CP violation in 5D QED

hep-ph/0401232

José Wudka
Bohdan Grzadkowski

jose.wudka@ucr.edu
UC Riverside

- Introduction
- A simple model

- Introduction
- A simple model
- Fourier expansions and all that

- Introduction
- A simple model
- Fourier expansions and all that
- The effective potential \& CP violating vacua

- Introduction
- A simple model
- Fourier expansions and all that
- The effective potential \& CP violating vacua
- Phenomenology

- Introduction
- A simple model
- Fourier expansions and all that
- The effective potential \& CP violating vacua
- Phenomenology
- Conclusions and future plans

Introduction

- In the 1920’s Kaluza \& Klein showed a possible way of unifying gravity with $\mathrm{E} \& \mathrm{M}$ assuming space-time is a 5 -dim. cylinder

Introduction

- In the 1920’s Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

Introduction

- In the 1920’s Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

Introduction

- In the 1920’s Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}

Introduction

- In the 1920’s Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace

Introduction

- In the 1920's Kaluza \& Klein showed a possible way of unifying gravity with $\mathrm{E} \& \mathrm{M}$ assuming space-time is a 5 -dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace
- $\left[L M_{\mathrm{Pl}}^{(4)}\right]^{2}=\left[L M_{\mathrm{Pl}}^{(D)}\right]^{D-2} ; D=6 \rightarrow L \sim 1 \mathrm{~mm}$

Introduction

- In the 1920's Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace
- $\left[L M_{\mathrm{Pl}}^{(4)}\right]^{2}=\left[L M_{\mathrm{Pl}}^{(D)}\right]^{D-2} ; D=6 \rightarrow L \sim 1 \mathrm{~mm}$
- For 2 branes + conformally flat metric

Introduction

- In the 1920’s Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace
- $\left[L M_{\mathrm{Pl}}^{(4)}\right]^{2}=\left[L M_{\mathrm{Pl}}^{(D)}\right]^{D-2} ; D=6 \rightarrow L \sim 1 \mathrm{~mm}$
- For 2 branes + conformally flat metric Randall \& Sundrum, 1999
- $\ln \left[M_{\mathrm{Pl}}^{2} G_{F}\right] \sim L \sqrt{\Lambda^{(4)}} / M_{\mathrm{Pl}}$

Introduction

- In the 1920's Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace
- $\left[L M_{\mathrm{Pl}}^{(4)}\right]^{2}=\left[L M_{\mathrm{Pl}}^{(D)}\right]^{D-2} ; D=6 \rightarrow L \sim 1 \mathrm{~mm}$
- For 2 branes + conformally flat metric
- $\ln \left[M_{\mathrm{Pl}}^{2} G_{F}\right] \sim L \sqrt{\Lambda^{(4)}} / M_{\mathrm{Pl}}$
- Finally, one need not confine the fields to the brane:

Introduction

- In the 1920's Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace
- $\left[L M_{\mathrm{Pl}}^{(4)}\right]^{2}=\left[L M_{\mathrm{Pl}}^{(D)}\right]^{D-2} ; D=6 \rightarrow L \sim 1 \mathrm{~mm}$
- For 2 branes + conformally flat metric Randall \& Sundrum, 1999
- $\ln \left[M_{\mathrm{Pl}}^{2} G_{F}\right] \sim L \sqrt{\Lambda^{(4)}} / M_{\mathrm{Pl}}$
- Finally, one need not confine the fields to the brane:
- Momentum conservation along the 5th dimension disallows large deviations form the SM.

Appelquist et al., 2000

Introduction

- In the 1920's Kaluza \& Klein showed a possible way of unifying gravity with E\& M assuming space-time is a 5-dim. cylinder
- Non-Abelian extensions exist, but it is difficult to include chiral fermions

Witten, 1981

- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

Arkani-Hamed et al., 1998

- Assume D-dim gravity has scale G_{F}
- Localize SM fields to the subspace
- $\left[L M_{\mathrm{Pl}}^{(4)}\right]^{2}=\left[L M_{\mathrm{Pl}}^{(D)}\right]^{D-2} ; D=6 \rightarrow L \sim 1 \mathrm{~mm}$
- For 2 branes + conformally flat metric Randall \& Sundrum, 1999
- $\ln \left[M_{\mathrm{Pl}}^{2} G_{F}\right] \sim L \sqrt{\Lambda^{(4)}} / M_{\mathrm{Pl}}$
- Finally, one need not confine the fields to the brane:
- Momentum conservation along the 5th dimension disallows large deviations form the SM.

