc.
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Lots of Other Ideas!
• Extra Higgs bosons

• Composite Higgs bosons

• Extra spatial dimensions (flat, warped, …)

• String theory

• Etc.
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Need more LHC data!
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Lots of Other Ideas!
• Extra Higgs bosons

• Composite Higgs bosons

• Extra spatial dimensions (flat, warped, …)

• String theory

• Etc.
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Need more LHC data!
and the next machine!
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Thanks for your 
attention!
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Neutrino Masses
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Neutrino Oscillations

• Beams of neutrinos 
oscillate in flavor

57

⌫e $ ⌫µ $ ⌫⌧

• Nuclear reactor emits

• KamLAND detects

⌫̄e

⌫̄e + p ! e+ + n
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Neutrino Oscillations
• Three neutrino flavor species ne, nm, nt are 

mixtures of mass species n1, n2, n3 

• Momenta  

• Wavelengths

• Neutrino oscillations measure phase difference
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Neutrino Mass Problem
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Neutrino oscillations tell us mass differences
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Figure 3: A three-neutrino (mass)2 spectrum that accounts for all the neutrino oscillation data except those from LSND.

The νe fraction of each mass eigenstate is shown by green right-leaning hatching, the νµ fraction is shown by red left-leaning

hatching, and the ντ fraction by blue vertical hatching.

lepton, the probability that this charged lepton is, in particular, an electron, is the νe fraction of νi, |Uei|2. The

probability that the charged lepton is a muon is the νµ fraction of νi, |Uµi|2, and the probability that it is a tau is

the ντ fraction, |Uτ i|2.
Fig. 3 summarizes how we learned the flavor content of the various mass eigenstates, and the squared-mass splittings

between them. With reference to this figure, let us explain how these features of the neutrino spectrum were found,

starting with ν3.

The νe fraction of ν3 is not known, but is bounded by reactor experiments that had a detector at a distance L ∼ 1

km from the reactor. Since the (anti)neutrinos emitted by a reactor have an energy E ∼ 3 GeV, this detector distance

made these experiments sensitive to oscillation involving the larger (mass)2 gap, ∆m2
atm ≃ 2.4 × 10−3 eV2, but not

to oscillation involving the smaller gap, ∆m2
sol ≃ 8.0 × 10−5 eV2 [cf. Eq. (16) and surrounding text]. As a result,

these experiments probed the properties of ν3, the isolated neutrino at one end of the ∆m2
atm gap [9]. In particular,

they probed the νe fraction of ν3, since the particles emitted by a reactor are νe. The experiments saw no oscillation

of these νe, whose disappearance they sought, and thereby set a 3σ upper bound of |Ue3|2 < 0.045 on the νe fraction

of ν3 [10].

One hears a lot of discussion of a leptonic mixing angle called θ13. This angle is so defined that |Ue3|2 = sin2 θ13.

Thus, θ13 is a measure of the smallness of the νe part of ν3.

Apart from this small νe piece, ν3 is of νµ and ντ flavor. Now, the oscillation of atmospheric muon neutrinos is

observed to be dominated by νµ → ντ , with a νµ − ντ mixing angle that is very large. The best fit for this angle

is maximal mixing: 45◦. This atmospheric mixing angle will be reflected in the flavor content of ν3, since ν3 is at

one end of the splitting ∆m2
atm that drives atmospheric neutrino oscillation. If the angle is truly maximal, then,

apart from its small νe component, ν3 is simply (νµ + ντ )/
√

2. This mimics the behavior of the neutral K meson

system. There, apart from a small CP violation, the mixing of K0 and K0 is maximal, with the consequence that

KS = (K0 + K0)/
√

2.

Current upper limit from 
b-decay spectra:  mi < 2 eV

m�

ml
� 10�7 ??

Cosmology limit: Smi < 0.23 eV
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Neutrino Mass

• Electroweak interactions are chiral

• Chirality is a relativistically invariant 
property of particles with spin

• Coincides with handedness of spin 
only when m=0 (v=c)

• Still we call it L and R

• Mass is an interaction that converts 
L       R

60
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Neutrino Mass

• Dirac mass converts L particles into 
R particles (and vice versa)

★ e.g. eL    eR

★ eL has isospin          charge 

★ eR has

• Higgs field absorbs 

61
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Neutrino Mass

• Dirac mass would convert nL    nR

★ nL has isospin 

★ Higgs field absorbs

• nR would have

★ A sterile neutrino, with no 
Standard Model interactions

• No explanation of why  

62
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Neutrino Mass

• Another possibility: Majorana mass nR       nR,

•  OK for nR (only) because it has

• Majorana mass M could be at GUT scale

• Dirac mass m could be at electroweak scale

★ Observed neutrinos would be mixtures, with 
masses  M~1016 GeV and  m2/M~10-3 eV

• This seesaw mechanism explains  

63

I = 0, Q = 0

m⌫ ⌧ me



Why Beyond Standard Model? Bryan Webber, KITP, May 2016

Seesaw Model
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Problems of the Standard Model
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Observational
No dark matter

Not enough matter

No dark energy

No neutrino masses

Conceptual
Many arbitrary parameters

Higgs mass problem

No grand unification

supersymmetry??

) substructure??

??)
heavy neutrinos??
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Thanks for your 
continued attention!
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