Two Loop Fermionic Corrections to the

Effective Weak Mixing Angle

M. Awramik

DESY Zeuthen, HNINP Cracow

Plan

- Motivation
- Contributions to $\sin^2 \theta_{eff}$
- Light Fermion Contributions
- Top Quark Contributions
- Triangle Fermion Loops and γ_5
- Conclusions & Outlook

Plan

- Motivation
- Contributions to $\sin^2 \theta_{eff}$
- Light Fermion Contributions
- Top Quark Contributions
- Triangle Fermion Loops and γ_5
- Conclusions & Outlook

In collaboration with M.Czakon (Zeuthen) A.Freitas (Fermilab) G.Weiglein (Durham)

four fermion processes at LEP

$$\mathcal{A}(e^{+}e^{-} \to Z \to f\overline{f}) = \frac{4ie^{2}I_{e}^{(3)}I_{f}^{(3)}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}\rho_{ef}$$

$$\times \left[\gamma_{\mu}(1 + \gamma_{5}) \otimes \gamma^{\mu}(1 + \gamma_{5})\right.$$

$$\left. - 4|Q_{e}|s_{W}^{2}\kappa_{e}\gamma_{\mu} \otimes \gamma^{\mu}(1 + \gamma_{5}) - 4|Q_{f}|s_{W}^{2}\kappa_{f}\gamma_{\mu}(1 + \gamma_{5}) \otimes \gamma^{\mu}\right.$$

$$\left. + 16|Q_{e}Q_{f}|s_{W}^{4}\kappa_{ef}\gamma_{\mu} \otimes \gamma^{\mu}\right]$$

•
$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \text{Re}[\kappa_l(s = M_Z^2)]s_W^2$$

Effective Z boson vertex:

$$\bar{l}\gamma^{\mu}(g_V - g_A\gamma_5)lZ_{\mu}$$

- Adequate description through form factors at M_Z
- Necessary subtraction of
 - QED radiation
 - Small double boson exchange effects

Most interesting pseudoobservable:

$$\sin^2\theta_{\rm eff}^{\rm lept} = \frac{1}{4}\left(1-{\rm Re}\left(\frac{g_V}{g_A}\right)\right) = \kappa\left(1-\frac{M_W^2}{M_Z^2}\right)$$

- Very sensitive to top mass
- If new D0 value for m_t used, then $M_H < \sim 280 \; {\rm GeV}$
- Current experimental precision 1.6×10^{-4}
- GigaZ foreseen 1×10^{-5}

- Most sensitive to the Higgs boson mass:
 - $^{\circ}$ at $m_t \sim 175$ GeV, gives $M_H < ~\sim 210$ GeV
 - $^{\circ}$ from M_W measurement, $M_H < ~\sim 800~{
 m GeV}$
- Dependence on M_H mass enters already at $\mathcal{O}(\alpha^0)$ through M_W
- At $\mathcal{O}(\alpha)$, through renormalization of $\sin^2 \theta_W$
- At $\mathcal{O}(\alpha^2)$, through virtual exchanges
- Predominantly $\log M_H$

Motivation

Direct motivation:

Motivation

error estimate from difference between

- ullet $\sim m_t^2$ pred. of M_W
- full fermionic $\kappa(1-M_W^2/M_Z^2)$
- Best electroweak prediction ($\sim m_t^2$) Degrassi, Gambino, Sirlin '97
- Gambino at Lepton Photon '03: "...a complete calculation of $\sin^2 \theta$ lept is nowhere in sight." (!)
- Recent calculations of M_W at $\mathcal{O}(\alpha^{\in})$ shift the prediction by 4MeV.