Appelquist et al., 2000

A simple model

- QED on a 5-dim cylinder with Lagrangian

$$
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{M N}^{2}+\sum_{i=1,2} \bar{\psi}_{i}\left(i \gamma^{M} D_{M}-M_{i}\right) \psi_{i}+\mathcal{L}_{g f}
$$

with $F_{M N}=\partial_{M} A_{N}-\partial_{N} A_{M}$, and $D_{M}=\partial_{M}+i e_{5} q_{i} A_{M}$

- QED on a 5-dim cylinder with Lagrangian

$$
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{M N}^{2}+\sum_{i=1,2} \bar{\psi}_{i}\left(i \gamma^{M} D_{M}-M_{i}\right) \psi_{i}+\mathcal{L}_{g f}
$$

with $F_{M N}=\partial_{M} A_{N}-\partial_{N} A_{M}$, and $D_{M}=\partial_{M}+i e_{5} q_{i} A_{M}$

- Boundary conditions

$$
\psi_{i}\left(x^{\mu}, y+L\right)=e^{i \alpha_{i}} \psi_{i}\left(x^{\mu}, y\right) \quad A^{M}\left(x^{\mu}, y+L\right)=A^{M}\left(x^{\mu}, y\right)
$$

- QED on a 5-dim cylinder with Lagrangian

$$
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{M N}^{2}+\sum_{i=1,2} \bar{\psi}_{i}\left(i \gamma^{M} D_{M}-M_{i}\right) \psi_{i}+\mathcal{L}_{g f}
$$

with $F_{M N}=\partial_{M} A_{N}-\partial_{N} A_{M}$, and $D_{M}=\partial_{M}+i e_{5} q_{i} A_{M}$

- Boundary conditions

$$
\psi_{i}\left(x^{\mu}, y+L\right)=e^{i \alpha_{i}} \psi_{i}\left(x^{\mu}, y\right) \quad A^{M}\left(x^{\mu}, y+L\right)=A^{M}\left(x^{\mu}, y\right)
$$

- Gauge transformations

$$
\psi_{i}(x, y) \rightarrow e^{-i e_{5} q_{i} \Lambda(x, y)} \psi_{i}(x, y), \quad A_{M}(x, y) \rightarrow A_{M}(x, y)+\partial_{M} \Lambda(x, y)
$$

A simple model

- QED on a 5-dim cylinder with Lagrangian

$$
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{M N}^{2}+\sum_{i=1,2} \bar{\psi}_{i}\left(i \gamma^{M} D_{M}-M_{i}\right) \psi_{i}+\mathcal{L}_{g f}
$$

with $F_{M N}=\partial_{M} A_{N}-\partial_{N} A_{M}$, and $D_{M}=\partial_{M}+i e_{5} q_{i} A_{M}$

- Boundary conditions

$$
\psi_{i}\left(x^{\mu}, y+L\right)=e^{i \alpha_{i}} \psi_{i}\left(x^{\mu}, y\right) \quad A^{M}\left(x^{\mu}, y+L\right)=A^{M}\left(x^{\mu}, y\right)
$$

- Gauge transformations

$$
\psi_{i}(x, y) \rightarrow e^{-i e_{5} q_{i} \Lambda(x, y)} \psi_{i}(x, y), \quad A_{M}(x, y) \rightarrow A_{M}(x, y)+\partial_{M} \Lambda(x, y)
$$

- CP transformations

Shimizu, 1985

Gavela\& Nepomechie, 1984

$$
x^{M} \rightarrow \epsilon^{M} x^{M}, A^{M} \rightarrow-\epsilon^{M} A^{M}, \psi_{i} \rightarrow \eta_{i} \gamma^{0} \gamma^{2} \psi_{i}^{\star}, \quad\left|\eta_{i}\right|=1, \epsilon^{0,4}=-\epsilon^{1,2,3}=+1
$$

A simple model

- QED on a 5-dim cylinder with Lagrangian

$$
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{M N}^{2}+\sum_{i=1,2} \bar{\psi}_{i}\left(i \gamma^{M} D_{M}-M_{i}\right) \psi_{i}+\mathcal{L}_{g f}
$$

with $F_{M N}=\partial_{M} A_{N}-\partial_{N} A_{M}$, and $D_{M}=\partial_{M}+i e_{5} q_{i} A_{M}$

- Boundary conditions

$$
\psi_{i}\left(x^{\mu}, y+L\right)=e^{i \alpha_{i}} \psi_{i}\left(x^{\mu}, y\right) \quad A^{M}\left(x^{\mu}, y+L\right)=A^{M}\left(x^{\mu}, y\right)
$$

- Gauge transformations

$$
\psi_{i}(x, y) \rightarrow e^{-i e_{5} q_{i} \Lambda(x, y)} \psi_{i}(x, y), \quad A_{M}(x, y) \rightarrow A_{M}(x, y)+\partial_{M} \Lambda(x, y)
$$

- CP transformations

Shimizu, 1985

Gavela\& Nepomechie, 1984
$x^{M} \rightarrow \epsilon^{M} x^{M}, A^{M} \rightarrow-\epsilon^{M} A^{M}, \psi_{i} \rightarrow \eta_{i} \gamma^{0} \gamma^{2} \psi_{i}^{\star}, \quad\left|\eta_{i}\right|=1, \epsilon^{0,4}=-\epsilon^{1,2,3}=+1$

- Look for non-trivial CP violating vacua

Fourier expansions and all that

- The KK modes:

Hosotani, 1983

$$
\begin{aligned}
\psi_{i}(x, y) & =\frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} \psi_{i, n}(x) e^{i \bar{\omega}_{i, n} y} ; \quad \bar{\omega}_{i n}=\left(2 \pi n+\alpha_{i}\right) / L \\
A^{M}(x, y) & =\frac{1}{\sqrt{L}}\left[\sum_{n=-\infty}^{\infty} A_{n}^{M}(x) e^{i \omega_{n} y}+a \delta_{4}^{M}\right] ; \quad \omega_{n}=2 \pi n / L
\end{aligned}
$$

Fourier expansions and all that

- The KK modes:

Hosotani, 1983

$$
\begin{aligned}
\psi_{i}(x, y) & =\frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} \psi_{i, n}(x) e^{i \bar{\omega}_{i, n} y} ; \quad \bar{\omega}_{i n}=\left(2 \pi n+\alpha_{i}\right) / L \\
A^{M}(x, y) & =\frac{1}{\sqrt{L}}\left[\sum_{n=-\infty}^{\infty} A_{n}^{M}(x) e^{i \omega_{n} y}+a \delta_{4}^{M}\right] ; \quad \omega_{n}=2 \pi n / L
\end{aligned}
$$

- The fermion Lagrangian
$\mathcal{L}_{\psi}=\sum_{i n} \bar{\psi}_{i, n}\left[i \gamma^{\mu} \partial_{\mu}-M_{i}+i \gamma_{5} \mu_{i, n}\right] \psi_{i, n}-e \sum_{i, l, n} q_{i} \bar{\psi}_{i, l}\left(\mathcal{A}_{l-n}+i A_{l-n}^{4} \gamma_{5}\right) \psi_{i, n}$
with $\mu_{i, n}=\bar{\omega}_{i, n}+e q_{i} a, \quad e \equiv e_{5} / \sqrt{L}=4$-dim gauge coupling.

Fourier expansions and all that

- The KK modes:

$$
\begin{aligned}
\psi_{i}(x, y) & =\frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} \psi_{i, n}(x) e^{i \bar{\omega}_{i, n} y} ; \quad \bar{\omega}_{i n}=\left(2 \pi n+\alpha_{i}\right) / L \\
A^{M}(x, y) & =\frac{1}{\sqrt{L}}\left[\sum_{n=-\infty}^{\infty} A_{n}^{M}(x) e^{i \omega_{n} y}+a \delta_{4}^{M}\right] ; \quad \omega_{n}=2 \pi n / L
\end{aligned}
$$

- The fermion Lagrangian
$\mathcal{L}_{\psi}=\sum_{i n} \bar{\psi}_{i, n}\left[i \gamma^{\mu} \partial_{\mu}-M_{i}+i \gamma_{5} \mu_{i, n}\right] \psi_{i, n}-e \sum_{i, l, n} q_{i} \bar{\psi}_{i, l}\left(\mathcal{A}_{l-n}+i A_{l-n}^{4} \gamma_{5}\right) \psi_{i, n}$
with $\mu_{i, n}=\bar{\omega}_{i, n}+e q_{i} a, \quad e \equiv e_{5} / \sqrt{L}=4$-dim gauge coupling.
- Diagonalize the fermion mass matrix

$$
\psi_{i, n} \rightarrow \exp \left(i \gamma_{5} \theta_{i, n}\right) \psi_{i, n} ; \quad \tan \left(2 \theta_{i, n}\right)=\frac{\mu_{i, n}}{M_{i}} ; \quad\left|\theta_{i, n}\right| \leq \pi / 4
$$

Fourier expansions and all that (cont.)