Contributions to $sin^2\theta_{eff}^{(2)}$

At two loop order

$$\frac{1}{4} \frac{g_A^{(1)}}{g_A^{(0)}} \left(g_V^{(1)} - \frac{g_V^{(0)}}{g_A^{(0)}} g_A^{(1)} \right) - \frac{1}{4} \frac{1}{g_A^{(0)}} \left(g_V^{(2)} - \frac{g_V^{(0)}}{g_A^{(0)}} g_A^{(2)} \right)$$

- Product of one loop contributions trivial, but necessary to cancel infrared divergence
- Generic two loop contribution contains products of imaginary parts one loop diagrams

Contributions to $sin heta_{eff}$

Diagram classes:

- Two loop on-shell propagators necessary for $\delta \sin^2 \theta_W^{(2)}$ and $\delta Z_{\gamma Z}^{(2)}$
 - Calculated and extensively tested for muon decay
- Sole complication → two loop vertices
- Divided into two groups
 - containing top quark
 - containing only light fermions
- Diagrams with Higgs boson vanish by CP conservation

Possible prototypes:

treated with:

- IBP ids to reduce to master integrals
- Differential equations to get analytical results

Easier case: propagator type subloop

- Tensor reduction made trivial with use of harmonic tensors
- By dimensional analysis after partial fractioning: massless subloop becomes a propagator $1/p^{2\epsilon}$

Easier case: propagator type subloop

- Tensor reduction made trivial with use of harmonic tensors
- By dimensional analysis after partial fractioning: massless subloop becomes a propagator $1/p^{2\epsilon}$

Consequence: IBP ids almost as easy as at one loop

Master integrals:

Prototype satisfies differential equation

$$M^2 \frac{d}{dM^2} \quad \mathsf{LF1}(M,m) = \\ \frac{1}{2} \frac{M^2}{M^2 + m^2} ((4-D)(4+5\frac{m^2}{M^2}) \, \mathsf{LF1}(M,m) \\ + (10-3D) \, \mathsf{LF0}(M) - (2-D) \, \mathsf{T134}(0,0,m))$$

Prototype satisfies differential equation

$$M^2 \frac{d}{dM^2} \quad \mathsf{LF1}(M,m) = \\ \frac{1}{2} \frac{M^2}{M^2 + m^2} ((4-D)(4+5\frac{m^2}{M^2}) \, \mathsf{LF1}(M,m) \\ + (10-3D) \, \mathsf{LF0}(M) - (2-D) \, \mathsf{T134}(0,0,m))$$

• After integration ($x = M^2/m^2$)

$$-\text{Li}_{2}(-x)(-2+2\log(m^{2})+3\log(-x)+\log(1+x))$$

$$+4\text{Li}_{3}(-x)-\text{S}_{1,2}(-x)+\frac{1}{2}\log(1+x)(+2\zeta_{2}$$

$$-\log(-x)(-4+4\log(m^{2})+2\log(-x)+\log(1+x)))$$

Harder case:

- 6 denominators
- 7 scalar products
- 8 IBP ids
- 1 Lorentz invariance id
- Even tensor reduction nontrivial

Consequence: hardly feasible "by brain"

- Strategy:
 - Develop multipurpose tool to solve IBP ids
 - Implement Laporta algorithm
 - Extend by symmetry identification and massless detachable subgraph elimination

Strategy:

- Develop multipurpose tool to solve IBP ids
- Implement Laporta algorithm
- Extend by symmetry identification and massless detachable subgraph elimination

Result:

- IdSolver (M.Czakon): C++ library based on DiaGen
- $^{\circ} \sim 10^{5}$ integrals reduced within one hour
- Used for a few other multiloop projects underway

• At the end:

Short analytic result expressed through at most polylogarithms

- internal tests:
 - Some master integrals tested by means of Padé resummed Mellin-Barnes representations
 - Others analytically by comparison with low momentum expansion
 - Complete diagrams tested by means of low momentum expansion

- independent calculation (A.Freitas)
 - tensor reduction: IBPs ids, Lorentz invariance ids
 - topologies with self-energy sub-loop
 by dispersion relation reduced to 1 dimensional integrals
 - diagrams with triangle subloop: introduce Feynman parameters and integrate numerically (up to 3dimensional integrations for 2loop vertex)

 Winning strategy: exploit large scale differences

$$M_Z^2/m_t^2 \approx 1/4$$

 Always simplifies diagrams to calculate: here at most two loop single scale tadpoles

Three subdiagrams:

- Full diagram starts at m_t^0
- One loop subdiagram starts at m_t^2
- Single line subdiagram starts at m_t^{-2}