- Physical fermion masses:

$$
m_{i, n}=\sqrt{M_{i}^{2}+\mu_{i, n}^{2}}
$$

Fourier expansions and all that (cont.)

- Physical fermion masses:

$$
m_{i, n}=\sqrt{M_{i}^{2}+\mu_{i, n}^{2}}
$$

- Interactions:

$$
\begin{aligned}
\mathcal{L}_{A \psi} & =-e \sum_{i} q_{i}\left\{A_{\mu} \sum_{k} \bar{\psi}_{i, k} \gamma^{\mu} \psi_{i, k}+\sum_{k \neq l} A_{\mu k-l} \bar{\psi}_{i, k} \Gamma_{i, k l}^{(v)} \gamma^{\mu} \psi_{i, l}\right\} \\
\mathcal{L}_{\varphi \psi} & =-e \sum_{i} q_{i}\left\{\varphi \sum_{k} \bar{\psi}_{i, k} \Gamma_{i, k}^{(\varphi)} \psi_{i, k}+\sum_{k \neq l} A_{4 k-l} \bar{\psi}_{i, k} \Gamma_{i, k l}^{(s)} \psi_{i, l}\right\}
\end{aligned}
$$

$$
\varphi \equiv A_{4, n=0}=\text { physical scalar with (naively) CPV couplings }
$$

$$
A_{\mu} \equiv A_{\mu 0}=4 \text {-dim. photon }
$$

and

$$
\Gamma_{i, k}^{(\varphi)} \equiv-i \gamma_{5} e^{2 i \gamma_{5} \theta_{i, k}}, \quad \Gamma_{i, k l}^{(s)} \equiv-i \gamma_{5} e^{i \gamma_{5}\left(\theta_{i, k}+\theta_{i, l}\right)}, \quad \Gamma_{i, k l}^{(v)} \equiv e^{i \gamma_{5}\left(\theta_{i, k}-\theta_{i, l}\right)}
$$

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

- $A_{n}^{\mu},(n \neq 0)$ will eat A_{n}^{4}

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

- $A_{n}^{\mu},(n \neq 0)$ will eat A_{n}^{4}
- $A^{\mu}=A_{n=0}^{\mu}$ remains massless

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

- $A_{n}^{\mu},(n \neq 0)$ will eat A_{n}^{4}
- $A^{\mu}=A_{n=0}^{\mu}$ remains massless
- $\varphi=A_{n=0}^{4}$ is gauge invariant.

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

- $A_{n}^{\mu},(n \neq 0)$ will eat A_{n}^{4}
- $A^{\mu}=A_{n=0}^{\mu}$ remains massless
- $\varphi=A_{n=0}^{4}$ is gauge invariant.
- φ is a gauge singlet: cannot choose the $A_{4}=0$ gauge (similar to finite temp. case).

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

- $A_{n}^{\mu},(n \neq 0)$ will eat A_{n}^{4}
- $A^{\mu}=A_{n=0}^{\mu}$ remains massless
- $\varphi=A_{n=0}^{4}$ is gauge invariant.
- φ is a gauge singlet: cannot choose the $A_{4}=0$ gauge (similar to finite temp. case).
- $U(1)$ gauge invariance remains unbroken.

Fourier expansions and all that (cont.)

- Gauge fixing:

$$
\begin{aligned}
\mathcal{L}_{g f} & =-\frac{\xi}{2}\left(\partial^{\mu} A_{\mu}-\xi^{-1} \partial_{y} A_{4}\right)^{2} \\
\mathcal{L}_{A}+\mathcal{L}_{g f} & =\frac{1}{2} \sum_{n}\left\{A_{n}^{\mu}\left[\left(\square+\omega_{n}^{2}\right) g_{\mu \nu}-(1-\xi) \partial_{\mu} \partial_{\nu}\right] A_{-n}^{\nu}-A_{n}^{4}\left(\square+\omega_{n}^{2} / \xi\right) A_{-n}^{4}\right\}
\end{aligned}
$$

then

- $A_{n}^{\mu},(n \neq 0)$ will eat A_{n}^{4}
- $A^{\mu}=A_{n=0}^{\mu}$ remains massless
- $\varphi=A_{n=0}^{4}$ is gauge invariant.
- φ is a gauge singlet: cannot choose the $A_{4}=0$ gauge (similar to finite temp. case).
- $U(1)$ gauge invariance remains unbroken.
- There is no symmetry that forbids $\langle\varphi\rangle \neq 0$

The effective potential

- Standard evaluation

The effective potential

- Standard evaluation
- Result for one fermion:

$$
\begin{aligned}
& V(M ; L ; \omega)=\frac{1}{32 \pi^{6} L^{4}}\left[(L M)^{2} L i_{3}(u)+3(L M) L i_{4}(u)+3 L i_{5}(u)+\text { H.c. }\right] \\
& \text { where } \quad u=\exp [L(i \omega-M)], \omega=\alpha+e q_{\psi} L a
\end{aligned}
$$

Effective potential (cont.)

Full potential: $V_{\text {eff }}=\sum_{i=1,2} V\left(M_{i} ; L ; \omega_{i}\right)$

$$
\begin{aligned}
& \boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{\alpha}_{\mathbf{2}}=\boldsymbol{\alpha} \\
& L^{-1}=0.3 \mathrm{TeV} \\
& M_{1}=0.2 \mathrm{TeV}, \quad M_{2}=5 \mathrm{GeV} \\
& q_{1}=2 / 3, \quad q_{2}=-1 / 3
\end{aligned}
$$

Effective potential (cont.)

Full potential: $V_{\text {eff }}=\sum_{i=1,2} V\left(M_{i} ; L ; \omega_{i}\right)$

$$
\begin{aligned}
& \boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{0}, \alpha_{\mathbf{2}}=\boldsymbol{\alpha} \\
& L^{-1}=0.3 \mathrm{TeV} \\
& M_{1}=0.2 \mathrm{TeV}, M_{2}=5 \mathrm{GeV} \\
& q_{1}=2 / 3, q_{2}=-1 / 3
\end{aligned}
$$

For $\alpha=0, \pi$, CP-invariant bound conds. \Rightarrow spontaneous CPV

Effective potential (cont.)

Full potential: $V_{\text {eff }}=\sum_{i=1,2} V\left(M_{i} ; L ; \omega_{i}\right)$

For $\alpha=0, \pi$, CP-invariant bound conds. \Rightarrow spontaneous CPV

$$
\begin{aligned}
& \boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{\alpha}_{\mathbf{2}}=\boldsymbol{\alpha} \\
& L^{-1}=0.3 \mathrm{TeV} \\
& M_{1}=0.2 \mathrm{TeV}, M_{2}=5 \mathrm{GeV} \\
& q_{1}=2 / 3, q_{2}=-1 / 3
\end{aligned}
$$

For $\alpha \neq 0, \pi$, bound conds. contain explicit CPV

No CPV with one fermion

- $V(M ; L ; \omega)$ absolute minima: $\omega=n \pi / L, n=\mathrm{odd}$
- With the field redefinitions:

$$
\psi_{\text {new }}=e^{i(\pi-\alpha) y / L} \psi \quad \varphi_{\text {new }}=\varphi+\frac{\alpha-\pi}{e_{5} q_{\psi} L}
$$

No CPV with one fermion

- $V(M ; L ; \omega)$ absolute minima: $\omega=n \pi / L, n=\mathrm{odd}$
- With the field redefinitions:

$$
\psi_{\text {new }}=e^{i(\pi-\alpha) y / L} \psi \quad \varphi_{\text {new }}=\varphi+\frac{\alpha-\pi}{e_{5} q_{\psi} L}
$$

- $V_{\text {new }}$ has a minimum at $\left\langle\varphi_{\text {new }}\right\rangle=0 \Rightarrow$ no spontaneous CPV

No CPV with one fermion

- $V(M ; L ; \omega)$ absolute minima: $\omega=n \pi / L, n=$ odd
- With the field redefinitions:

$$
\psi_{\text {new }}=e^{i(\pi-\alpha) y / L} \psi \quad \varphi_{\text {new }}=\varphi+\frac{\alpha-\pi}{e_{5} q_{\psi} L}
$$

- $V_{\text {new }}$ has a minimum at $\left\langle\varphi_{\text {new }}\right\rangle=0 \Rightarrow$ no spontaneous CPV
- $\psi_{\text {new }}(x, y+L)=-\psi_{\text {new }}(x, y) \Rightarrow$ no CPV from the boundary conditions.