- Previously considered: m_t^2 contribution only
- Now, can go to arbitrary order, in practice: m_t^{-20}

• Example of excellent convergence ($x = M_Z^2/m_t^2$):

$$\frac{x}{3}\zeta_2 + \frac{x^2}{4}\left(\frac{1}{3}\zeta_2 - \frac{5}{9} + \frac{1}{3}\log x\right) + \frac{x^3}{5}\left(\frac{1}{9}\zeta_2 - \frac{79}{240} + \frac{1}{4}\log x\right) + \dots$$

$$0.1483 - 0.0081 - 0.0019 + 0.0003 + \dots$$

Behaviour common to neutral current diagrams

Example of asymptotic convergence:

- 8th order top quark mass expansion 0.34892 relative error estimate $\pm 3.2 \times 10^{-4}$
- 8th order Taylor expansion 0.34877 relative error estimate $\pm 4.9 \times 10^{-6}$
- Actual relative error on top quark mass expansion $\pm 4.4 \times 10^{-4}$
- Behaviour common to charged current diagrams

- Old problem: lack of invariant regularization for chiral theories
- Experience from muon decay:
 - successful use of NDIM

$$\{\gamma^{\mu}, \gamma_5\} = 0$$
$$\operatorname{Tr}[\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}\gamma^{\delta}\gamma_5] = 4 \ i \ \epsilon^{\alpha\beta\gamma\delta}$$

no poles in front of

$$\epsilon^{\alpha\beta\gamma\delta}\epsilon_{\alpha\beta\gamma\delta}$$

contribution comes solely from top quark diagrams

 Situation complicated substantially by collinear divergences

- Collinear poles hit epsilon tensors
- Only leading divergences cancel

 Situation complicated substantially by collinear divergences

- Collinear poles hit epsilon tensors
- Only leading divergences cancel

Simplest solution:

- use photon mass regulator
- easily tractable with previous methods

- Anomaly generates fermion mass independent infrared divergence
- Cancels within quark and lepton family
- Complete contribution vanishes for equal masses
- Different from zero for third family

Preliminary results

M_H	$\sin_{eff}^{2(0)}$	$\sin_{eff}^{2(1)}$	$\sin_{eff}^{2(2)}$	LF	Top	Tr5
100	0.222103	0.00746046	5.43035e-06	5.08323e-05	-0.000354522	?
200	0.222103	0.00746046	-2.64695e-05	3.40883e-05	-0.000355	?
600	0.222103	0.00746046	-8.53425e-05	-4.78e-05	-0.000346663	?
1000	0.222103	0.00746046	-7.91762e-05	-8.59563e-05	-0.00030234	?

M_H	$\sin^{lphalpha_s}$	$\sin^{lphalpha_s^2}$	$\Delta ho^{lpha^2lpha_s}$	Δho^{lpha^3}
100	-0.000804491	-0.000160793	2.63788e-05	3.26065e-06
200	-0.000804491	-0.000160793	4.3811e-05	1.79209e-06
600	-0.000804491	-0.000160793	8.52587e-05	1.72972e-06
1000	-0.000804491	-0.000160793	0.000104831	2.08883e-05

Conclusions

- Complete two loop fermionic contributions are now available as
 - top quark mass expansions
 - analytic expressions (for massless fermions)

Conclusions & Outlook

- Complete two loop fermionic contributions are now available as
 - top quark mass expansions
 - analytic expressions (for massless fermions)
- most of the cases tested by low momentum expansion and by numerical integration

Conclusions & Outlook

- Complete two loop fermionic contributions are now available as
 - top quark mass expansions
 - analytic expressions (for massless fermions)
- most of the cases tested by low momentum expansion and by numerical integration
- A fitting formula for use in experimental fits and application to ZFITTER is now under way

Conclusions & Outlook

- Complete two loop fermionic contributions are now available as
 - top quark mass expansions
 - analytic expressions (for massless fermions)
- most of the cases tested by low momentum expansion and by numerical integration
- A fitting formula for use in experimental fits and application to ZFITTER is now under way
- Pure bosonic corrections will be approached with the same tools