No CPV with one fermion

- $V(M ; L ; \omega)$ absolute minima: $\omega=n \pi / L, n=$ odd
- With the field redefinitions:

$$
\psi_{\text {new }}=e^{i(\pi-\alpha) y / L} \psi \quad \varphi_{\text {new }}=\varphi+\frac{\alpha-\pi}{e_{5} q_{\psi} L}
$$

- $V_{\text {new }}$ has a minimum at $\left\langle\varphi_{\text {new }}\right\rangle=0 \Rightarrow$ no spontaneous CPV
- $\psi_{\text {new }}(x, y+L)=-\psi_{\text {new }}(x, y) \Rightarrow$ no CPV from the boundary conditions.
- Equivalently at the minimum, $m_{n}=m_{-n-1}$, this allows a generalized definition

$$
\psi_{n} \xrightarrow{\mathrm{CP}} C{\overline{\left(\gamma_{0} \psi_{-n-1}\right)}}^{T}
$$

under which the couplings are invariant.

- Electric dipole moments

Phenomenology

- Electric dipole moments

- Definition:

$$
e\left\langle p^{\prime}\right| J_{E M}^{\mu}|p\rangle=d \bar{u}\left(p^{\prime}\right) \sigma^{\mu \nu} \gamma_{5}\left(p^{\prime}-p\right)_{\nu} u(p)
$$

Phenomenology

- Electric dipole moments

- Definition:

$$
\begin{gathered}
e\left\langle p^{\prime}\right| J_{E M}^{\mu}|p\rangle=d \bar{u}\left(p^{\prime}\right) \sigma^{\mu \nu} \gamma_{5}\left(p^{\prime}-p\right)_{\nu} u(p) \\
A_{n}^{\mu}: \quad d_{i, n}^{(v)}=\frac{\left(e q_{i}\right)^{3} c_{i, n}^{(-)}}{4 \pi^{2}} \frac{m_{i, n}}{m_{i, 0}^{2}} J^{(v)}\left(x_{i, n}, y_{i, n}\right) \\
\varphi: \quad d_{i, 0}=-\frac{\left(e q_{i}\right)^{3} c_{i, 0}^{(+)}}{16 \pi^{2} m_{i, 0}} J^{(s)}\left(m_{\varphi}^{2} / m_{i, 0}^{2}, 1\right) \\
A_{n}^{4}: \quad d_{i, 0}^{(s)}=-\frac{\left(e q_{i}\right)^{3} c_{i, n}^{(+)}}{16 \pi^{2}} \frac{m_{i, n}}{m_{i, 0}^{2}} J^{(s)}\left(x_{i, n}, y_{i, n}\right)
\end{gathered}
$$

Phenomenology

- Electric dipole moments

- Definition:

$$
\begin{aligned}
& e\left\langle p^{\prime}\right| J_{E M}^{\mu}|p\rangle=d \bar{u}\left(p^{\prime}\right) \sigma^{\mu \nu} \gamma_{5}\left(p^{\prime}-p\right)_{\nu} u(p) \\
& A_{n}^{\mu}: \quad d_{i, n}^{(v)}=\frac{\left(e q_{i}\right)^{3} c_{i, n}^{(-)}}{4 \pi^{2}} \frac{m_{i, n}}{m_{i, 0}^{2}} J^{(v)}\left(x_{i, n}, y_{i, n}\right) \\
& \varphi: \quad d_{i, 0}=-\frac{\left(e q_{i}\right)^{3} c_{i, 0}^{(+)}}{16 \pi^{2} m_{i, 0}} J^{(s)}\left(m_{\varphi}^{2} / m_{i, 0}^{2}, 1\right) \\
& A_{n}^{4}: \\
& d_{i, 0}^{(s)}=-\frac{\left(e q_{i}\right)^{3} c_{i, n}^{(+)}}{16 \pi^{2}} \frac{m_{i, n}}{m_{i, 0}^{2}} J^{(s)}\left(x_{i, n}, y_{i, n}\right) \\
& \text { Where } \\
& \triangleright c_{i, n}^{(\pm)}= \pm M_{i}\left(\mu_{i, n} \pm \mu_{i, 0}\right) /\left(m_{i, n} m_{i, 0}\right) \\
& \triangleright x_{i, n}=\left(\omega_{n} / m_{i, 0}\right)^{2}, y_{i, n}=\left(m_{i, n} / m_{i, 0}\right)^{2} \\
& \triangleright J^{(s)}(x, y)=1+(x-y+1) \ln \sqrt{y / x}+(2 x / \rho-\rho) \Theta \\
& \triangleright J^{(v)}(x, y)=-1+(y-x) \ln \sqrt{y / x}+(\rho-\cot \Theta) \Theta \\
& \triangleright \rho^{2} \equiv 4 x y-(x+y-1)^{2} \quad \tan \Theta \equiv \rho /(x+y-1) .
\end{aligned}
$$

Comments

- Other observables (e.g. $\Upsilon \rightarrow \varphi \gamma$)

- Other observables (e.g. $\Upsilon \rightarrow \varphi \gamma$)
- m_{φ} was included as the dominating 2-loop effect, needs quantitative verification.

- Other observables (e.g. $\Upsilon \rightarrow \varphi \gamma$)
- m_{φ} was included as the dominating 2-loop effect, needs quantitative verification.
- Non-Abelian extension...in progress

In a 5D cylinder $\sim \mathbb{R}^{4} \times S^{1}$ with coordinates $x^{M}=\left(x^{\mu}, y\right)$ the metric will be periodic in y...

Kaluza Klein

In a 5D cylinder $\sim \mathbb{R}^{4} \times S^{1}$ with coordinates $x^{M}=\left(x^{\mu}, y\right)$ the metric will be periodic in $y . .$.

... and can be expanded in a Fourier series

$$
g_{M N}(x, y)=g_{M N}^{(0)}(x)+\sum_{k \neq 0} g_{M N}^{(k)}(x) e^{i k y / L} \quad g_{M N}^{(0)}=\left(\begin{array}{cc}
g_{\mu \nu} & A_{\mu} \\
A_{\mu} & \gamma
\end{array}\right)
$$

Kaluza Klein

In a 5 D cylinder $\sim \mathbb{R}^{4} \times S^{1}$ with coordinates $x^{M}=\left(x^{\mu}, y\right)$ the metric will be periodic in $y . .$.

... and can be expanded in a Fourier series

$$
g_{M N}(x, y)=g_{M N}^{(0)}(x)+\sum_{k \neq 0} g_{M N}^{(k)}(x) e^{i k y / L} \quad g_{M N}^{(0)}=\left(\begin{array}{cc}
g_{\mu \nu} & A_{\mu} \\
A_{\mu} & \gamma
\end{array}\right)
$$

The Einstein-Hilbert action reads:

$$
\int d^{5} z \sqrt{g_{M N}} R^{(5)}=2 \pi L \int d^{4} x \sqrt{g_{\mu \nu}}\left(R^{(4)}-\frac{1}{4} F_{\mu \nu} F_{\rho \sigma} g^{\mu \rho} g^{\nu \sigma}+\cdots\right)
$$

Kaluza Klein

In a 5 D cylinder $\sim \mathbb{R}^{4} \times S^{1}$ with coordinates $x^{M}=\left(x^{\mu}, y\right)$ the metric will be periodic in y...

... and can be expanded in a Fourier series

$$
g_{M N}(x, y)=g_{M N}^{(0)}(x)+\sum_{k \neq 0} g_{M N}^{(k)}(x) e^{i k y / L} \quad g_{M N}^{(0)}=\left(\begin{array}{cc}
g_{\mu \nu} & A_{\mu} \\
A_{\mu} & \gamma
\end{array}\right)
$$

The Einstein-Hillbert action reads:

$$
\int d^{5} z \sqrt{g_{M N}} R^{(5)}=2 \pi L \int d^{4} x \sqrt{g_{\mu \nu}}\left(R^{(4)}-\frac{1}{4} F_{\mu \nu} F_{\rho \sigma} g^{\mu \rho} g^{\nu \sigma}+\cdots\right)
$$

$k \neq 0$ modes have masses $\sim 1 / L$

Kaluza Klein

In a 5D cylinder $\sim \mathbb{R}^{4} \times S^{1}$ with coordinates $x^{M}=\left(x^{\mu}, y\right)$ the metric will be periodic in y...

... and can be expanded in a Fourier series
$g_{M N}(x, y)=g_{M N}^{(0)}(x)+\sum_{k \neq 0} g_{M N}^{(k)}(x) e^{i k y / L} \quad g_{M N}^{(0)}=\left(\begin{array}{cc}g_{\mu \nu} & A_{\mu} \\ A_{\mu} & \gamma\end{array}\right)$
The Einstein-Hillbert action reads:

$$
\int d^{5} z \sqrt{g_{M N}} R^{(5)}=2 \pi L \int d^{4} x \sqrt{g_{\mu \nu}}\left(R^{(4)}-\frac{1}{4} F_{\mu \nu} F_{\rho \sigma} g^{\mu \rho} g^{\nu \sigma}+\cdots\right)
$$

$k \neq 0$ modes have masses $\sim 1 / L$
Gauge couplings suppressed by $1 / M_{\mathrm{Pl}}$.

Non-Abelian Kaluza\& Klein

- Space $=\mathbb{R}^{4} \times B$, coordinates $=\left(x^{\mu}, \phi^{i}\right)$
- Symmetry group G acting on B, generators $=\left\{T_{a}\right\}$

Non-Abelian Kaluza\& Klein

- Space $=\mathbb{R}^{4} \times B$, coordinates $=\left(x^{\mu}, \phi^{i}\right)$
- Symmetry group G acting on B, generators $=\left\{T_{a}\right\}$
- Under $G: \phi^{i} \rightarrow \phi^{i}+\epsilon^{a} K_{a}^{i}(\phi)$

Non-Abelian Kaluza\& Klein

- Space $=\mathbb{R}^{4} \times B$, coordinates $=\left(x^{\mu}, \phi^{i}\right)$
- Symmetry group G acting on B, generators $=\left\{T_{a}\right\}$
- Under $G: \phi^{i} \rightarrow \phi^{i}+\epsilon^{a} K_{a}^{i}(\phi)$
- Metric:

$$
g_{M N}^{(0)}=\left(\begin{array}{cc}
g_{\mu \nu}(x) & \sum_{a} A_{\mu}^{a}(x) K_{i}^{a} \\
\sum_{a} A_{\mu}^{a}(x) K_{i}^{a} & \gamma_{i j}(\phi)
\end{array}\right)
$$

Non-Abelian Kaluza\& Klein

- Space $=\mathbb{R}^{4} \times B$, coordinates $=\left(x^{\mu}, \phi^{i}\right)$
- Symmetry group G acting on B, generators $=\left\{T_{a}\right\}$
- Under $G: \phi^{i} \rightarrow \phi^{i}+\epsilon^{a} K_{a}^{i}(\phi)$
- Metric:

$$
g_{M N}^{(0)}=\left(\begin{array}{cc}
g_{\mu \nu}(x) & \sum_{a} A_{\mu}^{a}(x) K_{i}^{a} \\
\sum_{a} A_{\mu}^{a}(x) K_{i}^{a} & \gamma_{i j}(\phi)
\end{array}\right)
$$

- Then A_{μ}^{a} is the gauge field for a gauge theory with group G For $G=S U(3) \times S U(2) \times U(1), \operatorname{dim}(B) \geq 7$

Imagine a 5D scalar field with potential
"Bounce" solution: $\Phi(y= \pm \infty)= \pm v$

Localizing matter to a brane (cont)

- Fermions coupled to this scalar field: $\bar{\psi} \psi \Phi$
(return)

Localizing matter to a brane (cont)

- Fermions coupled to this scalar field: $\bar{\psi} \psi \Phi$
- Have a mode with a zero effective mass at $y=0$

Localizing matter to a brane (cont)

- Fermions coupled to this scalar field: $\bar{\psi} \psi \Phi$
- Have a mode with a zero effective mass at $y=0$
- This mode gets a mass $\sim v$ outside the brane

Localizing matter to a brane (cont)

- Fermions coupled to this scalar field: $\bar{\psi} \psi \Phi$
- Have a mode with a zero effective mass at $y=0$
- This mode gets a mass $\sim v$ outside the brane
- All other modes have a mass $\sim M$ also

Localizing matter to a brane (cont)

- Fermions coupled to this scalar field: $\bar{\psi} \psi \Phi$
- Have a mode with a zero effective mass at $y=0$
- This mode gets a mass $\sim v$ outside the brane
- All other modes have a mass $\sim M$ also
- Boson couplings: $|D \chi|^{2}-V(\chi, \Phi)$

Localizing matter to a brane (cont)

- Fermions coupled to this scalar field: $\bar{\psi} \psi \Phi$
- Have a mode with a zero effective mass at $y=0$
- This mode gets a mass $\sim v$ outside the brane
- All other modes have a mass $\sim M$ also
- Boson couplings: $|D \chi|^{2}-V(\chi, \Phi)$
- Can use the above field to induce SSB only off the brane \Rightarrow Gauge fields become massive outside the brane

